Introduction

STM32WB Series microcontrollers integrate a high quality RF transceiver for Bluetooth® Low Energy and 802.15.4 radio solution.

Special care is required for the layout of an RF board compared to a conventional circuit. At high frequencies copper interconnections (traces) behave as functional circuit elements introducing disturbances that can degrade RF performance. Parasitic components created by traces and pads contribute significantly to the overall circuit behavior. Layout rules have to be carefully followed to mitigate these effects and achieve the requested performance.

This document describes the precautions to be taken to achieve the best performance from the MCU. The description is based on the QFN48 / QFN68 / UFBGA129 reference boards for 2-layer PCBs, and on the WLCSP100 reference board for the 4-layer PCB.

For some products of the STM32WB Series only QFN48 is available, check the product datasheet available on www.st.com.

These guidelines are generic, they need to be adapted to the specific application.
Contents

1 RF basics ... 6
 1.1 Terminology .. 6
 1.1.1 Power .. 6
 1.1.2 Gain ... 6
 1.1.3 Loss ... 6
 1.1.4 Reflection coefficient, voltage standing wave ratio and return loss 6
 1.1.5 Harmonics .. 7
 1.1.6 Spurious ... 7
 1.1.7 Intermodulation 7
 1.2 Impedance matching 7
 1.3 Smith chart .. 8
 1.3.1 Normalized impedance 8
 1.3.2 Reading a Smith chart 8

2 Reference board schematics 12

3 Components choice 17
 3.1 Capacitor ... 17
 3.2 Inductor .. 18
 3.3 SMPS ... 19
 3.4 External crystal .. 20

4 PCB stack and technology 21
 4.1 RF transmission lines 21
 4.2 PCB substrate choice 21
 4.3 Ground planes ... 21

5 Layout recommendations 25
 5.1 2-layer PCB ... 25
 5.2 6-layer PCB ... 27
 5.3 Critical parts ... 29
 5.3.1 RF .. 29
 5.3.2 SMPS ... 31
6 Layout recommendations for reference boards 33
 6.1 Power supplies and decoupling .. 33
 6.2 Grounding shunt-connected components 33
 6.3 IC ground plane (exposed pad) 33
 6.4 Isolation .. 34
 6.5 Component orientation .. 34
 6.6 RF ... 34
 6.7 XTALs ... 34
 6.8 SMPS ... 35
 6.9 Check list .. 36
 6.10 Undesired effects .. 36

7 Reference boards with IPD .. 37

8 Matching network determination .. 41
 8.1 Load pull measurement .. 41
 8.2 Procedure ... 41

9 Conclusion .. 45

10 Revision history ... 46
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>External components</td>
<td>12</td>
</tr>
<tr>
<td>Table 2</td>
<td>Capacitor temperature ranges</td>
<td>18</td>
</tr>
<tr>
<td>Table 3</td>
<td>2-layer PCB</td>
<td>23</td>
</tr>
<tr>
<td>Table 4</td>
<td>4-layer PCB</td>
<td>23</td>
</tr>
<tr>
<td>Table 5</td>
<td>6-layer PCB</td>
<td>24</td>
</tr>
<tr>
<td>Table 6</td>
<td>References</td>
<td>37</td>
</tr>
<tr>
<td>Table 7</td>
<td>Document revision history</td>
<td>46</td>
</tr>
</tbody>
</table>
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Smith chart</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Series connection</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Smith chart for admittance</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Parallel connection</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Smith chart with impedance and admittance</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Smith chart with VSWR circles</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Adapting a network with the Smith free SW</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>UFQFPN48 reference board</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>VFQFPN68 reference board</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>UFBGA129 reference board</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>WLCSP100 reference board</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>Capacitor equivalent circuit</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>Capacitor impedance vs. frequency</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>Inductor equivalent circuit</td>
<td>18</td>
</tr>
<tr>
<td>15</td>
<td>Inductor impedance vs. frequency</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>Connection of an external crystal</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>Coplanar waveguide</td>
<td>21</td>
</tr>
<tr>
<td>18</td>
<td>PCB layout for UFQFPN48 (left to right: all, top and bottom layers)</td>
<td>25</td>
</tr>
<tr>
<td>19</td>
<td>PCB layout for VFQFPN68 (left to right: all, top and bottom layers)</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>PCB layout for UFBGA129</td>
<td>26</td>
</tr>
<tr>
<td>21</td>
<td>PCB layout for WLCSP100 - All layers</td>
<td>27</td>
</tr>
<tr>
<td>22</td>
<td>PCB layout for WLCSP100 - Detail</td>
<td>28</td>
</tr>
<tr>
<td>23</td>
<td>Detail of PCB layout for the RF</td>
<td>30</td>
</tr>
<tr>
<td>24</td>
<td>Detail of PCB layout for the SMPS</td>
<td>31</td>
</tr>
<tr>
<td>25</td>
<td>Detail of PCB layout for the LSE</td>
<td>32</td>
</tr>
<tr>
<td>26</td>
<td>XTAL positioning</td>
<td>35</td>
</tr>
<tr>
<td>27</td>
<td>Positioning components for the SMPS</td>
<td>35</td>
</tr>
<tr>
<td>28</td>
<td>Different matching networks (discrete components on the left, IPD on the right)</td>
<td>37</td>
</tr>
<tr>
<td>29</td>
<td>RF performance of the MLPF-WB55-01E3</td>
<td>38</td>
</tr>
<tr>
<td>30</td>
<td>RF performance of the MLPF-WB55-02E3</td>
<td>38</td>
</tr>
<tr>
<td>31</td>
<td>IPD package (bumpless CSP)</td>
<td>39</td>
</tr>
<tr>
<td>32</td>
<td>PCB layout with discrete matching network (left) and with IPD (right)</td>
<td>40</td>
</tr>
<tr>
<td>33</td>
<td>Load pull measurement</td>
<td>41</td>
</tr>
<tr>
<td>34</td>
<td>Calibration</td>
<td>42</td>
</tr>
<tr>
<td>35</td>
<td>Optimum measurement</td>
<td>42</td>
</tr>
<tr>
<td>36</td>
<td>Extraction of results</td>
<td>43</td>
</tr>
<tr>
<td>37</td>
<td>Network simulation</td>
<td>43</td>
</tr>
<tr>
<td>38</td>
<td>Simulation results</td>
<td>44</td>
</tr>
</tbody>
</table>
1 RF basics

This section covers generic terms and definitions used in RF board design.

The following references can help the user.

1 Paul Horowitz and Winfield Hill The art of electronics Cambridge University Press (3rd edition)
2 Roger C. Palmer An introduction to RF circuit design for communication systems Newnes (2nd edition)
3 Christopher Bowick RF circuit design (2nd edition) Newnes
5 Smith chart (free SW) http://www.fritz.dellsperger.net
6 Coplanar waveguide calculator (free SW) http://wcalc.sourceforge.net

1.1 Terminology

1.1.1 Power

This unit, expressed in dBm, is the measure of the RF signal strength: $dBm = 10 \log P$, where P is the power in mW:

- $1 \, pW = -90 \, dBm$
- $10 \, \mu W = -20 \, dBm$
- $1 \, mW = 0 \, dBm$
- $2 \, mW = 3 \, dBm$
- $10 \, mW = 10 \, dBm$

1.1.2 Gain

The gain (expressed in dB) is the ratio between the output and the input power of an RF device. Negative values correspond to an attenuation.

1.1.3 Loss

If there is impedance mismatch, incorrect transmission line design or incorrect PCB material selection between two stages of a circuit, signal power losses appear and not all the power is transmitted from one stage to the following one. There are also inherent losses, e.g. the dielectric loss, which depends upon the laminate and materials used to manufacture the board.

1.1.4 Reflection coefficient, voltage standing wave ratio and return loss

When a signal flows from a source to a load via a transmission line, if there is a mismatch between the characteristic impedance of the transmission line and the load a portion of the
signal is reflected back to the source. The polarity and the magnitude of the reflected signal depend on whether the load impedance is higher or lower than the line impedance.

The reflection coefficient (\(\Gamma \)) is the measure of the amplitude of the reflected wave versus the amplitude of the incident wave, namely \(\Gamma = (Z - Z_0) / (Z + Z_0) = (z - 1) / (z + 1) \).

The voltage standing wave ratio (VSWR) is the measure of the accuracy of the impedance matching at the point of connection. It is a function of the reflection coefficient and is expressed as \(\text{VSWR} = (1 + |\Gamma|) / (1 - |\Gamma|) \). If VSWR is 1, there is no reflected power.

The return loss (RL) is a function of the reflection coefficient, but expressed in dB:
\[
\text{RL} = 20 \log |\Gamma|
\]

1.1.5 Harmonics

The harmonics are the integer unwanted multiples of input frequency (fundamental frequency).

1.1.6 Spurious

The spurious are the non-integer multiples of input frequency (unwanted frequencies).

1.1.7 Intermodulation

When two RF signal are mixed together, intermodulation products are the signals composed by an integer multiple of the sum and the difference between the two signals.

1.2 Impedance matching

To optimize the RF performance it is imperative to adapt the impedance matching from the antenna to the input of the chip, as well as that from the chip output to the antenna.

A poor adaptation introduces losses in the RX/TX chain. These losses immediately translate in lower sensitivity and in lower signal amplitude of the transmitted signal. These disadaptations, if high enough, increase the level of TX harmonics.

As a consequence it is very important to spend efforts to adapt as best as possible the RF chain. In the Bluetooth® Low Energy bandwidth of the STM32WB, and more generally in RF frequencies, spurious elements (such as PCB track inductances and layer capacitors, trace length) have a significant impact on the impedance matching. To achieve the best TX/RX budget (optimum transfer of signal and energy) between the load and the STM32WB, a dedicated matching network is needed between the two blocks.

The maximum power is transferred when the internal resistance of the source equals the resistance of the load. When extended to a circuit with a frequency-dependent signal, to obtain maximum power transfer the load impedance must be the complex conjugate of the source impedance.
1.3 **Smith chart**

The Smith chart (*Figure 1*) is used to determine the matching network.

1.3.1 **Normalized impedance**

The normalized impedance \(z \) is a complex impedance (\(r \) is the real part and \(x \) the imaginary part): \(z = r + jx = \frac{Z}{Z_0} \) where \(Z_0 \) is the characteristic impedance and is often a constant (in our case \(Z_0 = 50 \, \Omega \)).

For a capacitor \(z = -\frac{j}{2\pi f C Z_0} \), for an inductor \(z = \frac{j(2\pi f L)}{Z_0} \).

1.3.2 **Reading a Smith chart**

The Smith chart is represented with the normalized impedance scale \(z = \frac{Z}{Z_0} \).

Figure 1. Smith chart

If \(Z_0 = 50 \, \Omega \), when there is matching (\(Z = Z_0 \)) the normalized impedance at 50 \(\Omega \) is 1 and it is the center of the Smith chart. The goal in the search of a matching network is to converge towards this point.

The horizontal axis of the Smith chart represents pure resistors: at the left side, \(z = 0 \) (short circuit) and at the right side, \(z = \infty \).

The region located above the X axis represents impedances with inductive reactance (positive imaginary part of the complex impedance) or capacitive susceptance (positive imaginary part of the complex admittance).

The region below the X axis represents impedances with capacitive reactance (negative imaginary part of the complex impedance) or inductive susceptance (negative imaginary part of the complex admittance).
Serial inductor or capacitor

If an inductor or a capacitor is in series with the load impedance Z_1 the resulting impedance Z_{in} moves as shown in Figure 2.

Figure 2. Series connection

As for the Smith chart in normalized impedance (z) scale, the Smith chart can be represented in normalized admittance ($y = 1/z$) scale as shown in Figure 3.

Figure 3. Smith chart for admittance
Parallel inductor or capacitor

If an inductor or a capacitor is in parallel with the load admittance Y_1 the resulting impedance Y_{in} moves as shown in Figure 4.

Figure 4. Parallel connection

In Figure 5 the Smith chart in impedance and admittance planes.

Figure 5. Smith chart with impedance and admittance

The circles with constant VSWR are additional information that can be retrieved from the Smith chart even when they are not represented. These circles have the same center, and
as values the intersections between the circle and the right side of the horizontal axis from the center (see Figure 6).

Figure 6. Smith chart with VSWR circles

Figure 7 is an example of the free software “Smith”: starting from $Z_L = (25.00 - j * 8.00)$ Ω represented on the Smith chart by DP1, the goal is to obtain $Z_{in} = 50$ Ω. By adding (in series or in parallel) inductors or capacitors, the impedance converges towards the center of the graph.

Figure 7. Adapting a network with the Smith free SW
2 Reference board schematics

The STM32WB Series microcontrollers are based on Arm® cores.

The schematics in Figure 8, Figure 9 and Figure 10 represent, respectively, the 2-layer reference boards for UFQFPN48, VFQFPN68 and UFBGA129 packages. Figure 11 represents the 4-layer reference board for WLCSP100. The RF output is only from SMA. All the layout guidelines described in the next paragraphs for two layers PCB are based on these boards.

<table>
<thead>
<tr>
<th>Component(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2</td>
<td>Decoupling capacitors for V_{DDRF}</td>
</tr>
<tr>
<td>C3, C4</td>
<td>Matching capacitors</td>
</tr>
<tr>
<td>C5, C6, C7</td>
<td>Decoupling capacitors for V_{DD}</td>
</tr>
<tr>
<td>C8</td>
<td>Decoupling capacitor for V_{BAT}</td>
</tr>
<tr>
<td>C9</td>
<td>Decoupling capacitor for V_{DDUSB}</td>
</tr>
<tr>
<td>C10</td>
<td>Decoupling capacitor for V_{DDA}</td>
</tr>
<tr>
<td>C12</td>
<td>Decoupling capacitor for SMPS</td>
</tr>
<tr>
<td>C11, C13</td>
<td>DC-DC converter filtering capacitors</td>
</tr>
<tr>
<td>C14, C15</td>
<td>X2 capacitors</td>
</tr>
<tr>
<td>C16</td>
<td>Decoupling capacitor for NRST pin</td>
</tr>
<tr>
<td>D1</td>
<td>Diode protection for NRST pin</td>
</tr>
<tr>
<td>FLT1</td>
<td>Integrated Low-Pass Filter</td>
</tr>
<tr>
<td>L1</td>
<td>Matching inductor</td>
</tr>
<tr>
<td>L2, L3</td>
<td>DC-DC converter inductor</td>
</tr>
<tr>
<td>L4</td>
<td>Filtering inductor for V_{DDA}</td>
</tr>
<tr>
<td>R1</td>
<td>Pull-up resistor for NRST</td>
</tr>
<tr>
<td>R2</td>
<td>Boot selector resistor</td>
</tr>
<tr>
<td>U1</td>
<td>STM32WBxx</td>
</tr>
<tr>
<td>X1</td>
<td>High frequency crystal</td>
</tr>
<tr>
<td>X2</td>
<td>Low frequency crystal</td>
</tr>
</tbody>
</table>

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
Figure 8. UFQFPN48 reference board
Figure 9. VFQFPN68 reference board
Figure 10. UFBGA129 reference board

Connecteurs vers la carte mère (BOTTOM LAYER)

Connecteurs vers la carte fille (TOP LAYER)
3 Components choice

In the Bluetooth® Low Energy bandwidth and more generally at high frequencies, the choice of the external components is critical because they directly influence the performance of the application.

3.1 Capacitor

A capacitor is a passive electrical component used to store energy in an electrical field. They are made with different construction techniques, materials (such as double-layer, polyester, polypropylene) and sizes. For RF design, it is recommended to use ceramic capacitors on surface mount version.

The equivalent circuit of a capacitor is represented in Figure 12. The resistor R_p represents its leakage current, while R_s is the equivalent serial resistor (ESR) and represents all ohmic losses of the capacitor. The inductor L_s is the equivalent serial inductance (ESL) and its value is function of the SRF (self-resonant frequency). From Figure 13 it can be appreciated that the impedance of the capacitor is capacitive at low frequencies, at the SRF is resistive, and inductive at higher frequencies.

Figure 12. Capacitor equivalent circuit

Figure 13. Capacitor impedance vs. frequency
For RF matching, multilayer ceramic capacitors offer linear temperature coefficients, low losses and stable electrical properties over time, voltage and frequency. SMD (Surface Mount Device) is used with a 0402 package, which is a good compromise between performance and handling.

For RF decoupling, the capacitance value must be chosen so that the frequency to be decoupled is close to or just above the self-resonant frequency of the capacitor.

For DC-DC converter, as the quality factor of a capacitor is inversely proportional to its ESR, a capacitor with low insertion loss and a good quality factor is recommended. The capacitor requires either an X7R or X5R dielectric.

3.2 Inductor

An inductor is a passive electrical component used to store energy in its magnetic field. Inductors differ from each other for construction techniques and used materials.

For RF design, where a high Q (quality factor $= \text{Im}(Z) / \text{Re}(Z)$) is required to reduce insertion loss, it is generally recommended to use air core inductors. Those inductors do not use a magnetic core made of ferromagnetic material, but are wound on plastic, ceramic, or other nonmagnetic materials. SMD is also used with a 0402 package.

The equivalent circuit of an inductor is shown in Figure 14. The resistor R_g represents the losses due to the winding wire and terminations, its value increases with temperature. The resistor R_p represents the magnetic core losses, it varies with frequency, temperature and current. The capacitor C_p is associated with the windings.

![Figure 14. Inductor equivalent circuit](ms51092v1.png)
As shown in Figure 15, at SRF the impedance and inductance are at their maximum. At lower / higher frequencies impedance and inductance increase / decrease with frequency.

Figure 15. Inductor impedance vs. frequency

For RF matching and decoupling, a good compromise between application cost and RF performance is to use an inductor with medium Q.

For DC-DC converter, the nominal value is 10 µH. The inductor value affects the peak-to-peak ripple current, the output voltage ripple and the efficiency. The selected inductor has to be rated for its DC resistance and saturation current.

It is important to use the components shown in the schematics to obtain the best RF performance with the given PCB layout of the reference boards.

3.3 SMPS

Some STM32WB microcontrollers (check the product datasheet available on www.st.com) embed an SMPS (switched mode power supply) that can be used to improve power efficiency when V_{DD} is high enough.

In order not to disturb the RF performances, this SMPS has its switching frequency synchronous with the RF main clock source HSE. The allowed frequency for the SMPS are 4 or 8 MHz. Note that during RF startup phases from low power modes, the HSI is used instead of HSE, to allow a faster wakeup time than waiting from the HSE stabilization before starting the SMPS and the digital logic.

Two specifics features have been added to this step down SMPS in association with all the low power modes supported by the STM32WB microcontrollers:

To operate properly the SMPS needs two inductors and two capacitors, whose value depend upon the targeted performance, and upon the PCB area and total height allowed in the mechanical design.

For best power performances, 4 MHz should be selected, leading to a 10 µH inductor associated with a 4.7 µF bulk capacitance. For smaller footprint, and especially to use very
low profile inductor, the 8 MHz can be selected, making it possible to use a 2.2 µH inductor associated with a 4.7 µF bulk capacitance.

For all packages it is advised to add an extra 10 nH inductor in series with the 10 or 2.2 µH one, to filter the RF harmonic that can degrade the receiver performance.

Another 4.7 µF capacitor must be used to decouple the VDDSMS supply. All of these external components must have the lowest possible ESR values. Note that VDDSMS must be connected to VDD, and that voltage rising and falling must satisfy the conditions described in the STM32WB data sheet.

3.4 External crystal

Two oscillators with external crystals are available on the STM32WB microcontrollers. The HSE (high speed external) with 32 MHz frequency is used by the RF subsystem. The crystal X1 has to be placed as close as possible to the oscillator pins OSC_IN and OSC_OUT to minimize output distortion and start-up stabilization time. The load capacitances are integrated on chip and can be tuned according to the selected crystal via an internal register. By default, the load capacitances are 8 pF for the NX2016 from NDK used on the boards.

The LSE (low speed external) with 32.768 kHz frequency is used for the RTC subsystem. C1 and C2 values must be tuned to meet to the recommended load capacitance C0 of the selected crystal. Low power consumption and fast start-up time are achieved with a low C0 value. On the contrary, a higher C0 leads to a better frequency stability.

With reference to Figure 16, the total load capacitance C0 seen by the crystal is

\[C_0 = \frac{[(C_1 + C_{PAD} + C_{PB1}) * (C_2 + C_{PAD} + C_{PB2})]}{(C_1 + C_{PAD} + C_{PB1} + C_2 + C_{PAD} + C_{PB2})} \]

where:

- C_PAD accounts for the parasitic capacitance of the STM32WB pads, of the SMD components C1 and C2, and of the crystal itself.
- C_{PB1} and C_{PB2} represent the PCB routing parasitic capacitances. They must be minimized by placing X2, C1 and C2 close to the chip, thus improving the robustness against noise injection.
- C1 and C2 must be connected to ground by a separate via.

![Figure 16. Connection of an external crystal](MS51051V1)
4 PCB stack and technology

PCB traces at RF frequencies have to be designed carefully because their length is a fraction of the signal wavelength. Furthermore, the impedance of a PCB trace at RF frequencies depends upon the thickness of the trace, its height above the ground plane, and the dielectric constant and loss tangent of the PCB dielectric material. Another important parameter is the PCB stack.

RF boards are designed with at least two or four layers to obtain the best performance.

4.1 RF transmission lines

The transmission lines on a PCB can be implemented on external layers (microstrips and coplanar waveguides), or buried in internal layers (striplines).

The coplanar waveguide (CPW) is composed of a central signal line of width \(W\) between two ground planes, separated from them by a gap \(G\) (see Figure 17). The central line and ground planes are on the surface of a dielectric substrate of thickness \(H\).

![Figure 17. Coplanar waveguide](image)

A CPW version named GCPW or CPWG exists, with a ground plane opposite to the dielectric.

4.2 PCB substrate choice

There are different types of PCB substrate, even if built with the same basic material (glass), some of them have controlled parameters that are more suitable for RF product. The PCB substrate used in RF designs is FR-4 (flame resistant 4). This material is known to retain its high mechanical values and electrical insulating qualities in both dry and humid conditions, at the expenses of dielectric constant stability over frequency and loss.

4.3 Ground planes

It is recommended to use a continuous ground plane on INNER 1 layer, assuming TOP layer is used for the components and the RF transmission line. This plane must not be
shared or assigned to signal or power nets but must be uniquely allocated to ground. Partial ground planes on a layer, sometimes required by design constraints, must underlie all RF components and transmission line. Ground planes must not be broken under transmission line routing.

Ground vias between layers should be added liberally throughout the RF portion of the PCB. This helps prevent accrual of parasitic ground inductance due to ground-current return paths. The vias also help to prevent cross-coupling from RF and other signal lines across the PCB.

Additionally, on the TOP component layer, it is usually a good idea to fill the unused area with ground plane and then connect this top fill with the INNER1 ground plane with several vias. It is recommended to have these vias space about 1/10th of the wavelength apart.

The layers assigned to power supplies and ground must be considered in terms of the return current for the components. It is recommended to have no signals routed on layers between the power supplies layer and the ground layer.

- **2-layer PCB**
 - limited to thicknesses between 0.8 and 1.0 mm to make a 50 Ω line with an acceptable width
 - TOP layer: components and signal routing
 - BOTTOM layer: predominantly ground

- **4-layer PCB**
 - thickness between 0.8 and 1.6 mm
 - TOP layer: components and critical signals (e.g. RF, XTAL, SMPS)
 - INNER1 layer: ground plane
 - INNER2 layer: power plane and signal routing
 - BOTTOM layer: ground plane and signal routing

The 2-layer PCB provides a cheaper solution and can provide performance equivalent to those of the 4-layer PCB, but requires careful signal routing and component placement.

The 4-layer solution is more complicated and expensive. The laser-filled and the buried vias have to be used to connect the tracks to the internal balls.

For PCBs with more than 4 layers, keep the components and critical signals (e.g. RF, XTAL, SMPS) on the TOP layer, put the ground plane in INNER1 layer before routing the signals on the others layers (INNER2, INNER3, …) to isolate the GPIOs from the critical signals.
Table 3. 2-layer PCB

<table>
<thead>
<tr>
<th>ID</th>
<th>Layer</th>
<th>Material</th>
<th>Type</th>
<th>Thickness</th>
<th>ε_r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top overlay</td>
<td>-</td>
<td>Overlay</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Top solder</td>
<td>Solder resist</td>
<td>Solder mask</td>
<td>0.03 mm</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>Top layer</td>
<td>-</td>
<td>Signal</td>
<td>0.042 mm</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Bottom layer</td>
<td>-</td>
<td>Signal</td>
<td>0.042 mm</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Bottom solder</td>
<td>Solder resist</td>
<td>Solder mask</td>
<td>0.03 mm</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Bottom overlay</td>
<td>-</td>
<td>Overlay</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4. 4-layer PCB

<table>
<thead>
<tr>
<th>ID</th>
<th>Layer</th>
<th>Material</th>
<th>Type</th>
<th>Thickness</th>
<th>ε_r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top overlay</td>
<td>-</td>
<td>Overlay</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Top solder</td>
<td>Solder resist</td>
<td>Solder mask</td>
<td>0.01 mm</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>Top layer</td>
<td>-</td>
<td>Signal</td>
<td>0.017 mm</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Dielectric 1</td>
<td>1 x 106</td>
<td>Prepreg</td>
<td>0.06 mm</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>Mid layer 1</td>
<td>-</td>
<td>Signal</td>
<td>0.017 mm</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Dielectric 2</td>
<td>FR4</td>
<td>Core</td>
<td>1.4 mm</td>
<td>4.2</td>
</tr>
<tr>
<td>3</td>
<td>Mid layer 2</td>
<td>-</td>
<td>Signal</td>
<td>0.017 mm</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Dielectric 3</td>
<td>1 x 106</td>
<td>Prepreg</td>
<td>0.06 mm</td>
<td>4.2</td>
</tr>
<tr>
<td>6</td>
<td>Bottom layer</td>
<td>-</td>
<td>Signal</td>
<td>0.017 mm</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Bottom solder</td>
<td>Solder resist</td>
<td>Solder mask</td>
<td>0.01 mm</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Bottom overlay</td>
<td>-</td>
<td>Overlay</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 5. 6-layer PCB

<table>
<thead>
<tr>
<th>ID</th>
<th>Layer</th>
<th>Material</th>
<th>Type</th>
<th>Thickness</th>
<th>ε_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Top overlay</td>
<td>-</td>
<td>Overlay</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Top solder</td>
<td>Solder resist</td>
<td>Solder mask</td>
<td>0.03 mm</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>Top layer</td>
<td>-</td>
<td>Signal</td>
<td>0.037 mm</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Dielectric 1</td>
<td>1 x 1080</td>
<td>Prepreg</td>
<td>0.065 mm</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>Mid layer 1</td>
<td>-</td>
<td>Signal</td>
<td>0.012 mm</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Dielectric 2</td>
<td>1 x 1080</td>
<td>Prepreg</td>
<td>0.065 mm</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>Mid layer 2</td>
<td>-</td>
<td>Signal</td>
<td>0.017 mm</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Dielectric 3</td>
<td>FR4</td>
<td>Core</td>
<td>1.08 mm</td>
<td>4.7</td>
</tr>
<tr>
<td>4</td>
<td>Mid layer 3</td>
<td>-</td>
<td>Signal</td>
<td>0.017 mm</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Dielectric 4</td>
<td>1 x 1080</td>
<td>Prepreg</td>
<td>0.065 mm</td>
<td>3.5</td>
</tr>
<tr>
<td>5</td>
<td>Mid layer 1</td>
<td>-</td>
<td>Signal</td>
<td>0.012 mm</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Dielectric 1</td>
<td>1 x 1080</td>
<td>Prepreg</td>
<td>0.065 mm</td>
<td>3.5</td>
</tr>
<tr>
<td>6</td>
<td>Bottom layer</td>
<td>-</td>
<td>Signal</td>
<td>0.037 mm</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>Bottom solder</td>
<td>Solder resist</td>
<td>Solder mask</td>
<td>0.03 mm</td>
<td>3.6</td>
</tr>
<tr>
<td>-</td>
<td>Bottom overlay</td>
<td>-</td>
<td>Overlay</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
5 Layout recommendations

5.1 2-layer PCB

Figure 18. PCB layout for UFQFPN48 (left to right: all, top and bottom layers)

Figure 19. PCB layout for VFQFPN68 (left to right: all, top and bottom layers)
Figure 20. PCB layout for UFBGA129

All layers

Top layer

Bottom layer
5.2 6-layer PCB

Figure 21. PCB layout for WLCSP100 - All layers
Figure 22. PCB layout for WLCSP100 - Detail

Top layer

Inner layer 1

Inner layer 2

Inner layer 3

Inner layer 4

Bottom layer
5.3 Critical parts

The three critical parts in the layout are the RF, the SMPS and the LSE.

5.3.1 RF

To obtain the best RF performance (in particular the maximum transmission power, the optimum reception sensitivity and a sufficient spurious and harmonic rejection), a matching network is required between the RF1 output pin and the RF low-pass filter.

This network is composed by a discrete LC PI filter followed by an integrated low-pass filter. C3 and L1 have the role of adapting the RF pin impedance of the STM32WB to 50 Ω, the impedance that must be seen by the SMA. C4 and the integrated low-pass filter FLT1 are used to reject the harmonic frequencies. The values of C3, C4 and L1 depend on the reference board PCB definition, detailed in Section 2: Reference board schematics.

The low-pass filter FLT1 used has a mark to distinguish the direction. Respect the direction indicated on the PCB (the filter structure is not perfectly symmetric, the properties change with the mounting direction).

It is also recommended to place the matching network as near as possible to the RF output and to avoid long track between each component of this matching network. The track between the output of the low-pass filter FLT1 and the SMA connector can have a variable length, depending upon the application, provided that its impedance is always 50 Ω.
Figure 23. Detail of PCB layout for the RF

UFQFPN48

VFQFPN68

WLCSP100

UFBGA129
5.3.2 SMPS

In addition to the recommendations given in Section 3.3: SMPS, to avoid important current loop when the STM32WB is in SMPS mode, it is recommended to place C11, C12 and C13 as close as possible to their respective pins on STM32WB. Do not forget to connect the solder pad to ground to have a strong current return path.

Figure 24. Detail of PCB layout for the SMPS
5.3.3 LSE

As indicated in Section 3.4: External crystal, place X2, C14 and C15 as close as possible to their respective pins.

Figure 25. Detail of PCB layout for the LSE
6 Layout recommendations for reference boards

6.1 Power supplies and decoupling

Power supply routing is important in RF design and, if not carefully planned, can affect the system performance undesirably. Proper routing, bypassing and decoupling avoid noise coupling effect and affecting the performance of the system. A source of high frequency noise on a PCB can be the transient demand of current by active devices, casing high frequency harmonics to be generated. The generated noise can travel to the power supply pins of the devices, degrading performance, to prevent this it must be bypassed to the ground plane using a capacitor providing a low impedance path.

Also, the digital section switches rail to rail rapidly, generating high frequency harmonics, which can couple with the power supply lines if not routed and decoupled properly. Also, there may be undesired coupling between the power supply lines. The power supply and digital lines must be routed away from the RF section, and decoupling must be done to isolate the corresponding power supply pin from the high frequency noise on the other sections. Additionally, the bypass/decoupling capacitor must be carefully selected taking into consideration the SRF (above this frequency the capacitor behaves as an inductor, hence a capacitor is effective only up to the SRF).

A common practice is to use a “star” configuration for the power supplies nets. A larger decoupling capacitor (4.7 to 10 uF) is mounted at the “root” of the star, and smaller capacitors (100 nF) at the end of each of the star branches near the power supply pins of the chip.

The star configuration avoids long ground return paths that would result if all the pins connected to the same power supply net were connected in series. A long ground return path causes a parasitic inductance that can lead to unintended feedback loops.

6.2 Grounding shunt-connected components

For shunt-connected (grounded) components (such as power supply decoupling capacitors), the recommended practice is to use at least two grounding vias for each component. This reduces the effect of via parasitic inductance. Via ground ‘islands’ can be used for groups of shunt-connected components.

6.3 IC ground plane (exposed pad)

Most devices require solid ground plane on the component layer (TOP or BOTTOM of PCB) directly underneath the component. This ground plane carries DC and RF return currents through the PCB to the assigned ground plane. The secondary function of the exposed pad is to provide a thermal heat-sink, so that the exposed pad should include the maximum number of vias allowed by the PCB design rules. These vias are ideally thru-vias (penetrating through all the PCB layers).
6.4 Isolation

Care must be taken to prevent unintended coupling between signal lines. Some examples of potential coupling and preventive measures:

- **RF transmission lines**: keep them as far apart as possible. The grounded coplanar waveguide provides excellent isolation between lines. It is impractical to achieve better than approximately -45 dB between RF lines on small PCBs.

- **High-speed digital signal lines** should be routed separately on a layer different from that of the RF signal line to prevent coupling. Digital noise (e.g. clocks) can couple onto RF signal lines, and these can be modulated onto RF carriers.

- **V\text{CC} and power lines** must be routed on a dedicated layer. Provide adequate decoupling/bypass capacitors at the main V\text{CC} distribution node and at V\text{CC} branches. The value of the bypass capacitances must be set based on the overall frequency response of the RF device, and the expected frequency distribution nature of any digital noise from clocks. These lines should also be separated from the RF lines.

6.5 Component orientation

Inductors on the PCB generate a magnetic field that can couple with other components and RF line. To obtain a good isolation between those components, place them orthogonally and, if not possible, space them as much as possible.

6.6 RF

To obtain the best RF performance (in particular maximum transmission power, optimum reception sensitivity and a sufficient spurious and harmonic rejection), a matching network is required between the RF output pin of the device following by the RF low-pass filter.

The discrete LC PI network have the role of adapting the RF pin impedance of the device to 50 \, \Omega, the impedance that must be seen by the SMA. The integrated low-pass filter FLT1 is used to reject the harmonic frequencies. The values of the discrete LC PI network components depend upon the device package and the reference board PCB definition.

The low-pass filter used has a mark to distinguish the direction. Respect the direction indicated on the PCB (the filter structure is not perfectly symmetric, the properties change with the mounting direction).

Place the matching network as close as possible to the RF output and avoid long tracks between each component of this matching network in order to minimize the possible phase rotation with respect to harmonics and the risk of radiation by this line (radiation is proportional to the length). And obviously, minimize losses due to the track length.

It is also recommended not to cover the RF tracks with metal mask.

6.7 XTALs

It is recommended to place the XTALs on the top layer and to keep them as close as possible to the oscillator pins of the device. Long lines must be avoided.

No GPIO routing in the vicinity on the top layer and the layers below the XTAL as long as the ground layer is not inserted.
The XTAL has to be kept far from SMPS and RF components (matching, filter, antenna).

Figure 26. XTAL positioning

6.8 **SMPS**

$V_{DD_{SMPS}}$ and $V_{SS_{SMPS}}$ must be decoupled as close as possible to the device pin (C1). Large currents flow from V_{DD} to the SMPS output and from here to V_{SS}.

Place and route the inductor (L1) as close as possible to the device with the area of the copper connection kept small (to let the coupling capacitance as small as possible). Be careful on the orientation of the inductances. Place and route the SMPS output capacitance C2 connected to the power ground terminal and place to minimize the distance between the inductance and the ground.

Figure 27. Positioning components for the SMPS
6.9 Check list

1. Verify that the bypass capacitors are as close as possible to the power supply pins that they are meant to bypass.
2. Ensure that each decoupling capacitor only decouples the specific pins recommended on the reference design and that the capacitor be of the correct value and type.
3. Verify that the stack-up matches the reference design. If the design is 4-layer or higher, verify that ground planes is INNER1 layer just below TOP/components layer.
4. Changing the spacing/stack-up affects the matching in the RF signal path and must be carefully accounted.
5. A solid ground plane must be placed below the device and the RF path. No ground plane must be placed below the antenna unless recommended by the manufacturer.
6. Verify that the RF signal path matches the reference design as close as possible (components should be arranged in a very similar way and oriented the same way).
7. The XTALs should be as close as possible to the oscillator pins of the device. Long lines to the oscillator must be avoided.
8. No GPIOs net nearby the XTAL area.
9. Verify that the ground pours on the TOP layer are stitched to the INNER ground plane and to the BOTTOM layer plane with many vias, especially around the RF path. Vias on the rest of the board should be no more than a tenth of wavelength apart.
10. If the device uses a battery, do not place it under the antenna because it acts as a ground plane.
11. The board should specify impedance controlled traces, meaning that the layer spacing and FR4 permittivity must be controlled and known.

Important considerations for the antennas:

1. Be sure to copy the reference design exactly with the same stack-up.
2. Changes to feed line length of antenna change input impedance matching.
3. Metals in close proximity, plastic enclosures, and human body change the antenna input impedance and resonance frequency.
4. For multiple antennas on the same board use antenna polarization and directivity to isolate them.
5. For chip antennas, verify that the spacing from and orientation with respect to the ground plane is correct (as specified in the antenna datasheet).

6.10 Undesired effects

- Sensitivity/spurs (Receive mode; RF input):
 - GPIO coupling through RF lines, ground, power supply
 - XTAL coupling through RF lines, ground, power supply
 - SMPS coupling through RF lines, ground, power supply
 - Digital activities through ground, power supply
- Pulling:
 - VCO pulled by the PA, the XTAL or/and the GPIO
 - PA pulled by the VCO, the XTAL or/and the GPIO
 - XTAL pulled by the VCO, the PA or/and the GPIO
7 Reference boards with IPD

The goal of the IPD (integrated passive device) is to replace the discrete matching network plus the integrated low-pass filter keeping equivalent TX/RX performance. Figure 28 shows the differences between the two approaches, using as example the QFN48 package.

Figure 28. Different matching networks (discrete components on the left, IPD on the right)

<table>
<thead>
<tr>
<th>Package</th>
<th>IPD reference</th>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>QFN48</td>
<td>MLPF-WB55-01E3</td>
<td>DS12804(1), 2.4 GHz low pass filter matched to STM32WB55Cx/Rx</td>
</tr>
<tr>
<td>QFN68</td>
<td>UFBGA129</td>
<td>DS13176(1), 2.4 GHz low pass filter matched to STM32WB55Vx</td>
</tr>
<tr>
<td>WLCSP100</td>
<td>MLPF-WB55-02E3</td>
<td>DS13176(1), 2.4 GHz low pass filter matched to STM32WB55Vx</td>
</tr>
</tbody>
</table>

Transmission and insertion loss performance are shown, respectively, on the left and on the right side of *Figure 29* (MLPF-WB55-01E3) and of *Figure 30* (MLPF-WB55-02E3).

Figure 29. RF performance of the MLPF-WB55-01E3

Figure 30. RF performance of the MLPF-WB55-02E3
The bottom view of the IPD package is shown in Figure 31.

Figure 31. IPD package (bumpless CSP)

- IPD TOP VIEW (pads side down)
- IPD die size = 1000x1600μm²
- IPD pad size = 200x200μm²
- IPD Pads pitch X = 500μm
- IPD Pads pitch Y = 587μm
- PIN#1 = OUT
The PCB can be greatly simplified, as shown in Figure 32.

Figure 32. PCB layout with discrete matching network (left) and with IPD (right)

Note that the length of the track between the output of the IPD and the RF output can be further reduced to decrease the dimensions of the PCB. This improves RF performance by reducing losses due to the length of this track.

As a conclusion, the IPD reference MLPF-WB55-01E3 can replace the RF output network of the STM32WB for the QFN packages (an antenna filter is still needed) for a 2-layer PCB. The PCB size and the bill of materials is reduced, while guaranteeing equivalent RF performance compared with the discrete RF output network. Another advantage of the IPD solution is the performance stability on volume production (lower parameter dispersion compared with the discrete components).
8 Matching network determination

8.1 Load pull measurement

The load pull measurement is used to determine the network matching circuit to obtain the maximum output power from an RF device. This measuring bench is mainly composed by an impedance tuner that makes it possible to present to the RF chip impedances different from 50 Ω. The software used to drive the impedance tuner is an example and others can be used.

The frequency chosen to determine the impedance is the middle of the BLE bandwidth (2450 MHz).

The most common impedance tuner is slide screw. It consists of two parallel plates, a center line and a metal probe (see Figure 33). Moving the probe vertically modifies the reflection coefficient, moving it horizontally modifies the phase.

![Figure 33. Load pull measurement](image)

8.2 Procedure

The first step is to calibrate the RF2 tuner (each position correspond to an impedance), operating it empty (the part to be tested is not yet connected). The VNA measures the impedance at the entrance of the tuner (see Figure 34).

The tuner is calibrated at the end of an SMA cable, it is necessary to bring the calibration plan to the end of the semi-rigid connector. A line delay is added to take into account the transition to welds to the semi-rigid connector.

The second step is to use the previously saved calibration file and to replay the positions of the motor, this time with the board to be tested connected to the RF tuner. Connect the semi rigid connector to the RF output pin of the chip without components on the RF path. The power is measured for each position (see Figure 35).
Figure 34. Calibration

All S_{11} points stored in a file

Figure 35. Optimum measurement

All S_{11} points replayed
The last step is to analyze the measurement results. The maximum power measured in the Smith chart corresponds to the impedance to present to the RF chip (see Figure 36).

Figure 36. Extraction of results

Once the impedance to present to the RF device is known, a simulation tool is needed to determine the value of the components for the corresponding matching network (in this example the ADS simulation tool has been used).

Figure 37. Network simulation
The goal is to find the values of the matching network components to obtain the same impedance at the same frequency as in the load pull measurement. It is recommended to use the complete model of the used components, as provided by the manufacturer (many of them provide S parameters that can be directly used in the simulation tool).

As shown in Figure 38, the matching network and the bandpass filter introduce a -1.95 db insertion loss.

![Figure 38. Simulation results](image)

- $Z_{\text{sim}} = 43 - j20$
- $Z_{\text{opt for Tx}} = 42 - j19$
The STM32WB Series microcontrollers integrate a high performance RF front end. To achieve the best TX and RX performance, several aspects have to be addressed during the PCB design:

- choice of the PCB technology (number of layers, substrate technology)
- computation of the antenna matching and filtering network
- floor plan and critical RF component placement and routing
- placement of the SMPS and LSE components (if used)

This application note provides useful guidelines to help the user to reach the performance specified in the datasheets.
10 Revision history

Table 7. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-Sep-2018</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>18-Jan-2019</td>
<td>2</td>
<td>Added Section 7: Reference boards with IPD.</td>
</tr>
<tr>
<td>28-Jan-2019</td>
<td>3</td>
<td>Changed document classification, from ST restricted to public.</td>
</tr>
<tr>
<td>24-Sep-2019</td>
<td>4</td>
<td>Updated Introduction and Section 3.3: SMPS.</td>
</tr>
<tr>
<td>25-Oct-2019</td>
<td>5</td>
<td>Introduces WLCSP100 package, hence updated Introduction, Section 2: Reference board schematics and Section 3.3: SMPS. Updated Table 1: External components. Updated Figure 8: UFQFPN48 reference board, Figure 9: VFQFPN68 reference board, Figure 19: 2-layer PCB - Reference boards for UFQFPN48, VFQFPN68 and UFBGA129, Figure 21: 4-layer PCB - Reference board for WLCSP100, Figure 18: PCB layout for UFQFPN48 (left to right: all, top and bottom layers), Figure 19: PCB layout for VFQFPN68 (left to right: all, top and bottom layers), Figure 22: PCB layout for WLCSP100 - Detail, Figure 23: Detail of PCB layout for the RF, Figure 24: Detail of PCB layout for the SMPS and Figure 25: Detail of PCB layout for the LSE. Added Section 5.1: 2-layer PCB and Section 5.2: 6-layer PCB. Removed MB1355C board and related former Section 3: Nucleo board (MB1355C) schematics and Section 6: 4-layer PCB Nucleo board MB1355C.</td>
</tr>
<tr>
<td>25-Jan-2020</td>
<td>6</td>
<td>Introduces WLCSP100 package, hence updated Introduction, Section 4.4: 2-layer PCB and Section 7: Reference boards with IPD. Updated Figure 8: UFQFPN48 reference board, Figure 9: VFQFPN68 reference board, Figure 11: WLCSP100 reference board, Figure 23: Detail of PCB layout for the RF, Figure 24: Detail of PCB layout for the SMPS, Figure 25: Detail of PCB layout for the LSE and Figure 25: Detail of PCB layout for the LSE. Updated caption of Figure 19: 2-layer PCB - Reference boards for UFQFPN48, VFQFPN68 and UFBGA129 and of Figure 21: 4-layer PCB - Reference board for WLCSP100. Added Figure 10: UFBGA129 reference board, Figure 20: PCB layout for UFBGA129, Figure 30: RF performance of the MLPF-WB55-02E3 and Table 6: References.</td>
</tr>
</tbody>
</table>
Table 7. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
</table>
| 24-Nov-2020| 7 | **Added** Section 4.3: Ground planes, Section 6: Layout recommendations for reference boards, Section 8: Matching network determination and their subsections.
Removed former Section 4.3: 2-layer PCB and Section 4.4: 4-layer PCB.
Updated Section 5.2: 6-layer PCB.
Updated Figure 10: UFBGA129 reference board, Figure 11: WLCSP100 reference board, Figure 20: PCB layout for UFBGA129, Figure 22: PCB layout for WLCSP100 - Detail, Figure 23: Detail of PCB layout for the RF, Figure 24: Detail of PCB layout for the SMPS and Figure 25: Detail of PCB layout for the LSE.
Added Figure 21: PCB layout for WLCSP100 - All layers.
Minor text edits across the whole document. |