
Introduction

This document describes the firmware upgrade services (FUS) available on STM32WB Series microcontrollers. These services
are provided by STMicroelectronics code located in a secure portion of the embedded flash memory, and are used by any code
running on Cortex®-M4 with a user flash memory, or through embedded bootloader commands (also running on Cortex®-M4).

ST firmware upgrade services for STM32WB Series

AN5185

Application note

AN5185 - Rev 7 - August 2022
For further information contact your local STMicroelectronics sales office.

www.st.com

1 General information

This document applies to STM32WB Series Arm®-based devices.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

1.1 Firmware upgrade services definition
FUS (firmware upgrade services) is a firmware running on STM32WB Cortex®-M0+ and offering following
features:
1. Install, upgrade or delete STM32WB Cortex®-M0+ wireless stack:

– Only encrypted and signed by STMicroelectronics
– Optionally, additionally double signed by customer if needed

2. FUS self-upgrade:
– Only encrypted and signed by STMicroelectronics
– Optionally, additionally double signed by customer if needed

3. Customer authentication key management:
– Used for images double signature
– Install, update and lock the customer authentication key

4. User key management:
– Store customer keys

◦ Master key
◦ Simple clear key
◦ Encrypted key (by master key)
◦ In secure area accessible only by Cortex®-M0+ code.

– Write stored key (simple or encrypted) into AES1 (advanced encryption standard) in secure mode (the
Cortex®-M4 cannot access the key)

– Lock a stored key to prevent its usage until next system reset
– Unload a previously loaded key from AES to prevent its usage by other applications
– Key width: 128 or 256 bits
– Up to 100 user keys (encrypted by master key or clear) and one user master key

5. Communication with Cortex®-M4 (user code or bootloader):
– Through IPCC commands and response model (same as wireless stack model)
– Commands already supported by STM32WB bootloader (in ROM)

AN5185
General information

AN5185 - Rev 7 page 2/43

1.2 FUS versioning and identification
The user needs to read the shared table memory in SRAM2a to identify the FUS version, as explained in
Section 1.6 Shared tables memory usage and in Section 6.1 Shared tables usage.
The first word in SRAM2a pointed by IPCCDBA Option Bytes is the "Device info table" address. This table
(described in Table 7. Device information table) contains the FUS version at offset 0xC which is encoded on
four bytes. Typically, if IPCCDBA=0x0000 and @0x20030000 contains 0x20030024, then the FUS version is
@0x20030030.
Installation of a FUS image must follow the conditions stated in the image binary release notes.

Note: When using the SWD interface with the STM32CubeProgrammer (STM32CubeProg) older than V2.7.0, the
address of the device information table is located at 0x20030890. For STM32CubeProgrammer V2.7.0 and
higher, the device information table is located at 0x20030024.

Table 1. FUS versions

FUS
version Description

V0.5.3

Default version programmed in production for all STM32WB5xx devices.

Must be upgraded to V1.0.1 on STM32WB5xG devices or to V1.0.2 on STM32WB5xE/5xC devices.

This version is not available for download on www.st.com and cannot be installed by users.

V1.0.1

First official release available on www.st.com and dedicated to STM32WB5xG devices only (1-Mbytes flash
memory size)

This version must not be installed on STM32WB5xE/5xC devices, otherwise the device enters a locked state and
no further updates are possible.

V1.0.2

First official release available on www.st.com and dedicated to STM32WB5xE/5xC devices (512-Kbytes and 256-
Kbytes flash memory size)

Use the V1.0.2 on the STM32WB5xG devices if the devices present FUS V0.5.3.

If an STM32WB5xG device has FUS V1.0.1, then there is no need to upgrade to V1.0.2, since it does not bring any
new feature/change vs. V1.0.1.

In case FUS V1.0.2 installation is started by user on an STM32WB5xG device with FUS V1.0.1, FUS returns
FUS_STATE_IMG_NOT_AUTHENTIC error and discard the upgrade.

V1.1.0

FUS update to support following features:
• Add FUS_ACTIVATE_ANTIROLLBACK command that allows activating Anti-rollback on wireless stack by

user.
User can activate this feature in order to prevent any installation of older wireless stack.

• Replace Safeboot by V1.1.0 version (replace full chip lock by factory reset)
• Add factory reset in case of Flash ECC, corruption or Option Bytes corruption error.

Factory reset means erase of wireless stack if present and reboot on FUS and full erase of other user sectors.

FUS V1.1.0 can be installed only on devices containing V1.0.1 or V1.0.2 FUS.

In case a device has V0.5.3 installed, user must first install V1.0.2 then install V1.1.0.

When installing FUS V1.1.0 over an FUS V0.5.3 results in FUS_STATE_IMAGE_NOT_AUTHENTIC error and
discarding the upgrade.

V1.1.1

FUS update to support STM32WB5xx 640KB sales-types.

This version is not available on www.st.com and cannot be used for upgrade.

This version is fully compatible with V1.1.0 and does not present any difference except management of new 640
KB salestype.

V1.1.2

FUS update to:
• Optimize flash usage: this allows the installation of a stack, maintaining one sector separation below a

previously installed stack (instead of stack size space constraint explained in Section 2 Wireless stack image
operations)

• Security enhancements

In order to upgrade from FUS V1.1.0 to FUS V1.1.2 , the Anti-rollback must first be activated. Before activating
Anti-rollback, a wireless stack installed must be present.

Upgrading from V1.1.0 to V1.2.0 is possible with no constraints and no additional operations from user.

AN5185
FUS versioning and identification

AN5185 - Rev 7 page 3/43

https://www.st.com/en/product/stm32cubeprog?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5185
http://www.st.com
http://www.st.com
http://www.st.com
http://www.st.com

FUS
version Description

V1.2.0

FUS update to:
• Includes V1.1.2 FUS updates in production
• Allows direct update from FUS V1.1.0 to FUS V1.2.0 without activating the Anti-rollback.
• Allows direct update from FUS V0.5.3 to FUS V1.2.0 (without installing intermediate FUS versions)
• Security updates

Upgrading from FUS V1.1.0 or any other FUS version, to FUS V1.2.0 is possible without constraints and no
interaction from the user.

The table below details the FUS versions compatibility options (when it is possible to upgrade from a version
to another). FUS V1.2.0 is the version that allows the upgrade from any previous version. It is released in two
binaries:
• stm32wb5x_fus_fw_V1.2.0.bin : for upgrades from any FUS version V1.x.y
• stm32wb5x_fus_fw_V1.2.0_for_V0.5.3.bin: upgrades from FUS version V0.5.3

Note: STM32WB10xx and STM32WB15xx have only FUS V1.2.0 which is fully compatible with STM32WB5xxx FUS
V1.2.0 but does not provide user key services.

Table 2. FUS versions compatibility

Upgrade
To

V0.5.3 V1.0.2 V1.1.0 V1.1.1 V1.1.2 V1.2.0

From

V0.5.3 X √ X X X √

V1.0.2 X X √ X √ √

V1.1.0 X X X X (1) √

V1.1.1 X X X X √ √

V1.1.2 X X X X √ √

V1.2.0 X X X X X √

Legend:
• X: Cannot upgrade
• √: Upgradable
• X: Must not upgrade, otherwise encryption keys are lost
• (1): Upgradable but a BLE stack needs to be installed first and enable Anti-rollback

A FUS version is available from two different sources:
• Programmed directly in the STM32WB Series devices by STMicroelectronics at the production phase.
• Available from www.st.com. This method is used mainly for the FUS version upgrade process.
The table below details the availability of each version at production and on www.st.com.

AN5185
FUS versioning and identification

AN5185 - Rev 7 page 4/43

http://www.st.com
http://www.st.com

Table 3. FUS versions availability

FUS version Production Binary on www.st.com

V0.5.3 √ X

V1.0.2 √ √

V1.1.0 √ √

V1.1.1 √ X

V1.1.2 X √

V1.2.0 √ √

Legend:
• X: Not available
• √: Available

1.2.1 Known limitations
This section details the known limitations on the latest version of the FUS (V1.2.0).
• Upgrade error

Possible upgrade error in the case of external power loss or reset events. This is in the event of external
power loss, or forced reset during the firmware upgrade operation. The ongoing operation might be
corrupted. In that case FUS abort the operation and return an error message. Workaround: When an error
message is returned, repeat the firmware upgrade operation from the beginning. Special care must be taken
in the case of OTA (on the air upgrade) where the wireless stack might be needed to download again the
image.

• Wireless stack
If a wireless stack "A" is installed, then another wireless stack "B", larger by exactly one sector than the
wireless stack "A" must be installed. Then, FUS rejects the operation unless the wireless stack "B" is loaded
at an address "add" < 0x080F4000 - 3x SizeOf("B"). The workaround is to add padding to the
wireless stack to avoid the condition of one sector difference in size. This limitation can be seen when using
some wireless stacks present on STM32CubeWB V1.14.0. For more details, refer to the STM32CubeWB
release notes. From STM32CubeWB v1.14.1 release, the size of the wireless firmware binaries is controlled
to guarantee at least two sectors size difference between all generated binaries to workaround the limitation.

1.3 How to activate FUS
The FUS runs on Cortex®-M0+ and on the protected flash memory zone dedicated for FUS and wireless stack.
There are two possible situations:

Table 4. FUS activation cases

Situation How to activate FUS

No wireless stack is
running (for example the
first time the STM32WB
Series device is running or
the wireless stack has been
removed)

Ensure Cortex®-M0+ is activated by setting C2BOOT bit in PWR_CR4 register

Ensure IPCCDBA (Option Bytes) points to a valid shared table information structure in SRAM2a
(enter the correct pointers to device information table and system table)

Note: Both of these conditions are performed automatically by system bootloader. So
if device boot is configured on system memory, the FUS must be activated with
no need for further user actions.

Otherwise, these actions must be performed by user code running on Cortex®-M4 CPU.

Wireless stack is installed
and running

Perform the same steps as above

Request wireless stack to launch FUS by sending two consecutive FUS_GET_STATE
commands. The first one must return FUS_STATE_NOT_RUNNING state and the second
causes FUS to start.

In order to check if FUS is running or not, the following options are available:

AN5185
How to activate FUS

AN5185 - Rev 7 page 5/43

http://www.st.com

• Send a single FUS_GET_STATE command and check the return status. If it is
FUS_STATE_NOT_RUNNING then FUS is not running.

• Check the SBRV Option Bytes value:
– if it is 0x3D800 (for FUS V0.5.3) or 0x3D000 (for FUS V1.x.z) then FUS must be running
– If it is different from 0x3D800 (for FUS V0.5.3) and from 0x3D000 (for FUS V1.x.z) then FUS is not

running
• Send a wireless stack command:

– If it is acknowledged, then FUS is not running
– If it is not acknowledged, then FUS is running

• Read the shared table information:
– Read IPCCDBA (in Option Bytes) to get the shared tables start address in SRAM2a
– Get the device information table address
– Read the field “Last FUS active state”

◦ 0x04 means that stack must be running
◦ Other values mean that FUS must be running

– Read the "Async Ready" event that is sent by FUS at startup. For more information about this event
and content, refer to Section 6.3.2 Event packet.

AN5185
How to activate FUS

AN5185 - Rev 7 page 6/43

1.4 Memory mapping
The FUS has a dedicated space in flash memory that depends on the FUS size. It also uses a dedicated space in
SRAM2a and SRAM2b, and a shared space in SRAM2a (shared tables). The size of the dedicated space in flash
memory, SRAM2a and SRAM2b is defined by Option Bytes. For more information, refer to the product reference
manual.
The dedicated flash memory and SRAM areas are shared with the wireless stack if it is installed. But at a given
time, either FUS or wireless stack is running on Cortex®-M0+.

Figure 1. Flash memory mapping

0x0800 0000

0x080x xxxx (variable)
Secure option byte

0x080F FFFF
0x1FFF 0000

D
ed

ic
at

ed
 F

la
sh

 (M
0+

)
Sy

st
em

 m
em

or
y

User application

Wireless stack (~87 sectors)

FUS

Bootloader

Engibytes

AN5185
Memory mapping

AN5185 - Rev 7 page 7/43

Figure 2. SRAM memory mapping

SRAM2a Secure

SRAM2a Non-secure

SRAM2b Secure 0x2003 FFFF

192 K SRAM1

32 K SNBRSA

FUS dedicate SRAM

SRAM2b Non-secure

0x2003 8000

32 K SBRSA

0x2003 7FFF

0x2003 0000
0x2002 FFFF

0x2002 0000

- Device info
- Buffer tables
- Sys. Cmd/Rsp/Evt

AN5185
Memory mapping

AN5185 - Rev 7 page 8/43

1.5 FUS resources usage
The FUS only configures / uses the resources listed in Table 5.
The RCC (reset and clock control), flash memory, PWR (power control) and all necessary components for
the STM32WB Series microcontroller normal operation must be configured by Cortex®-M4 application prior to
enabling Cortex®-M0+ (it is automatically done by system bootloader when started).

Table 5. FUS resources usage

Resource Case Configuration

Flash Always

Dedicated flash is used by FUS depending on its size and on the size of the current wireless
stack and the image requested to be installed.

Parts of the dedicated flash memory may be written and/or erased during FUS operations.

Caution: Take care of operations performing write/erase cycles on the flash memory
while FUS is running.

SRAM2b Always SRAM2b secure area is used by FUS depending on its version.

SRAM2a Always
SRAM2a secure area is used by FUS depending on its version.

SRAM2a public area is used by FUS to write into shared tables for information table and
commands table.

IPCC Always
IPCC is used by FUS for mail boxing between Cortex®-M0+ and Cortex®-M4 user application
or bootloader or JTAG.

Two channels are used: P1CH2 (command/response channel) and P1CH4 (trace channel).

PKA When install
is required PKA is enabled, configured and used for signature verification.

AES1
When key
service is
required

AES1 is configured in secure mode (key register is accessible only by Cortex®-M0+)

AES1 key register is written by FUS with the key requested by user.

Once AES1 is configured in secure mode, it remains in secure mode until next system reset.
There is no way to deactivate the secure mode by software.

Option Bytes
When install/
delete is
required

Option Bytes are programmed by FUS using Cortex®-M0+ registers: only SFR and SBRR
registers are modified.

CRC When install
is required

CRC is used for authentication and it is not initialized by FUS. If CRC is used by Cortex®-M4
user application, it has to be reset before starting FUS or wireless stack install operations.

System
Reset

When install/
delete is
required

FUS forces the System Reset when loading Option Bytes or after critical errors detection.

NVIC Always

Following handlers are used:
• NMI
• SysTick
• IPCC_C2_RX_C2_TX_HSEM

Important: During FUS or wireless stack upgrade/delete operations, Cortex®-M4 and SWD shall not:
• Perform any write/erase operation on Flash
• Perform any write on Option Bytes
• Change PWR and RCC configuration.
If any of the above operations are performed during FUS or wireless stack upgrade/delete, there is a risk of
corrupting the flash and losing data.

AN5185
FUS resources usage

AN5185 - Rev 7 page 9/43

Important: In case power supply failure occurs during a FUS operation (install/delete), one of the following 3 cases may
occur:
• Power failure without impact: If the flash content is not corrupted, FUS recovers the failure and continues

operating without the need for any user intervention.
• Power failure with flash corruption: the flash content is corrupted, the image is not installed by FUS

(rejected as non-integer). FUS erases the image and generates an error (FUS_ERR_IMG_CORRUPT).
User must restart the whole operation by re-loading the binary and send an upgrade command to FUS.

• Power failure with option bytes corruption: Safeboot is started by hardware and all the flash is locked by
hardware. In this case, if FUS V1.1.0 or higher version is running, then a factory reset is triggered (user
shall activate CM0 by writing the value 0x00008000 at the address @0x5800040C). If a FUS version lower
than V1.1.0 is running, then, no recovery is possible at this point.

Note: If there are user keys stored by FUS, when FUS is upgraded, these keys are erased.

AN5185
FUS resources usage

AN5185 - Rev 7 page 10/43

1.6 Shared tables memory usage
Communication data buffers are pointed to by lookup table for which the address is determined by an Option
Byte: IPCCDBA (IPCC mailbox data buffer base address). This address provides the base address of the buffer
tables pointers as detailed in Building a wireless application (AN5289).
If IPCCDBA points to an address that does not fit all table pointers such as (SRAM2a_END_ADDRESS -
SharedTable_BaseAddress) < SizeOf(SharedTable), then the FUS must discard usage of shared table completely
and thus no communication or commands are possible with FUS.
User application has to setup the shared table base address correctly, otherwise it must stop the FUS services
initialization.

Figure 3. Shared table architecture

Reference table (SRAM2 ret)

@ Traces table

@ Async event table

@ System table

@ BLE table

@ Thread table

@ Device info table
0x0

FUS uses only two tables:

• Device information table: this table provides useful information from FUS to the Cortex®-M4 user application
(or JTAG) at startup (content written by FUS at startup).

• System table: this table allows the exchange commands and responses between FUS and Cortex®-M4 user
application.

AN5185
Shared tables memory usage

AN5185 - Rev 7 page 11/43

2 Wireless stack image operations

The FUS allows the user to install, upgrade and delete the wireless stack.
The wireless stack has to be provided by STMicroelectronics (encrypted and signed) in order to be installed by
FUS. The user may add a custom signature to the wireless stack image binary using the ST tools and as detailed
in Section 4 User authentication (if the user authentication key has already been loaded by FUS).
The wireless stack install, upgrade and delete operations are performed through the bootloader, JTAG, or
user application. STM32CubeProgrammer provides the tools to perform this operation through the bootloader
interfaces: USART and USB-DFU, and also directly through SWD interface.

2.1 Wireless stack install and upgrade
Here are two definitions that are useful to remember:
• Wireless stack install: means the first installation on a chip where there is no wireless stack already installed.
• Wireless stack upgrade: means the installation on a chip where a wireless stack is already installed (may be

running or not).

Operation instructions

In order to perform a wireless stack install or upgrade, follow the procedure below:
1. Download the wireless stack image from www.st.com or from the STM32CubeMX repository.
2. Write the wireless stack image in the user flash memory at the address equal to:

– DownloadAddress = 0x08000000 + (SFSA x SectorSize) - ImageSize - 1xSectorSize
where:

– DownloadAddress is the address where new wireless stack is loaded, aligned to sector size.
– SFSA is the Secure Option register value of SFSA indicating the current boundary of flash memory

secure area.
– SectorSize is 4KB for STM32WB5xxx and 2KB for STM32WB1xxx.
– ImageSize is the size, in bytes, of the binary to install.
When using STM32CubeProgrammer, the best placement is suggested based on SFSA and binary size.
A FUS_FW_DELETE operation is preferred before starting a new wireless stack installation, but
it is not mandatory. Selecting the option "-firstinstall=0" or unchecking the box "First Install" on
STM32CubeProgrammer forces the delete.
In the case where the new wireless stack size is larger than the already installed stack, read "Memory
instructions" in Section 2.2 Wireless stack delete.

3. Ensure FUS is running (follow steps in Section 1.3 How to activate FUS).
4. Send FUS_FW_UPGRADE command through IPCC mechanism (explained in sections below).
5. Send FUS_GET_STATE until a state equal to FUS_STATE_NOT_RUNNING is reached (this means that the

wireless stack has been installed and is now running).
During the installation process, expect multiple system resets to occur. These system resets are performed by
FUS and are necessary for the modification of dedicated memory parameters and to make Cortex®-M0+ run the
installed wireless stack. The number of system resets depends on the configuration and the location of new and
old images.
The following table explains possible errors when the install/upgrade operation is requested and their respective
results.

Table 6. FUS upgrade returned errors

Error Reason Result

Not enough space
Space between current installed
wireless stack and the address of
loaded image is too small.

Installation request is rejected. FUS return error state and goes
back to an Idle state.

Image signature
not found

Incorrect or corrupted signature
header or body.

FUS returns an authentication error then goes back to idle state.
The image is not installed and no changes on flash memory/SRAM.

AN5185
Wireless stack image operations

AN5185 - Rev 7 page 12/43

http://www.st.com
https://www.st.com/en/product/stm32cubemx?ecmp=tt9470_gl_link_feb2019&rt=an&id=AN5185

Error Reason Result

Image customer
signature not found

Incorrect or corrupted signature
header or body.

FUS returns an authentication error then goes back to an idle state.
The image is not installed and no changes on flash memory/SRAM.

Image corrupted Incorrect image header or
corrupted image.

FUS returns an image corruption error then goes back to an idle
state. The image is not installed and it is erased by FUS.

No state is
returned by FUS

A reset performed by FUS has
occurred before receiving the
command response.

Command resending must result in receiving a FUS response.

Other failures
External power interruption or
external reset during FUS
operation

FUS must be able to recover and delete the corrupted image and
go back to default state. It may perform several system resets in
order to complete the recovery operation.

Memory considerations

At first install or when no wireless stack is installed, the FUS does not make any optimization on the address
where the wireless stack is installed. The wireless stack image must be installed at the same address where it
has been loaded by user.
At wireless stack upgrade (a wireless stack is already installed), the FUS may move the upgraded stack after
upgrade and before running it.
The remaining space in this case is left free for Cortex®-M4 user application usage.
After the install/upgrade operation is successfully completed, the SRAM2a, SRAM2b, flash memory secure
boundaries and SBRV values are changed according to requirements of the installed wireless stack.

2.2 Wireless stack delete
Wireless stack delete means removing the wireless stack that is already installed on a chip (whether it is running
or not).

Operation instructions

In order to perform a wireless stack delete perform the following steps:
1. Ensure FUS is running (follow steps in Section 1.3 How to activate FUS)
2. Send FUS_FW_DELETE command through IPCC mechanism (explained in sections below)
3. Send the FUS_GET_STATE until the state equal to FUS_STATE_NOT_RUNNING is reached (this means

that the wireless stack is installed and is now running).
During the delete process, expect multiple system resets to occur. These system resets are performed by
FUS and are necessary for the modification of dedicated memory parameters. The number of system resets
depends on the configuration and the location of the wireless stack.

If no wireless stack is installed and a delete request is sent, then the FUS returns error state informing that no
wireless stack was found (FUS_STATE_IMG_NOT_FOUND).

Memory considerations

After the delete operation is done successfully, all the space used by wireless stack becomes free for usage by
Cortex®-M4 user application or for further wireless stack install operations.
Image start address must be aligned to sector start (this is a multiple of 4-kbytes) and the image size must be
multiple of 4 bytes, otherwise, FUS rejects the installation procedure.
If a new wireless stack "B" must be installed while a stack "A" is already installed, and size of B is larger than size
of A, there are two possible options for the address where "B" can be loaded:
• Condition1 (back-to-back option): (both conditions C1 and C2 below must be met)

– C1. AddressOf(B) > (FUS_ADD - (2 x SizeOf(B)) (aligned to sector size)
– C2. AddressOf(B) < AddressOf(A) - SizeOf(B) (aligned to sector size)

• Condition2 (non back-to-back option): (only condition C3 must be met)
– C3. AddressOf(B) < (FUS_ADD - (3 x SizeOf(B) (Address must be aligned to sector size)

Where FUS_ADD is the FUS address in the flash (0x080F4000 for STM32WB5xxx and 0x08046000 for
STM32WB1xxx)

AN5185
Wireless stack delete

AN5185 - Rev 7 page 13/43

In all cases, the most optimized download address is:
DownloadAddress = 0x08000000 + (SFSA x SectorSize) - SizeOf(B) - 1xSectorSize

2.3 Wireless stack start
It is possible that a wireless stack is installed but not currently running. The resulting situation is: installation is
done, the wireless stack is running and then user application sends two consecutive FUS_GET_STATE which
leads the FUS to be started again.
In that case, it is possible to launch the wireless stack execution by sending FUS_START_WS command. This
command switches from the Cortex®-M0+ execution to the wireless stack and results in at least one system reset.
The command is completed when FUS_GET_STATE returns FUS_STATE_NOT_RUNNING value. On receiving
this value, no other FUS_GET_STATE must be issued, otherwise the FUS is executed again.

2.4 Anti-rollback activation
When FUS supports Anti-rollback, it is possible to activate this feature by sending a command to the FUS.
When this command is executed by FUS, it is no longer possible to deactivate it by any means.
This feature is executed through FUS_ACTIVATE_ANTIROLLBACK command.
After sending this command it is possible to check its status by sending FUS_GET_STATE command.
The FUS shall then return the state FUS_STATE_IDLE.
This command is not reversible.
This command does not apply to FUS since no rollback is possible on FUS anyway.

Important: Before activating Anti-rollback, ensure that a wireless stack is correctly installed, and that it has not been
deleted. If it is activated without any wireless stack installed, the FUS registers 0xFFFFFFFF as new version,
and it is not possible to install any wireless stack.

When Anti-rollback is activated, it locks the version of wireless stack that can be installed.
It is impossible to install any wireless stack with a version lower than the current one.
For example, if wireless stack V1.9.0 is installed, when Anti-rollback is activated, only wireless stacks with
versions V1.9.0 or higher can be installed. (it is no longer possible to install V1.8.0 for example)

AN5185
Wireless stack start

AN5185 - Rev 7 page 14/43

3 FUS upgrade

The FUS is capable of self-upgrade in the same way as wireless stack upgrade. Deleting FUS is not possible.

3.1 Operation instructions
In order to perform a FUS upgrade, perform the following steps:
1. Download the FUS image from www.st.com or from the STM32CubeMx repository.
2. Write the FUS image in the user flash memory at the address indicated in the FUS image directory

Release_Notes.html file.
3. Ensure FUS is running (follow steps in Section 1.3 How to activate FUS).
4. Send FUS_FW_UPGRADE command through IPCC mechanism (explained in sections below).
5. Send FUS_GET_STATE till getting state equal to FUS_STATE_NOT_RUNNING (this means that the

wireless stack has been installed and is now running).
During the installation process, expect multiple system resets to occur. These system resets are performed by
FUS and are necessary for the modification of dedicated memory parameters and to make Cortex®-M0+ run the
installed wireless tack. The number of system resets depends on the configuration and the location of new and
old images.
FUS identifies the image as FUS upgrade image and launches the FUS upgrade accordingly. This operation
might result in a relocation of the firmware stack if it is already installed and if the size of the new FUS is larger
than the size of the current FUS. This information and any relative constraints are detailed in the FUS image
release note.

3.2 Memory considerations
The FUS upgrade requires no specific memory conditions. But if the new FUS image size is larger than existing
FUS size, the upgrade may result in moving the wireless stack lower in flash memory in order to grant sufficient
space for FUS upgrade.
This means that:

• Less flash memory is available for the Cortex®-M4 user application.
• The wireless stack is moved from its current address to another address defined by FUS.
• If a user code is written in the sectors neighboring wireless stack start sector, there is a risk of it being

erased during this operation.
The size of the FUS and results of its upgrade are detailed in its Release_Notes.html file.
The image start address must be aligned to a sector start (ie. multiple of 4 Kbytes) and the image size must be a
multiple of 4 bytes, otherwise, FUS rejects the installation procedure.

AN5185
FUS upgrade

AN5185 - Rev 7 page 15/43

http://www.st.com

4 User authentication

The FUS services allows the user to add a customized signature to any image (wireless stack or FUS image)
provided by STMicroelectronics (encrypted and signed by STMicroelectronics).
The instruction to sign a binary with a user authentication key are provided in STM32CubeProgrammer user
manual.
FUS checks on the user signature only if a user authentication key has already been installed.
The signature is a 64 bytes data buffer based on RSA ECC Prime256v1 (NIST P-256) and HASH-256. It is
generated by STM32CubeProgrammer tool.

4.1 Install user authentication key
FUS allows storing a user authentication key through following steps:
1. Ensure FUS is running (follow steps in Section 1.3 How to activate FUS).
2. Send FUS_UPDATE_AUTH_KEY command through IPCC mechanism (explained in sections below)
3. Send FUS_GET_STATE till getting state equal to FUS_STATE_IDLE.

This operation does not generate any system resets.
Once the user authentication key is installed, it is changed (unless lock user authentication key operation is done)
using the same flow as above. But it cannot be removed.
Once it is installed, FUS must systematically check on the binary user signature before performing the installation
or upgrade. If the signature is not present or if it is not authentic, the install or upgrade is rejected with error equal
to FUS_STATE_IMG_NOT_AUTHENTIC.

4.2 Lock user authentication key
FUS allows the user authentication key to be locked. It means that this key can no longer be changed for the
entire product life cycle. There is no way to undo this operation once it is performed.
To lock user authentication key:
1. Ensure FUS is running (follow steps in Section 1.3 How to activate FUS).
2. Send FUS_LOCK_AUTH_KEY command through IPCC mechanism (explained in sections below).
3. Send FUS_GET_STATE till getting state equal to FUS_STATE_IDLE.

This operation does not generate any system resets.
Once this operation is done, the user authentication key is locked.

AN5185
User authentication

AN5185 - Rev 7 page 16/43

5 Customer key storage

The FUS allows customer keys to be stored in the dedicated FUS flash memory area and then to load the stored
key to the AES1 in secure mode (the AES1 key register is only accessed by Cortex®-M0+ and data registers
accessible by Cortex®-M4 user application).

5.1 Key types and structure
FUS supports the storage of 101 keys (1 master key and 100 clear/encrypted keys)
Key size can be 128 bits or 256 bits. The key size and structure is the same for all type of keys. Any stored key
cannot be changed or removed.
FUS supports three key types:
• Clear key: a key sent to FUS, unencrypted.
• Master key: a key sent to FUS, unencrypted and used to decrypt other keys to be sent to FUS later. The

storage of this key must be done in a trusted environment (where the key cannot be extracted on the
communication path). It allows the user to share encrypted keys in untrusted environments without exposing
the content. A master key cannot be written in AES1 key register. It is exclusively used for decryption and
cannot be changed or removed. The Master key is written only once and is never updated afterwards. Once
the master key is written, any request to write master key again is rejected with error message. Writing more
than 100 keys, result in the command being rejected.

• Encrypted key: a key that is sent to FUS in encrypted format. It is then decrypted by FUS using the master
key before using it. This key must be accompanied by an IV (initialization vector) allowing its decryption by
FUS. 16-bit IV is sent in the same command packet as the key itself.

The user key encryption must be based on AES-128 GCM mode. The FUS decrypts the key without using the
AES hardware.
The key type must be communicated to FUS in the command packet where the key is sent (more details in
commands description).
Keys are managed through their index.
When a key is sent to FUS, FUS acknowledges its reception and responds with the key allocated index. This
index is assigned by FUS and cannot be changed by user application.
To store a key, the user application must send FUS_STORE_USR_KEY to FUS (with key type and the associated
IV if any) and then receive key index.
To use the stored key, the user application must:
• Configure AES1 initialization registers and IV register.
• Send FUS_LOAD_USR_KEY to FUS and wait for the response to be received which means the key has

been written in AES1 key register.
• Write in AES1 data register to decrypt/encrypt data using the stored key (the key register remains protected

and cannot be accessed by Cortex®-M4 user application). If more than 100 keys are written, it results in that
command being rejected.

There are two additional services provided by FUS for user keys management. These two services are intended
for use by the Cortex®-M4 user application in the context of a secure application and they are not exposed by
bootloader or STM32CubeProgrammer.

User key lock

This service ensures a key can no longer be used by any application (cannot be loaded into AES) until the next
device reset. It is possible to use this service by sending FUS_LOCK_USR_KEY command containing the index
of the key to be locked (Master key index is always 0 and it cannot be locked neither loaded).
When FUS_LOCK_USR_KEY command is sent, FUS stores the state of the requested key as locked and issuing
any FUS_LOAD_USR_KEY for that key index results in operation fail (0x01 returned by the command response).

User key unload

This service is used to unload the currently key loaded in AES (if FUS_LOAD_USR_KEY has been used) and
prevent any further operation using the loaded key by user application.
It is possible to use this service by sending FUS_UNLOAD_USR_KEY command containing the index of the key
to be unloaded (Master key index is always 0 and it cannot be loaded neither unloaded).

AN5185
Customer key storage

AN5185 - Rev 7 page 17/43

When FUS_UNLOAD_USR_KEY is sent, FUS writes zeros into the key registers of the AES and thus the loaded
key cannot be used anymore.

AN5185
Key types and structure

AN5185 - Rev 7 page 18/43

6 Communication with FUS

Communication with FUS is performed through the IPCC channels and by Cortex®-M4 user application or by
bootloader or by JTAG. In all cases, the communication principles are exactly the same.
Using STM32 system bootloader to communicate with FUS provides abstraction of all the low layer by directly
using bootloader interfaces (USART or USB-DFU).
To communicate with the FUS, there are two elements to be used:
• Shared tables: used to store FUS information and to get the command/response packets.
• IPCC: used to exchange message notifications (message content is located in the shared tables).

6.1 Shared tables usage
Shared tables are an information structure located in SRAM2a public area and which structure is explained in .
FUS uses two shared tables:
• Device information table
• System table

Both of them must be parsed by the Cortex®-M4 user application (or JTAG application) in order to correctly
communicate with FUS.

Figure 4. Shared table usage process

Startup

Extract shared table base
address from IPCCDBA register

Extract device info table address
(offset 0 from IPCCDBA)

Extract system table address
(offset 3 from IPCCDBA)

Parse device
info table

Extract command and
response buffer address

Extract async event
buffer queue address

6.1.1 Device information table
Device information table is a 42-byte buffer used to update current status of the device.
This table may be updated either by FUS code or wireless stack code at startup or before a programmed system
reset.

AN5185
Communication with FUS

AN5185 - Rev 7 page 19/43

Table 7. Device information table

Field Size (bytes) Values

Device info table state 4
0xA94656B9: Device info table valid

Any other value: Device info table not valid

Reserved 1 Reserved

Last FUS active state 1

• 0x00: FUS idle
• 0x01: Wireless stack firmware upgrade
• 0x02: FUS firmware upgrade
• 0x03: FUS service
• 0x04: Wireless stack running
• 0x05-0xFE: Not used
• 0xFF: Error

Last wireless stack state 1

0x00: Not Started

0x01: Running

0x08-0xFE: Not used

0xFF: Error

Current wireless stack type 1

0x00 : None

0x01 : BLE

0x02 : Thread type1

0x03 : Thread type2

More details available in wireless stack documentation.

Safe boot version 4

Firmware version:

[31:24]: Major (updated when backward compatibility is broken)

[23:16]: Minor (updated when a major feature is added)

[15:8]: Sub-version (updated for minor changes)

[7:4]: Branch (specific build)

[3:0]: Build (build version)

FUS version 4

Firmware version

[31:24]: Major (updated when backward compatibility is broken)

[23:16]: Minor (updated when a major feature is added)

[15:8]: Sub-version (updated for minor changes)

[7:4]: Branch (specific build)

[3:0]: Build (build version)

FUS memory size 4

Current FUS stack memory usage:

[31:24]: SRAM2b number of 1 K sectors used

[23:16]: SRAM2a number of 1 K sectors used

[15:8]: Reserved

[14:0]: flash memory number of 4 K sectors used

Wireless stack version 4

Firmware version:

[31:24]: Major (updated when backward compatibility is broken)

[23:16]: Minor (updated when a major feature is added)

[15:8]: Sub-version (updated for minor changes)

[7:4]: Branch (specific build)

[3:0]: Build (build version)

When no stack present, all data is 0xFFFF FFFF

Wireless stack memory size 4 Current wireless stack memory usage:

AN5185
Shared tables usage

AN5185 - Rev 7 page 20/43

Field Size (bytes) Values
[32:24]: SRAM2b number of 1 K sectors used

[23:16]: SRAM2a number of 1 K sectors used

[15:8]: Reserved

[14:0]: flash memory number of 4 K sectors used

When no stack present, all data is 0xFFFF FFFF

Wireless FW-BLE info 4
[31:0]: Reserved for wireless stack usage

When no stack present, all data is 0xFFFF FFFF

Wireless FW-thread info 4
[31:0]: Reserved for wireless stack usage

When no stack present, all data is 0xFFFF FFFF

Reserved 4 0x00000000

UID64 8 STM32 device unique ID 64-bit

Device ID 2 STM32 generic device ID

6.1.2 System table
System table is an 8-byte table containing two buffer pointers, described in table below.

Table 8. System table content

Address Size
(bytes) Content Description

0x00 4
Address of system
command/response
buffer

A single buffer is used at any given time, only a command or its response
must be written. Response overwrites the command. The new command
overwrites any previous command response.

0x04 4
Address of system
events queue buffer
(address of first event)

FUS code has to parse and fill the queue when necessary. Events
messages are managed as a chained list and are freed once Cortex®-M4
has read them (notification through IPCC).

Parsing of the event is done through their size only. (not chained list
structure),

In order to get useful information to communicate with FUS, the Cortex®-M4 code (application or bootloader)
perform parsing as described in Figure 4.

6.2 IPCC usage
FUS uses system IPCC allocated channels: P0CH2 (on Cortex®-M4 side) and P1CH2 (on Cortex®-M0+ side).
These channels offer three communication ways:

• Cmd: Command request from Cortex®-M4 to Cortex®-M0+. This route is used to send a command to
Cortex®-M0+.

• Rsp: Response to command from Cortex®-M0+ to Cortex®-M4. This route is used only to answer a
command requested by Cortex®-M4.

• Asynch Evt: Asynchronous event from Cortex®-M0+ to Cortex®-M4. This route is used to inform Cortex®-M4
about an asynchronous event, without requiring an answer from Cortex®-M4 on this event.

There are optional channels that may be used by FUS:

• P1CH4 may be used by FUS (Cortex®-M0+) to output trace events
• P0CH4 may be used by Cortex®-M4 in order to notify Cortex®-M0+ about buffer release events.

AN5185
IPCC usage

AN5185 - Rev 7 page 21/43

Figure 5. IPCC channels used by FUS

Buffer release notification

Trace event notification

Command

Response

Async event

P0CH2 P1CH2

P0CH4 P1CH4

Cortex®-M4 Cortex®-M0+

6.3 FUS commands
FUS uses the same command/response structure as wireless stacks and based on HCI model. FUS uses a
subset of the HCI commands, namely:

• Vendor specific HCI command packet: used to send command from the Cortex®-M4 to the Cortex®-M0+.
• HCI command complete event packet: used to send a response from the Cortex®-M0+ to the Cortex®-M4
• Vendor specific HCI event packet: used to send asynchronous events from the Cortex®-M0+ to the Cortex®-

M4.

Figure 6. FUS HCI subset

Sub Evt
code Payload

2 bytes Max 253 bytes

Packet
indicator 0xFF Lenght

1 byte 1 byte

Vendor specific HCI event packet

Num HCI Cmd
opcode Status Payload

2 bytes 1 byte Max 251 bytes

HCI command complete event packet

Packet
indicator 0x0E Lenght

1 byte 1 byte 1 byte

0x3F OCF
15 10 9 0

Packet
indicator Opcode Lenght Payload

2 bytes 1 byte Max 255 bytes

Vendor specific HCI command packet

AN5185
FUS commands

AN5185 - Rev 7 page 22/43

6.3.1 Packet indicators
Packet indicator is one byte and its value depends on the packet type.

Table 9. Packet indicator values

Packet type Packet indicator value

Command packet 0x10

Response packet 0x11

Event packet 0x12

6.3.2 Event packet
Only one asynchronous event is sent by FUS. It is sent only at startup of the FUS.
The length field represents the length of SubEvtCode+Payload.

Table 10. FUS asynch event (vendor specific HCI event)

Length SubEvtCode Payload Meaning

3 0x9200

Error code:
• 0x00: Wireless stack running
• 0x01: FUS running
• 0x02: SW Error
• 0x03 to 0xFF: Not used

FUS initialization phase done and the error code presented in
payload byte.

6.3.3 Command packet
The table below details all commands supported by FUS and their HCI format values.

Table 11. FUS commands (vendor specific HCI command packet)

Command Opcode Length (bytes) Payload

Reserved 0xFC00 N/A N/A

FUS_GET_STATE 0xFC52 0 None

Reserved 0xFC53 N/A N/A

FUS_FW_UPGRADE 0xFC54 0 / 4(1) / 8 (2) None

(Optional 4 bytes) address of the firmware image
location

(Optional 8 bytes) address of the firmware destination

FUS_FW_DELETE 0xFC55 0 None

FUS_UPDATE_AUTH_KEY 0xFC56 Up to 65 Byte0: Authentication key size N in bytes

Byte1 to Byte N-1: Authentication key data

FUS_LOCK_AUTH_KEY 0xFC57 0 None

FUS_STORE_USR_KEY 0xFC58 N+2 Byte0: Key type:
• 0x00:None
• 0x01:Simple key
• 0x02: Master key
• 0x03: Encrypted key

Byte1: Key size N in bytes

Byte2-ByteN-1: Key data (key value + IV if any)

FUS_LOAD_USR_KEY 0xFC59 1 Byte0: Key index (from 0 to 124)

FUS_START_WS 0xFC5A 0 None

AN5185
FUS commands

AN5185 - Rev 7 page 23/43

Command Opcode Length (bytes) Payload

FUS_LOCK_USR_KEY 0xFC5D 1 One byte, index of the key to be locked

FUS_UNLOAD_USR_KEY 0xFC5E 1 One byte, index of the key to be unloaded

FUS_ACTIVATE_ANTIROLLBACK 0xFC5F 0 None

Reserved 0xFC60-0xFCFF N/A N/A

1. 4 bytes, not used in current version.
2. 8 bytes, not used in current version.

6.3.4 Response packet
For each command packet, a response packet is sent by FUS containing information detailed in table below. The
NumHCI field value is always set to 0xFF.
The length field indicates the length of NumHCI+CmdOpcode+Status+Payload. So if there is no payload, the
length value is four.

Table 12. FUS responses (HCI command complete packet)

Status Length Cmd Opcode
value Status value Payload

FUS_STATE 5 0xFC52 Values in table FUS state values Values in table FUS state
error values.

FW_UPGRADE_STATE 4 0xFC54 • 0x00: Operation started
• 0x01: Fail
• 0x02-0xFF: Not used

None

FW_DELETE_STATE 4 0xFC55 None

UPDATE_AUTH_KEY_STATE 4 0xFC56

• 0x00: Operation done
• 0x01: Fail
• 0x02-0xFF: Not used

None

LOCK_AUTH_KEY_STATE 4 0xFC57 None

STORE_USR_KEY_STATE 5 0xFC58 One byte: Stored key
index (from 0 to 100)

LOAD_USR_KEY_STATE 4 0xFC59 None

FUS_START_WS_START 4 0xFC5A
• 0x00: Operation started
• 0x01: Fail
• 0x02-0xFF: Not Used

None

FUS_LOCK_USR_KEY 4 0xFC5D
• 0x00: Operation done
• 0x01: Fail
• 0x02-0xFF: Not used

None

FUS_UNLOAD_USR_KEY 4 0xFC5E
• 0x00: Operation done
• 0x01: Fail
• 0x02-0xFF: Not used

None

FUS_ACTIVATE_ANTIROLLBACK 4 0xFC5F
• 0x00: Operation done
• 0x01: Fail
• 0x02-0xFF: Not used

None

FUS response state values are detailed in table below. Some values are represented as a range (for example
0x10 to 0x1F), which means all values from that range provide same state meaning (for example 0x12 or 0x1E
both mean FUS_STATE_FW_UPGRD_ONGOING). This range of values is reserved for future extensions of the
protocol.

AN5185
FUS commands

AN5185 - Rev 7 page 24/43

Table 13. FUS state values

Value Name Meaning

0x00 FUS_STATE_IDLE FUS is in idle state. Last operation done successfully and returned its
state. No operation is ongoing.

0x01..0x0F Not used These values are reserved for future use.

0x10..0x1F FUS_STATE_FW_UPGRD_ONGOING The firmware upgrade operation is ongoing.

0x20..0x2F FUS_STATE_FUS_UPGRD_ONGOING The FUS upgrade operation is ongoing.

0x30..0x3F FUS_STATE_SERVICE_ONGOING A service is ongoing: Authentication key service (update/lock) or user
key service (store/load).

0x40..0xFE Not Used These values are reserved for future use.

0xFF FUS_STATE_ERROR An error occurred. For more details about the error origin, refer to the
response payload.

Table 14. FUS state error values

Value Name Meaning

0x00 FUS_STATE_NO_ERROR No error occurred.

0x01 FUS_STATE_IMG_NOT_FOUND Firmware/FUS upgrade requested but no image found. (such as image
header corrupted or flash memory corrupted)

0x02 FUS_SATE_IMC_CORRUPT Firmware/FUS upgrade requested, image found, authentic but not
integer (corruption on the data)

0x03 FUS_STATE_IMG_NOT_AUTHENTIC Firmware/FUS upgrade requested, image found, but its signature is not
valid (wrong signature, wrong signature header)

0x04 FUS_SATE_NO_ENOUGH_SPACE
Firmware/FUS upgrade requested, image found and authentic, but
there is no enough space to install it due to already installed image.
Install the stack in a lower location then try again.

0x05 FUS_IMAGE_USRABORT Operation aborted by user or power off occurred

0x06 FUS_IMAGE_ERSERROR Flash Erase Error

0x07 FUS_IMAGE_WRTERROR Flash Write Error

0x08 FUS_AUTH_TAG_ST_NOTFOUND STMicroelectronics Authentication tag not found error in the image

0x09 FUS_AUTH_TAG_CUST_NOTFOUND Customer Authentication tag not found in the image

0x0A FUS_AUTH_KEY_LOCKED The key that user tries to load is currently locked

0x11 FUS_FW_ROLLBACK_ERROR Rollback to older version of FW detected and not allowed

0x12..0xFD N/A Reserved for future use.

0xFE FUS_STATE_NOT_RUNNING FUS is not currently running. wireless stack is running and returned this
state.

0xFF FUS_STATE_ERR_UNKOWN Unknown error

AN5185
FUS commands

AN5185 - Rev 7 page 25/43

6.4 Image footers
Each element of the image upgrade has its own footer:
• The image body
• The STMicroelectronics signature (mandatory element)
• The customer signature (optional element)
The footers must follow on directly from the end of their relative element as a footer (for example the image body
header address must be contiguous to the image body address)
The authentication tags do not have this continuity obligation, they do not need to be located next to the image.
They are located anywhere in the user flash memory. FUS looks for them independently of the image location.
All images, footers addresses, and sizes must be four bytes multiples and four bytes aligned, otherwise, they are
not recognized by FUS.

Figure 7. Image footers placement

FW/FUS
Image body

Footer

Tag ST

Footer

Tag customer

Footer

Upgarde image

Each footer contains an identification value allowing FUS to recognize it.

AN5185
Image footers

AN5185 - Rev 7 page 26/43

Figure 8. FW/FUS upgrade image footer structure

Info2
(i.e.

thresd)

Data

Info1
(i.e. BLE)

Data

Version

Memory
size

Magic
number

Magic number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRAM2b (nb of 1 K sectors) SRAM2a (nb of 1 K sectors) Reserved Flash (nb of 4 K sectors)

Version major Version minor BranchSubversion Build

Table 15. Parsing of image footer structure

Field Meaning

Info1 Specific to wireless stack / FUS image

Info2 Specific to wireless stack / FUS image

Flash memory Image total size expressed as multiple of 4 Kbytes

SRAM2a Image total required space in SRAM2a secure area

SRAM2b Image total required spec in SRAM2b secure area

Build Version build number

Branch Version branch number

SubVersion Version subversion number

VersionMinor Version minor number

VersionMajor Version major number

Magic Number Specific value allowing to identify the nature of the image.

Note: FUS V1.2.0 version is written in the binary as 0xFFFFFFFF in order to be able to upgrade from all versions of
FUS.

AN5185
Image footers

AN5185 - Rev 7 page 27/43

Figure 9. Signature (tag) footer structure

Reserved
Reserved

Reserved
Reserved

Version

Memory
size

Magic
number

Magic number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved Source (ST/Cust.) Size in bytes

Version major Version minor BranchSubversion Build

Reserved

Table 16. Parsing of signature footer

Field Meaning

Reserved Not used in this version

Size Signature total size in bytes (without footer)

Source

Signature nature:

0x00: ST signature

0x01: Customer signature

Build Version build number

Branch Version branch number

SubVersion Version subversion number

VersionMinor Version minor number

VersionMajor Version major number

Magic Number Specific value allowing to identify the nature of the image.

The magic number values allowing to identify the image nature are detailed in table below:

Table 17. Magic number values

Value Nature

0x23372991 Wireless stack image

0x32279221 FUS Image

0xD3A12C5E STMicroelectronics signature

0xE2B51D4A Customer signature

0x42769811 Other firmware image

AN5185
Image footers

AN5185 - Rev 7 page 28/43

7 STM32 system bootloader extension for FUS

A command set extension has been added to STM32WB system bootloader in order to support FUS operation.
These commands are implemented on USART and USB-DFU interfaces and follow the same rules as existing
standard bootloader commands.
In order to help to understand this section, a prior reading of STM32 microcontroller system memory boot mode
(AN2606) and USART protocol used in the STM32 bootloader (AN3155) and USB DFU protocol used in the
STM32 bootloader (AN3156) documentation is required.

7.1 USART extension
Two commands have been added to bootloader USART standard protocol in order to support the FUS extension.
All FUS commands are passed through these two special commands: one for writing (used for all FUS commands
from host to FUS) and one for reading (used for all FUS commands from FUS to host).

Table 18. Bootloader USART commands extension

Command Opcode Usage

Special read command 0x50 (complement 0xAF) Get data from FUS

Special write command 0x51 (complement 0xAE) Send data to FUS

Note: For bootloader, the following commands added in FUS are not supported (neither on UART nor USB DFU)
• FUS_LOCK_USR_KEY
• FUS_UNLOAD_USR_KEY
• FUS_ACTIVATE_ANTIROLLBACK

Lock and Unload user key are two commands that are meant for use by Cortex®-M4 user application only.
Activate anti-rollback can be used either by implementing it in Cortex®-M4 user application code, or by using
STM32CubeProgrammer features or by using STM32 open bootloader example code.

7.1.1 USART special read
Special read command is used to perform FUS command sending requesting data from device. It is divided into
five separate packets:
• Special read command packet:

– Host sends the special read command code and complement (0x50, 0xAF) and waits for ACK/NACK
byte. In case of NACK, it means the command is not supported.

• Command opcode packet
– Host sends the command packet containing:

◦ FUS command opcode (2 bytes)
◦ XOR of the FUS command opcode (2 bytes)

– Device sends ACK if opcode is supported. NACK otherwise.
• Address packet:

– Host sends address packet payload size on two bytes (MSB first).
– Host sends address payload bytes (MSB first).
– Host sends packet XOR value (checksum of all previous bytes in current packet, 1 byte).
– Device sends ACK if data is correct and supported. NACK otherwise.

• Response data packet: (optional)
– Device sends packet data payload size in bytes on 2 bytes (MSB first).
– Device sends data payload bytes (MSB first). Some commands require not data payload.

AN5185
STM32 system bootloader extension for FUS

AN5185 - Rev 7 page 29/43

• Response status packet:
– Device sends packet payload size in bytes on 2 bytes (MSB first).
– Device sends command status on one byte (status of current command requested by host).
– Device sends current device state on 1 byte (optional, if payload size > 3).
– Device sends current command error code (or key index) on 1 byte.
– Device sends ACK to signal end of response packet.

Figure 10. USART special read command

Special read command [2 Bytes] (0x50 + 0xAF)

ACK/NACK [1 Byte] (0x79 / 0x1F)

Cmd opcode [3 Bytes] (MSB, LSB, XOR)

ACK/NACK [1 Byte] (0x79 / 0x1F)

Address packet

Packet payload size N [2 Bytes] (MSB, LSB)

Cmd address [N Bytes] (MSB...LSB)

Packet XOR [1 Byte] (XOR of all previous data in packet)

ACK/NACK [1 Byte] (0x79 / 0x1F)

Data packet

Packet payload size N [2 Bytes] (MSB, LSB)

Data [N Bytes] (MSB, LSB)

Address packet

Packet payload size N [2 Bytes] (MSB, LSB) (0x0001 if OK, else 0x0003)

Cmd status [1 Byte] (CmdStatus)

Current devise state [1 Byte] (State) (optional)

Error code [1 Byte] (Error) (optional)

ACK [1 Byte] (0x79)

Host Device

Host Device

Special read command

Command opcode packet

AN5185
USART extension

AN5185 - Rev 7 page 30/43

7.1.2 USART special write
Special write command is used to perform FUS command sending requesting data from device. It is divided into
four separate packets:
• Special write command packet: the host sends the special write command code and complement (0x51,

0xAE), and waits for ACK/NACK byte. In case of NACK, it means the command is not supported.
• Command opcode packet:

– Host sends the command packet containing:
◦ FUS command opcode (2 bytes)
◦ XOR of the FUS command opcode (2 bytes)

– Device sends ACK if opcode is supported. NACK otherwise.
• Address packet:

– Host sends address packet payload size on two bytes (MSB first).
– Host sends address payload bytes (MSB first).
– Host sends packet XOR value (checksum of all previous bytes in current packet, 1 byte).
– Device sends ACK if data is correct and supported. NACK otherwise.

• Data packet:
– Host sends packet data payload size in bytes on 2 bytes (MSB first). This number may be zero when

no data is needed for the command.
– Host sends data payload bytes (MSB first). No data is sent if payload size is zero.
– Host sends packet XOR value (checksum of all previous bytes in current packet, 1 byte).
– Device sends ACK if the data is correct and supported. NACK otherwise.

• Response packet:
– Device sends packet payload size in bytes on 2 bytes (MSB first).
– Device sends command status on one byte (status of current command requested by host).
– Device may send current device state on 1 byte (optional, if payload size > 1).
– Device sends current command error code on 1 byte (optional, if payload size > 1).
– Device sends ACK to signal end of response packet.

AN5185
USART extension

AN5185 - Rev 7 page 31/43

Figure 11. USART special write command

Special read command [2 Bytes] (0x51 + 0xAE)

ACK/NACK [1 Byte] (0x79 / 0x1F)

Cmd opcode [3 Bytes] (MSB, LSB, XOR)

ACK/NACK [1 Byte] (0x79 / 0x1F)

Address packet

Packet payload size N [2 Bytes] (MSB, LSB)

Cmd address [N Bytes] (MSB...LSB)

Packet XOR [1 Byte] (XOR of all previous data in packet)

ACK/NACK [1 Byte] (0x79 / 0x1F)

Data packet

Packet payload size N [2 Bytes] (MSB, LSB)

Data payload [N Bytes] (MSB ... LSB)

Address packet

Packet payload size N [2 Bytes] (MSB, LSB) (0x0001 if OK, else 0x0003)

Cmd status [1 Byte] (CmdStatus)

Current devise state [1 Byte] (State) (optional)

Error code [1 Byte] (Error) (optional)

ACK [1 Byte] (0x79)

Host Device

Host Device

Special read command

Command opcode packet

AN5185
USART extension

AN5185 - Rev 7 page 32/43

7.1.3 USART FUS command mapping
There is only one FUS command mapped on special read command.

Table 19. USART FUS command mapping on read command

Command Opcode Address packet Data packet Cmd status packet

FUS_GET_STATE 0x54 Size = 0x0000

Data = None

Size = 0x0003

Data = [0x00, FUS_STATE,
ErrorCode]

Size = 0x0001 or 0x0003

Data = [0x00] if OK or [0x01, state, error] if
KO

There are seven FUS commands mapped on special write command.

Table 20. USART FUS command mapping on write command

Command Opcode Address packet Data packet Cmd status packet

FUS_FW_DELETE 0x52
Size = 0x0000

Data = None

Size = 0x0000

Data = None

Size = 0x0001 or 0x0003

Data = [0x00] if OK or [0x01, state,
error] if KO

FUS_FW_UPGRADE 0x53
Size = 0x0000

Data = None

Size = 0x0000

Data = None

FUS_UPDATE_AUTH_KEY 0x56
Size = 0x0000

Data = None

Size = up to 65

Data = Key (1 byte key size +
64 bytes key data)

FUS_LOCK_AUTH_KEY 0x57
Size = 0x0000

Data = None

Size = 0x0000

Data = None

FUS_STORE_USR_KEY 0x58
Size = 0x0000

Data = None

Size = up to 34

Data = [KeyType (1byte),
KeySize(1byte), KeyData
(16/32bytes)]

Size = 0x0003

Data = [0x00, state, KeyIndex]

FUS_LOAD_USR_KEY 0x59
Size = 0x0000

Data = None

Size = 0x0001

Data = [KeyIndex] Size = 0x0001 or 0x0003

Data = [0x00] if OK or [0x01, state,
error] if KOFUS_START_WS 0x5A

Size = 0x0000

Data = None

Size = 0x0000

Data = None

7.2 USB-DFU extension
FUS commands are processed over bootloader USB-DFU standard download and upload commands.

7.2.1 USB-DFU download FUS extension
Bootloader USB-DFU download FUS extension is managed in the same way as SET_ADDRESS_POINTER and
ERASE standard commands: Value = 0 and following bytes are command data MSB first.
Exception is made for FUS_STORE_USR_KEY which is split over two steps:
1. Download command, only allows to send the key data (up to 34 bytes)
2. Upload command, must be done after download step and allows to get the key index (1 byte)

AN5185
USB-DFU extension

AN5185 - Rev 7 page 33/43

Table 21. USB-DFU download extension

Command Opcode Data

FUS_FW_DELETE 0x52 None

FUS_FW_UPGRADE 0x53 None

FUS_UPDATE_AUTH_KEY 0x56 Key Buffer = [KeySize (1byte), KeyData (64bytes MSB first)]

FUS_LOCK_AUTH_KEY 0x57 None

FUS_STORE_USR_KEY 0x58 Key Buffer = [KeyType (1byte), KeySize(1byte), KeyData (16/32bytes)]

FUS_LOAD_USR_KEY 0x59 Key Index (1byte)

FUS_START_WS 0x5A None

7.2.2 USB-DFU upload FUS extension
Bootloader USB-DFU upload FUS extension is managed in same ways as regular upload command for reading
physical address (wBlockNum > 1). But in this case, a virtual memory address mask is used: 0xFFFF0000. So the
FUS read command is managed through a read to virtual address 0xFFFF00YY where YY is the FUS command
opcode.
Upload command allows to perform the second step of FUS_STORE_USR_KEY which is getting the key index.

Table 22. USB-DFU upload extension

Command Address Returned data

FUS_GET_STATE 0xFFFF0054 State buffer = [FUS state (1byte), FUS error code (1byte)]

FUS_STORE_USR_KEY 0xFFFF0058 Key index (1byte)

AN5185
USB-DFU extension

AN5185 - Rev 7 page 34/43

8 FAQ and troubleshooting

Table 23. Frequently ask and answer

Question/troubleshooting Answer

When I receive a virgin STM32WB
device from ST, what does it
contain exactly?

All STM32WB devices delivered by STMicroelectronics contain by default the FUS and
the bootloader.

They do not contain the pre-installed wireless stack.

I cannot read the FUS version

Accessing device information table is possible when following conditions are met :
1. Device info table address is written in location pointed by the IPCCDBA option byte.

2. Cortex®-M0+ is enabled

3. FUS is running on Cortex®-M0+ (and not wireless stack) (If the wireless stack
is running, it is possible to force FUS to run by sending 2 FUS_GET_STATE
commands). So when accessing device via SWD, it is normal to not find device
info table valid because it has not yet been written or Cortex®-M0+ has not been
enabled yet. That’s why it is more convenient to read device info table when
bootloader is running because it performs the actions (1) and (2) above.

Note: It is possible to connect through SWD and disable the hardware reset
option (hot plug) and keep boot on bootloader which allows user to read
the device info table.

I want to upgrade FUS image and
I already have a wireless stack
installed. Do I need to delete the
wireless stack prior to upgrading
FUS?

It is advised to delete the wireless stack before performing the FUS upgrade in general
and especially when upgrading from FUS V0.5.3.

If the existing FUS version is higher than V0.5.3, then, it is not mandatory to perform the
wireless stack deletion.

How do I know quickly if my
device is running FUS or wireless
stack?

There are multiple ways to check it:
• Read the Option Bytes and check the value of SBRV. If FUS is running it is

0x3D000 (or 0x3D800 if FUS V0.5.3 is running)
• Read the device information table @0x20030030, if it is different for the FUS

version, then the wireless stack is running or Cortex®-CM0+ is not enabled.
• Send FUS_GET_STATE command, if FUS_STATE_NOT_RUNNING is received,

then the wireless stack is running or Cortex®-CM0+ is not enabled.

What is IPCCDBA Option Byte
used for? IPCCDBA is used to change the offset where to read/write the device information table.

After an upgrade operation, I
cannot access flash memory
anymore and cannot communicate
with FUS.

First check if SFSA=0x00. If it is the case, then it means safeboot has been triggered.

Safeboot is triggered when an Option Bytes corruption occurs.

This may occur during a FUS upgrade operation or during any user application operation
dealing with Option Bytes.

When safeboot is triggered it locks the device by setting SFSA=0x00 (all flash memory
secure) and so no user application/debugger can access the user flash memory anymore.

This operation is not reversible.

Starting from FUS V1.1.0, the safeboot is modified to perform a factory reset instead of
locking the device.

Is it possible to downgrade FUS
version (for example when current
FUS running version is V1.0.2, is it
possible to install FUS V1.0.1?)

FUS downgrade is not possible in any combination. It can be installed only forward.

In case of downgrade tentative, FUS simply rejects the upgrade and returns an error
message.

AN5185
FAQ and troubleshooting

AN5185 - Rev 7 page 35/43

Question/troubleshooting Answer

What is a
typical STM32CubeProgrammer
command to perform an upgrade
using FUS?

1. First check that FUS is running by sending FUS_GET_STATE commands until
receiving FUS_STATE_IDLE state response:
– STM32_Programmer_CLI.exe -c port=usb1 -fusgetstate
– STM32_Programmer_CLI.exe -c port=usb1 -fusgetstate
– STM32_Programmer_CLI.exe -c port=usb1 -fusgetstate
Sending 3 times FUS_GET_STATE command ensures that FUS is running and idle
in most cases.

2. Delete the existing wireless stack and install the new one (case of wireless stack
upgrade):
– STM32_Programmer_CLI.exe -c port=usb1 -fwupgrade

stm32wb5x_BLE_Stack_fw.bin 0x080CB000 firstinstall=0
– STM32_Programmer_CLI.exe -c port=usb1 -fusgetstate
– STM32_Programmer_CLI.exe -c port=usb1 -fusgetstate
– ... (keep sending -fusgetstate till received state is

FUS_STATE_NOT_RUNNING)
Setting "firstinstall=0" ensures that the previous stack is deleted before the new one
is installed.
Even if there is no previously installed stack, setting "firstinstall=0" would not cause
any problem.

Alternately proceed to FUS image installation (case of FUS upgrade):
• STM32_Programmer_CLI.exe -c port=usb1 -fwupgrade stm32wb5x_FUS_fw.bin

0x080EC000 firstinstall=0
• STM32_Programmer_CLI.exe -c port=usb1 -fusgetstate
• STM32_Programmer_CLI.exe -c port=usb1 -fusgetstate
• ... (keep sending -fusgetstate till received state is FUS_STATE_IDLE)

"firstinstall=0" means existing wireless stack is deleted prior to upgrading FUS.

It is possible to use "firstinstall=1" if upgrading from FUS version different from FUS
V0.5.3.

What is safeboot and how can it
be used?

Safeboot is an independent part of the FUS that manages specifically one case: option
bytes corruption.

When option bytes are corrupted, the STM32WB hardware forces the boot to safeboot
whatever the running firmware.

The safeboot then either:
• Locks the device in full secure mode (on FUS versions lower than V1.1.0) which

means all the device flash memory cannot be accessed and this operation is not
reversible (there is no mean to cancel it and the device cannot be used anymore).

• or performs a factory reset (on FUS versions V1.1.0 and higher) which means the
wireless stack is removed if any and the Cortex®-M4 code is erased and boot is
reset to FUS (virgin part state). This operation is also not reversible. In order to
activate the Safeboot, the user must activate Cortex®-M0+ by writing the value
0x00008000 at the address 0x5800040C using the SWD interface.

Does FUS erase the shadow
of encrypted firmware after
installation?

Yes, FUS does erase the shadow remaining sectors of the encrypted firmware after it has
been installed and moved to upper address.

Is there a restriction on firmware
image sizes that can be installed?

Is it necessary to delete the
installed firmware image before
installing a new image?

When using FUS version older than V1.2.0:
• If a wireless firmware image B is installed while another wireless firmware image A

is already installed/running. if B size is larger than A size, and if B is loaded at an
address too close to A (no enough free space between start address of A and end
address of B, as explained in Section 2 Wireless stack image operations) then the
device might be blocked with SBRV value pointing to the firmware image A (which
is then corrupted) instead of pointing to firmware B, and the recovery might not be
possible in that case.

• For this, it is advised to delete the firmware image A before installing the firmware
image B (in case of FOTA, this might be non feasible) or to make sure enough
space is available before performing the installation. This known limitation is fixed in
FUS V1.2.0.

AN5185
FAQ and troubleshooting

AN5185 - Rev 7 page 36/43

Question/troubleshooting Answer

After upgrade of the FUS V1.2.0,
I get an error message on
STM32CubeProgrammer (or other
programming interface) with error
code: "FUS_UFB_CORRUPT.

What does it means and what to
do in this case?

When upgrading from some older versions of FUS to FUS V1.2.0, it is normal to have the
error message FUS_UFB_Corrupt.

It means that UFB area (used for storing FUS configuration information) has been erased
and needs to be configured to reset values.

FUS then write the reset values and provoke a system reset and then the error is cleared.
FUS returns FUS_IDLE state with no errors.

No operation is required from user side.

AN5185
FAQ and troubleshooting

AN5185 - Rev 7 page 37/43

Revision history

Table 24. Document revision history

Date Version Changes

21-Mar-2019 1 Initial release.

17-Jun-2019 2

Added Section 1.2 FUS versioning and identification

Updated:
• Section 2 Wireless stack image operations, Section 5.1 Key types and structure, Section 5.1

Key types and structure
• Table 20. USART FUS command mapping on write command,

Table 22. USB-DFU upload extension

10-Jul-2019 3 Updated Table 7. Device information table

31-Mar-2020 4

Updated:
• Section 1.1 Firmware upgrade services definition, Section 2 Wireless stack image operations,

Section 2.1 Wireless stack install and upgrade, Section 2.2 Wireless stack delete,Section 5.1
Key types and structure, Section 7.1 USART extension

• Table 1. FUS versions, Table 11. FUS commands (vendor specific HCI command packet),
Table 12. FUS responses (HCI command complete packet), Table 14. FUS state error values

Added: Section 2.4 Anti-rollback activation and Section 8 FAQ and troubleshooting

06-May-2021 5

Updated:
• Section 1.2 FUS versioning and identification
• Table 1. FUS versions
• Section 1.3 How to activate FUS
• Figure 1. Flash memory mapping
• Section 1.5 FUS resources usage
• Table 5. FUS resources usage
• Section 2.4 Anti-rollback activation
• Section 8 FAQ and troubleshooting

Added:
• Table 1. FUS versions
• Table 2. FUS Versions Compatibility

22-Oct-2021 6

Updated:
• Section 1.5 FUS resources usage
• Figure 8. FW/FUS upgrade image footer structure
• Figure 9. Signature (tag) footer structure
• Section 8 FAQ and troubleshooting with new limitation

2-Aug-2022 7

Added Section 1.2.1 Known limitations

Updated:
• Section 2.1 Wireless stack install and upgrade
• Section 2.2 Wireless stack delete
• Section 8 FAQ and troubleshooting

AN5185

AN5185 - Rev 7 page 38/43

Contents

1 General information .2
1.1 Firmware upgrade services definition . 2

1.2 FUS versioning and identification . 3
1.2.1 Known limitations . 5

1.3 How to activate FUS . 5

1.4 Memory mapping. 7

1.5 FUS resources usage. 9

1.6 Shared tables memory usage . 11

2 Wireless stack image operations .12
2.1 Wireless stack install and upgrade . 12

2.2 Wireless stack delete . 13

2.3 Wireless stack start . 14

2.4 Anti-rollback activation . 14

3 FUS upgrade .15
3.1 Operation instructions. 15

3.2 Memory considerations . 15

4 User authentication. .16
4.1 Install user authentication key . 16

4.2 Lock user authentication key . 16

5 Customer key storage .17
5.1 Key types and structure . 17

6 Communication with FUS .19
6.1 Shared tables usage. 19

6.1.1 Device information table . 19

6.1.2 System table . 21

6.2 IPCC usage . 21

6.3 FUS commands. 22
6.3.1 Packet indicators. 23

6.3.2 Event packet . 23

6.3.3 Command packet . 23

6.3.4 Response packet . 24

6.4 Image footers. 26

7 STM32 system bootloader extension for FUS. .29
7.1 USART extension . 29

AN5185
Contents

AN5185 - Rev 7 page 39/43

7.1.1 USART special read . 29

7.1.2 USART special write . 31

7.1.3 USART FUS command mapping. 33

7.2 USB-DFU extension . 33
7.2.1 USB-DFU download FUS extension . 33

7.2.2 USB-DFU upload FUS extension . 34

8 FAQ and troubleshooting .35
Revision history .38

AN5185
Contents

AN5185 - Rev 7 page 40/43

List of tables
Table 1. FUS versions . 3
Table 2. FUS versions compatibility . 4
Table 3. FUS versions availability . 5
Table 4. FUS activation cases . 5
Table 5. FUS resources usage. 9
Table 6. FUS upgrade returned errors. 12
Table 7. Device information table . 20
Table 8. System table content . 21
Table 9. Packet indicator values. 23
Table 10. FUS asynch event (vendor specific HCI event) . 23
Table 11. FUS commands (vendor specific HCI command packet) . 23
Table 12. FUS responses (HCI command complete packet) . 24
Table 13. FUS state values . 25
Table 14. FUS state error values . 25
Table 15. Parsing of image footer structure . 27
Table 16. Parsing of signature footer . 28
Table 17. Magic number values . 28
Table 18. Bootloader USART commands extension . 29
Table 19. USART FUS command mapping on read command . 33
Table 20. USART FUS command mapping on write command. 33
Table 21. USB-DFU download extension . 34
Table 22. USB-DFU upload extension . 34
Table 23. Frequently ask and answer . 35
Table 24. Document revision history . 38

AN5185
List of tables

AN5185 - Rev 7 page 41/43

List of figures
Figure 1. Flash memory mapping . 7
Figure 2. SRAM memory mapping . 8
Figure 3. Shared table architecture . 11
Figure 4. Shared table usage process . 19
Figure 5. IPCC channels used by FUS . 22
Figure 6. FUS HCI subset . 22
Figure 7. Image footers placement . 26
Figure 8. FW/FUS upgrade image footer structure . 27
Figure 9. Signature (tag) footer structure . 28
Figure 10. USART special read command . 30
Figure 11. USART special write command. 32

AN5185
List of figures

AN5185 - Rev 7 page 42/43

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names
are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

AN5185

AN5185 - Rev 7 page 43/43

http://www.st.com/trademarks

	 Introduction
	1 General information
	1.1 Firmware upgrade services definition
	1.2 FUS versioning and identification
	1.2.1 Known limitations

	1.3 How to activate FUS
	1.4 Memory mapping
	1.5 FUS resources usage
	1.6 Shared tables memory usage

	2 Wireless stack image operations
	2.1 Wireless stack install and upgrade
	2.2 Wireless stack delete
	2.3 Wireless stack start
	2.4 Anti-rollback activation

	3 FUS upgrade
	3.1 Operation instructions
	3.2 Memory considerations

	4 User authentication
	4.1 Install user authentication key
	4.2 Lock user authentication key

	5 Customer key storage
	5.1 Key types and structure

	6 Communication with FUS
	6.1 Shared tables usage
	6.1.1 Device information table
	6.1.2 System table

	6.2 IPCC usage
	6.3 FUS commands
	6.3.1 Packet indicators
	6.3.2 Event packet
	6.3.3 Command packet
	6.3.4 Response packet

	6.4 Image footers

	7 STM32 system bootloader extension for FUS
	7.1 USART extension
	7.1.1 USART special read
	7.1.2 USART special write
	7.1.3 USART FUS command mapping

	7.2 USB-DFU extension
	7.2.1 USB-DFU download FUS extension
	7.2.2 USB-DFU upload FUS extension

	8 FAQ and troubleshooting
	 Revision history

