
August 2024 AN5289 Rev 18 1/171

1

AN5289
Application note

How to build wireless applications with STM32WB MCUs

Introduction

This document guides designers through the steps required to build specific Bluetooth® Low
Energy or 802.15.4 applications based on STM32WB series microcontrollers. It groups
together the most important information, and lists the aspects to be addressed.

To fully benefit from the information in this document and to develop an application, the user
must be familiar with STM32 microcontrollers, Bluetooth® Low Energy technology, 802.15.4
OpenThread protocol, Zigbee® protocol, and 802.15.4 MAC layer. It must then master
system services, such as low power management and task sequencing.

www.st.com

http://www.st.com

Contents AN5289

2/171 AN5289 Rev 18

Contents

1 References . 11

2 List of acronyms and abbreviations . 12

3 Software overview . 13

3.1 Supported stacks . 13

3.2 BLE application . 15

3.3 Building a BLE application on top of the HCI layer interface 16

3.4 Thread application . 17

3.5 MAC 802_15_4 application . 17

3.6 BLE and Thread application in concurrency . 17

4 STM32WB software architecture . 18

4.1 Main principles . 18

4.2 Memory mapping . 19

4.3 Shared peripherals . 20

4.4 Sequencer . 27

4.4.1 Implementation . 28

4.4.2 Interface . 28

4.4.3 Detailed interface and behavior . 28

4.5 Timer server . 31

4.5.1 Implementation . 31

4.5.2 Interface . 32

4.5.3 Detailed interface and behavior . 32

4.6 Low power manager . 34

4.6.1 Implementation . 35

4.6.2 Interface . 35

4.7 Flash memory management . 35

4.7.1 CPU2 timing protection . 36

4.7.2 CPU1 timing protection . 38

4.7.3 Conflict between RF activity and flash memory management 38

4.8 Debug information from CPU . 39

4.8.1 GPIO . 39

AN5289 Rev 18 3/171

AN5289 Contents

7

4.8.2 SRAM2 . 40

4.9 FreeRTOS low power . 41

4.10 Device information table . 42

4.11 ECCD error management . 43

5 System initialization . 46

5.1 General concepts . 46

5.2 CPU2 startup . 46

6 PLL management . 48

6.1 How to switch the system clock between HSE and PLL 48

6.1.1 Case 1: Before CPU2 is started . 48

6.1.2 Case 2: CPU2 is started . 49

7 Step by step design of a BLE application . 51

7.1 Initialization phase . 51

7.2 Advertising phase (GAP peripheral) . 51

7.3 Discoverable and connectible phase (GAP central) 52

7.4 Services and characteristic configuration (GATT server) 53

7.5 Service and characteristic discovery (GATT client) 54

7.6 Security (pairing and bonding) . 55

7.6.1 Security modes and level . 56

7.6.2 Security commands . 56

7.6.3 Security information commands . 57

7.7 Privacy feature . 58

7.8 How to use the 2 Mbps feature . 59

7.9 How to update connection parameters . 59

7.10 Event and error code description . 59

8 BT-SIG and proprietary GATT-based BLE application 61

8.1 Transparent mode - Direct test mode (DTM) . 61

8.1.1 Purpose and scope . 61

8.1.2 Transparent mode application principle . 62

8.1.3 Configuration . 62

8.1.4 RF certification - Application implementation . 64

Contents AN5289

4/171 AN5289 Rev 18

8.2 Heart rate sensor application . 64

8.2.1 How to use STM32WB heart rate sensor application 65

8.2.2 STM32WB heart rate sensor application - Middleware application 66

8.3 STMicroelectronics proprietary advertising . 70

8.4 Proprietary P2P application . 73

8.4.1 P2P server specification . 73

8.4.2 How to use the P2P server application . 75

8.4.3 P2P server application - Middleware application 75

8.4.4 P2P client application - Middleware application 78

8.5 FUOTA application . 83

8.5.1 CPU1 user flash memory mapping . 83

8.5.2 BLE FUOTA application startup . 84

8.5.3 BLE FUOTA services and characteristics specification 85

8.5.4 Flow description example to upload new CPU1 application binary 86

8.5.5 Application example with smart phone . 88

8.5.6 How to use the reboot request characteristics . 90

8.5.7 Power failure recovery mechanism for CPU1 application 92

8.6 Application tips . 92

8.6.1 How to set Bluetooth device address . 92

8.6.2 How to set IR (Identity Root) and ER (Encryption Root) 94

8.6.3 How to add a task to the sequencer . 95

8.6.4 How to use the timer server . 95

8.6.5 How to start the BLE stack - SHCI_C2_BLE_Init() 96

8.6.6 BLE GATT DB and security record in NVM . 101

8.6.7 How to calculate the maximum number of bonded devices
that can be stored in NVM . 101

8.6.8 NVM write access . 102

8.6.9 How to maximize data throughput . 102

8.6.10 How to add a custom BLE service . 102

8.6.11 How to use BLE commands in blocking mode 103

9 Building a BLE application on top of the HCI layer interface 104

10 Thread . 105

10.1 Overview . 105

10.2 How to start . 105

10.3 Thread configuration . 106

AN5289 Rev 18 5/171

AN5289 Contents

7

10.4 Architecture overview . 106

10.5 Inter core communication . 107

10.6 OpenThread API . 108

10.7 Usage of the OpenThread APIs . 109

10.7.1 OpenThread instance . 109

10.7.2 OpenThread call back management . 109

10.8 System commands for Thread applications .110

10.8.1 Non-volatile Thread data . 111

10.8.2 Low-power support . 112

11 Step by step design of an OpenThread application 113

11.1 Initialization phase .113

11.2 Set-up the Thread network .113

11.3 CoAP request .113

11.3.1 Creating an otCoapResource . 114

11.3.2 Sending a CoAP request . 114

11.3.3 Receiving a CoAP request . 114

11.4 Commissioning .115

11.5 CLI .115

11.6 Traces .116

12 STM32WB OpenThread application . 117

12.1 Thread_Cli_Cmd .117

12.2 Thread_Coap_DataTransfer .117

12.3 Thread_Coap_Generic .117

12.4 Thread_Coap_Multiboard .117

12.5 Thread_Commissioning .118

12.6 Thread_FTD_Coap_Multicast .118

12.7 Thread_SED_Coap_Multicast .118

12.8 Thread FUOTA .119

12.8.1 Principle . 119

12.8.2 Memory mapping . 119

12.8.3 Thread FUOTA protocol . 122

12.8.4 FUOTA application startup procedure . 123

12.8.5 Applications . 124

Contents AN5289

6/171 AN5289 Rev 18

13 MAC IEEE Std 802.15.4-2011 . 126

13.1 Overview . 126

13.2 Architecture . 126

13.3 API . 126

13.4 How to start . 127

13.4.1 Board configuration . 127

13.4.2 MAC radio protocol processor CPU2 firmware 128

13.4.3 MAC application processor firmware . 128

13.4.4 Output . 129

13.4.5 MAC IEEE Std 802.15.4-2011 system . 130

13.4.6 Integration recommendations . 130

14 Annexes . 133

14.1 Detailed flow of the device initialization . 133

14.2 Mailbox interface . 135

14.2.1 Interface API . 136

14.2.2 Detailed interface behavior . 137

14.3 Mailbox interface - Extended . 141

14.3.1 Interface API . 141

14.3.2 Detailed interface and behavior . 142

14.4 ACI interface . 147

14.4.1 Detailed interface and behavior . 148

14.5 Vendor specific HCI commands for controller . 153

14.6 STM32WB system commands and events . 155

14.6.1 Commands . 155

14.6.2 Events . 158

14.7 BLE - Set 2 Mbps link . 158

14.8 BLE - Connection update procedure . 159

14.9 BLE - Link layer data packet . 160

14.10 Thread overview . 161

14.10.1 Introduction . 161

14.10.2 Main characteristics . 162

14.10.3 Layers . 162

14.10.4 Mesh topology . 164

14.10.5 Thread configuration . 165

AN5289 Rev 18 7/171

AN5289 Contents

7

15 Conclusion . 167

16 Revision history . 168

List of tables AN5289

8/171 AN5289 Rev 18

List of tables

Table 1. Stacks supported by STM32WB series microcontrollers . 13
Table 2. Semaphores . 21
Table 3. Interface functions . 28
Table 4. Interface functions . 32
Table 5. Interface functions . 35
Table 6. Advertising phase API description . 52
Table 7. GAP central APIs . 52
Table 8. GATT client APIs . 54
Table 9. Security commands . 57
Table 10. Security information commands . 57
Table 11. 2 Mbps feature commands . 59
Table 12. Proprietary connection data . 59
Table 13. Direct test mode functions . 62
Table 14. Heart rate service functionalities. 67
Table 15. HR sensor application control . 70
Table 16. AD structure according to the Bluetooth 5 Core specification Vol. 3 part C 71
Table 17. STM32WB manufacturer specific data . 71
Table 18. Group B features - Bit mask . 71
Table 19. Device ID Enum . 71
Table 20. P2P service and characteristic UUIDs . 74
Table 21. P2P specification . 74
Table 22. P2P service functionalities . 76
Table 23. FUOTA service and characteristics UUID. 85
Table 24. Base address characteristics specification . 86
Table 25. File upload confirmation reboot request characteristics specification. 86
Table 26. Raw data characteristics specification . 86
Table 27. Reboot request characteristics specification . 86
Table 28. MO firmwares available for Thread. 105
Table 29. Files for Thread configuration . 106
Table 30. Interface APIs . 136
Table 31. Interface APIs . 141
Table 32. BLE transport layer interfaces . 147
Table 33. Vendor specific HCI commands . 153
Table 34. System interface commands . 155
Table 35. User system events . 158
Table 36. Document revision history . 168

AN5289 Rev 18 9/171

AN5289 List of figures

10

List of figures

Figure 1. Protocols supported by STM32WB series microcontrollers . 14
Figure 2. STM32WB series microcontrollers BLE HCI layer model . 15
Figure 3. BLE application and wireless firmware architecture . 16
Figure 4. Memory mapping . 19
Figure 5. Timing for entering/exiting Stop mode on CPU1 . 22
Figure 6. Algorithm to enter Stop mode on CPU1 . 23
Figure 7. Algorithm to exit Stop mode on CPU1 . 24
Figure 8. Algorithm to use RNG on CPU1 . 25
Figure 9. Algorithm to use USB on CPU1 . 26
Figure 10. Algorithm to write/erase data in the flash memory . 37
Figure 11. CPU1 and flash memory operation versus PESD bit . 38
Figure 12. Format of version and memory information . 43
Figure 13. ECC management in NMI interrupt handler . 45
Figure 14. System initialization . 46
Figure 15. Algorithm to switch the system clock from PLL to HSE . 48
Figure 16. Algorithm to switch the system clock from HSE to PLL . 49
Figure 17. GATT-based BLE application . 61
Figure 18. Transparent mode with P-NUCLEO-WB55 board and ST-LINK VCP 63
Figure 19. Transparent mode with P-NUCLEO-WB55 board and level shifter 64
Figure 20. Simple setup with BLE RF tester and P-NUCLEO board . 64
Figure 21. Heart rate profile structure . 65
Figure 22. Simple setup with BLE RF tester and P-NUCLEO board . 65
Figure 23. Smart phone - ST BLE sensor with heart rate application . 66
Figure 24. Heart rate project - Interaction between middleware and user application 70
Figure 25. P2P server to client demonstration. 73
Figure 26. P2P server to ST BLE sensor smart phone application . 73
Figure 27. P2P server/client communication sequence. 74
Figure 28. P2P server connected to ST BLE sensor smart phone application 75
Figure 29. P2P server software communication . 78
Figure 30. P2P client software communication . 83
Figure 31. FUOTA memory mapping. 84
Figure 32. FUOTA startup procedure . 85
Figure 33. FUOTA process with heart rate . 87
Figure 34. P2P server - Application firmware selection . 88
Figure 35. P2P server - Application firmware update . 89
Figure 36. Heart rate sensor notification . 90
Figure 37. User option bytes setting . 106
Figure 38. Software architecture . 107
Figure 39. OpenThread functions calls . 108
Figure 40. OpenThread callback . 108
Figure 41. OpenThread stack API directory structure . 109
Figure 42. OpenThread callback management . 110
Figure 43. Storage of non-volatile data . 111
Figure 44. Configurable CLI UART (LPUART or USART) . 115
Figure 45. Traces for Thread applications . 116
Figure 46. Thread FUOTA network topology . 119
Figure 47. OTA server (Thread_Ota_Server) flash memory mapping. 120
Figure 48. FUOTA client flash memory mapping initial state . 120

List of figures AN5289

10/171 AN5289 Rev 18

Figure 49. FUOTA server flash memory mapping after CPU1 binary transfer. 121
Figure 50. FUOTA server flash memory mapping after CPU2 binary transfer. 121
Figure 51. Thread FUOTA protocol . 122
Figure 52. FUOTA startup procedure . 123
Figure 53. Update procedure . 124
Figure 54. MAC 802.15.4 software architecture . 126
Figure 55. MAC API dedicated to application core . 127
Figure 56. Option bytes configuration for MAC 802.15.4. 127
Figure 57. MAC 802.15.4 simple application . 128
Figure 58. MAC 802.15.4 applications - Directory structure . 129
Figure 59. Coordinator start . 130
Figure 60. Node start, requesting association, and data send. 130
Figure 61. Coordinator receiving association request and data. 130
Figure 62. MAC 802.15.4 layer abstraction . 131
Figure 63. Traces on MAC 802.15.4 application . 132
Figure 64. System initialization . 133
Figure 65. System ready event notification . 134
Figure 66. BLE initialization . 135
Figure 67. Transport layer initialization . 137
Figure 68. BLE channel initialization . 138
Figure 69. BLE command sent by the mailbox . 139
Figure 70. ACL data sent by the mailbox. 139
Figure 71. System command sent by the mailbox . 140
Figure 72. BLE and system user event received by the mailbox . 140
Figure 73. System transport layer initialization . 142
Figure 74. System command sent by the system transport layer . 143
Figure 75. System user event reception flow. 145
Figure 76. shci_resume_flow() usage example . 146
Figure 77. BLE transport layer initialization . 148
Figure 78. ACI command flow . 149
Figure 79. BLE user event receive flow . 151
Figure 80. hci_resume_flow() usage example . 152
Figure 81. 2 Mbps set-up flow . 159
Figure 82. Master initiates the connection update with HCI command . 160
Figure 83. Slave initiates the connection update with L2CAP command. 160
Figure 84. Data packet breakdown . 161
Figure 85. Application GATT data format . 161
Figure 86. Thread protocol letters . 162
Figure 87. 6LoWPAN packet fragmentation . 163
Figure 88. Thread network topology . 165
Figure 89. Link with the external world . 165
Figure 90. Thread device roles . 166

AN5289 Rev 18 11/171

AN5289 References

170

1 References

[1] UM2550(1)

1. Available on www.st.com.

Getting started with STM32CubeWB for STM32WB Series

[2] RM0434(1) Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU,
Bluetooth® Low-Energy and 802.15.4 radio solution

[3] AN5270(1) STM32WB Bluetooth® Low Energy wireless interface

[4] UM2442(1) Description of STM32WB HAL and low-layer drivers

[5] UM2288(1) STM32CubeMonitor-RF software tool for wireless performance
measurements

[6] AN5185(1) ST firmware upgrade services for STM32WB series

[7] Bluetooth®
specification

Bluetooth Core Specification (v4.0, v4.1, v4.2, v5.0)

[8] MAC IEEE Std
802.15.4-2011

Specification of the 802_15_4 MAC standard

[9] Thread
specification

Thread specification V1.1 (Thread Group)

[10] AN5506(1) Getting started with Zigbee® on STM32WB Series

List of acronyms and abbreviations AN5289

12/171 AN5289 Rev 18

2 List of acronyms and abbreviations

ACI Application command interface

ATT Attribute protocol

BLE Bluetooth® Low Energy

CLI Command line interface

CoAP Constrained application protocol

CPU1 Cortex®-M4 core

CPU2 Cortex®-M0+ core

D2D Device to device

DUT Device under test

FUOTA Firmware update over the air

FUS Firmware upgrade service

GAP Generic access profile

GATT Generic attribute profile

HCI Host controller interface

L2CAP Logical link control adaptation layer protocol

LTK Long-term key

OTA Over the air

PDU Protocol data unit

P2P Peer to peer

RFU Reserved for future use

SIG Special interest group

SM Security manager

UUID Universally unique identifier

AN5289 Rev 18 13/171

AN5289 Software overview

170

3 Software overview

3.1 Supported stacks

The STM32WB series microcontrollers are based on Arm®(a) cores.

Select CPU2 firmware to load, based on the target application.

The STM32WB series microcontroller ecosystem supports different stacks (see Table 1),
controlled by the application through specific interfaces, as shown in Figure 1.

As shown in Figure 2, CPU2 can provide a BT HCI standard interface, and a different BLE
stack can run on CPU1.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 1. Stacks supported by STM32WB series microcontrollers

Stacks supported Associated firmware

BLE

stm32wb5x_BLE_HCI_AdvScan_fw.bin

stm32wb5x_BLE_HCILayer_fw.bin

stm32wb5x_BLE_LLD_fw.bin

stm32wb5x_BLE_Stack_full_fw.bin

stm32wb5x_BLE_Stack_light_fw.bin

Thread
stm32wb5x_Thread_FTD_fw.bin

stm32wb5x_Thread_MTD_fw.bin

BLE and Thread
stm32wb5x_BLE_Thread_dynamic_fw.bin

stm32wb5x_BLE_Thread_static_fw.bin

BLE and MAC 802_15_4 stm32wb5x_BLE_Mac_802_15_4_fw.bin

BLE and Zigbee

stm32wb5x_BLE_Zigbee_FFD_dynamic_fw.bin

stm32wb5x_BLE_Zigbee_FFD_static_fw.bin

stm32wb5x_BLE_Zigbee_RFD_dynamic_fw.bin

stm32wb5x_BLE_Zigbee_RFD_static_fw.bin

stm32wb5x_Zigbee_FFD_fw.bin

stm32wb5x_Zigbee_RFD_fw.bin

MAC 802_15_4
stm32wb5x_Mac_802_15_4_fw.bin

stm32wb5x_Phy_802_15_4_fw.bin

Software overview AN5289

14/171 AN5289 Rev 18

Figure 1. Protocols supported by STM32WB series microcontrollers

MS52414V2

CPU2

802.15.4 radio

M0 firmware

CPU1

ACI interface

Profiles Services

Application

OpenThread stack

UDP + TLS

COAP

BLE radio

BLE stack

Link layer

L2CAP

802.15.4 MACOT 802.15.4 MACBT MAC

HostCtl interface

Routing

SMP

GATT, GAP

ATT

IPVS

6LowPan

Thread
interface

802.15.4 MAC
interface

InfrastructureZigbee
interface

AN5289 Rev 18 15/171

AN5289 Software overview

170

Figure 2. STM32WB series microcontrollers BLE HCI layer model

3.2 BLE application

The STM32WB architecture separates the BLE profiles and applications, running on the
application CPU1, from the real-time aspects residing in the BLE peripheral.

The BLE peripheral incorporates a CPU2 processor containing the stack handling the link
layer up to the GAP and the GAP layers. It also incorporates the physical 2.4 GHz radio.

The application CPU1 collects and computes the data to transfer to the BLE.

CPU2 contains the LE controller and the LE host needed to manage all real time link layer
and radio PHY interaction, which includes:

• Low power manager to control Low-power mode

• Debug trace to output information about activities

• Mailbox / IPCC to interface the BLE stack (LL, GAP, GATT)

MS52413V1

CPU2

BLE radio

M0 firmware

CPU1

BLE Host stack

HostCtl interface

L2CAP

GATT, GAP

Application

Profiles Services

SMP ATT

HCL layer

BT MAC

Link layer

HostCtl interface

Software overview AN5289

16/171 AN5289 Rev 18

Figure 3. BLE application and wireless firmware architecture

3.3 Building a BLE application on top of the HCI layer interface

The CPU2 can be used as a BLE HCI layer co-processor. In this case, the user either
implements its own HCI application, or uses an existing open source BLE host stack.

Most BLE host stacks use a UART interface to communicate with a BLE HCI co-processor.
The equivalent physical layer on STM32WB series microcontroller is the mailbox, as
described in Section 14.2: Mailbox interface.

The mailbox provides an interface for both the BLE channel and the System channel. The
BLE host stack is responsible for building the command buffer to be sent over the BLE
channel on the mailbox, and must provide an interface to report events received over the
mailbox. In addition to the BLE host stack adaptation over the mailbox, the user must notify
the mailbox driver when an asynchronous packet can be released.

The System channel is not handled by a BLE host stack. The user must implement a
custom transport layer to build the system command buffer to be sent to the mailbox driver
and to manage the event received from the mailbox (including the notification to release an
asynchronous buffer to the mailbox driver). It can also use the mailbox extended driver (as
described in Section 14.3: Mailbox interface - Extended), which provides an interface on top

C
PU

1
User code

MS51765V1

SRAM2 IPCC

ACI - HCI

Profiles Services

Application
C

PU
2

B
LE

 s
ta

ck

Radio PHY

GAP GATT

SMP ATT

Link layer DTM

L2CAP

HCI

AN5289 Rev 18 17/171

AN5289 Software overview

170

of the transport layer responsible for building the system command buffer and to manage
the system asynchronous event.

The BLE_TransparentMode project can be used as an example to build an application on
top of a BLE HCI layer co-processor using the mailbox as described in Section 12.2:
Thread_Coap_DataTransfer.

3.4 Thread application

The OpenThread stack runs on CPU2 core and exports a set of APIs on CPU1 side in order
to build a complete Thread application. Three CPU2 firmwares support the Thread protocol:

• sm32wb5x_Thread_FTD_fw: In this case, the device supports all Thread roles except
the border router (such as Leader, Router, End device, Sleepy end device).

• stm32wb5x_Thread_MTD_fw: In this case, the device can act only as an end or
sleepy end device). This configuration saves memory space compared to the FTD one.

• stm32wb5x_BLE_Thread_fw: In this case, the device supports both Thread (FTD)
and BLE in static concurrent mode (refer to Section 3.6 for more details).

3.5 MAC 802_15_4 application

When downloading the STM32wb5x_Mac_802_15_4_fw CPU2 firmware, CPU1 can access
directly the 802_15_4 MAC layer and build its own application on top of it.

3.6 BLE and Thread application in concurrency

The STM32WB series microcontrollers supports a “static concurrent mode” (also named
“switched mode”).

Both stacks (BLE and Thread) are embedded in the stm32wb5x_BLE_Thread_fw CPU2
firmware, available from www.st.com. Switch from one protocol to the other is done through
a system application command. In this mode, the system disables the operational protocol
before activating the other one. The STM32WB device switches from BLE to Thread after
completely stopping the BLE stack, and vice versa. These transitions can take several
seconds, as the network needs to be reattached each time.

STM32WB software architecture AN5289

18/171 AN5289 Rev 18

4 STM32WB software architecture

4.1 Main principles

• All the code running on CPU2 is delivered as an encrypted binary

• Black box for customer perspective

• All the code running on CPU1 is delivered as source code

• Communication between CPUs is done via “mailbox”

The standard STM32Cube delivery package includes STM32WB resources such as:

• HAL/LL to access the hardware registers

• BSP

• Middleware (such as FreeRTOS, USB devices).

In addition, the following application provide efficient system integration:

• A sequencer to execute the tasks in background and enter Low-power mode when
there is no activity

• A timer server to provide virtual timers running on RTC (in Stop and Standby modes) to
the application.

AN5289 Rev 18 19/171

AN5289 STM32WB software architecture

170

4.2 Memory mapping

Figure 4. Memory mapping

The flash, SRAM2a and SRAM2b memories contain a secure section, which cannot be read
nor written by CPU1. The secure start address for each memory can be read from the option
byte, indicated in blue in Figure 4:

• SFSA for the flash memory

• SBRSA for the SRAM2a (retained in Standby)

• SNBRSA for the SRAM2b.

These option bytes are only written by the FUS running on CPU2. This is done on each
CPU2 update installed by the FUS.

The user application must take into account that the available memory can vary between
different versions of the RF stack. The available space for the user application can be
obtained from the release notes for STM32WB coprocessor wireless binaries. The install
address for the RF stack is also the boundary address for the user flash memory area.

MS51862V2

Secure

Free but not available
in default linker file

Available in linker file
SRAM2A

_BASE

End of
User app

SRAM2A
_END_ADDR

SBRSA

SRAM2a

Secure

Free but not available
in default linker file

SRAM2B
_BASE

SRAM2B
_END_ADDR

SNBRSA

SRAM2b

Secure

Free but not available
in default linker file

Available in linker file

FLASH_BASE

End of
User app

FLASH
_END_ADDR

SFSA

Flash

Available in linker file

Not available in
default linker file

Reserved for BLE
OTA application

SRAM1_BASE

SRAM1
_END_ADDR

SRAM1

SRAM1_BASE
+ 4

STM32WB software architecture AN5289

20/171 AN5289 Rev 18

Ensure that some margin is included in CPU2 domain to support updates during the product
lifetime.

The boundary granularity is 4 Kbytes for the flash memory and 1 Kbyte for SRAM2a and
SRAM2b.

The linker file is identical to all delivered BLE/Thread applications (except for
BLE_Thread_Static, BLE_HeartRate_ota and BLE_p2pServer_ota). The available
memories are chosen to fit all provided applications. For applications like BLE, where CPU2
memory requirements are smaller, it is possible to update the linker file to allocate more
memory to the application.

To optimize the available memory for a dedicated application, the linker file must be updated
inline with the following guidelines:

• Flash memory: the end of available memory address can be moved up to the SFSA
address. When a CPU2 update is required, there must be enough free memory just
below the secure memory to upload a new encrypted CPU2 FW update. The size of the
memory required depends on CPU2 FW to be updated (BLE, Thread or concurrent
BLE/Thread), see [1].

• SRAM1: the first unavailable 32 bits in the linker file are only required for the BLE_OTA
application. For all other applications, the start address can be moved from
SRAM1_BASE + 4 to SRAM1_BASE.

• SRAM2a: the end of available memory address can be moved up to the SBRSA
address. When CPU2 update support required, there must be some free sectors just
below the secure memory to support new CPU2 FW updates requiring more sectors to
be secure.

• SRAM2b: The SRAM2b is not part of the linker file because it is all secure for any FW
CPU2 supporting the Thread protocol. For BLE only applications, the linker file can be
updated with a new section to map RW data into the SRAM2B from SRAM2B_BASE
up to the SNBRSA address. When CPU2 update support required, there must be some
free sectors just below the secure memory to support new CPU2 FW updates requiring
more sectors to be secure.

STOP2 is the deepest low power mode supported when RF is active. When the user
application must enter Standby mode, it must first stop all RF activities, and fully reinitialize
CPU2 when coming out of Standby mode. The user application can use the full non secure
SRAM2a to store its own content (that needs to be retained in Standby mode).

4.3 Shared peripherals

AES2 is reserved to the CPU2 and must never be used/accessed by the CPU1.

AES1 is reserved to the CPU1 and is never used/accessed by the CPU2. The only case
when the CPU2 accesses the AES1 is when the CPU1 requests to write a user key on the
customer key storage area. This is described in [6].

All other peripherals concurrently accessible by both CPUs are protected by hardware
semaphores. Before accessing these peripherals, the associated semaphore must first be
taken, and released afterwards.

AN5289 Rev 18 21/171

AN5289 STM32WB software architecture

170

If the application needs to use semaphores for inter task control, it is recommended to start
using Sem31 downwards to be compatible with future wireless firmware updates on CPU1,
where new features requiring additional semaphores can be added.

Sem0 is used to share the RNG between the two CPUs. The semaphore is taken by the
CPU2 for an interval depending upon the number to be generated and upon the RNG
source clock speed. To relax the latency to get these numbers, it is recommended to
generate at startup a pool of numbers and fill the pool in a low priority task when some of
them are retrieved by the application to keep it full. The usage of Sem0 is shown in Figure 8.

Sem 0 can be used in the USB use case too. When the USB is not used anymore and
needs to be switched off by the application, Sem 0 must be taken before switching off the
CLK48 clock. This is required because USB and RNG share the same clock, and CPU2
could use RNG at the same time when CPU1 needs to switch off the USB (see Figure 9).

Sem1 is used to share the PKA IP between the two CPUs.

Sem2 is used to share between the two CPUs the capability to write/erase data in FLASH.

Sem2 must be taken before starting more than a single write/erase procedure, and released
when they are completed. The semaphore must be taken/released to surround a couple of
write/erase procedure. The semaphore is taken by the CPU2 for an interval depending upon
the number of data to be written in the flash memory and upon the number of sectors to
erase. BLE stack writes to flash memory the pairing information (when bonding is enabled)
and the GATT attribute cache.

Sem3 is used for the low power management. It must not be locked for more than 500 µs by
the CPU1 when there is BLE RF activity. The algorithm is detailed in Figure 6 and Figure 7.

Table 2. Semaphores

Semaphore Purpose

Sem0 RNG - All registers

Sem1 PKA - All registers

Sem2 Used to share between CPU1 and CPU2 the capability to write/erase data in FLASH

Sem3

RCC_CR

RCC_EXTCFGR

RCC_CFGR

RCC_SMPSCR

Sem4 Clock control mechanism for the Stop mode implementation

Sem5
RCC_CRRCR

RCC_CCIPR

Sem6 Used by CPU1 to prevent CPU2 from writing/erasing data in flash memory

Sem7 Used by CPU2 to prevent CPU1 from writing/erasing data in flash memory

Sem8
Ensures that CPU2 does not update the BLE persistent data in SRAM2 when CPU1
is reading them

Sem9
Ensures that CPU2 does not update the Thread persistent data in SRAM2 when
CPU1 is reading them

STM32WB software architecture AN5289

22/171 AN5289 Rev 18

Sem4 is used to handle race condition on the switch of the system clock when a CPU exits
low power mode while the other one enter low power mode. The algorithm is detailed in
Figure 6 and Figure 7.

Sem3 and Sem4 are used in the examples to enter/exit Stop mode.

The user must ensure that the algorithms shown in Figure 6 and Figure 7 are executed
before and after wake-up from Stop mode. These routines (see Figure 5) are usually
implemented inside the IDLE task of sequencer or RTOS. The implementation takes
advantage of the fact that when WFI is called from critical section, the MCU wakes up upon
interrupt request, but instead of executing ISR it continues to execute the next instruction
after WFI. Only after exiting the critical section the ISR is executed.

PRIMASK = 1; // Mask all interrupts (enter critical section)
PWR_EnterStopMode()

WFI

PWR_ExitStopMode()

PRIMASK = 0; // Unmask all interrupts (exit critical section)

Figure 5. Timing for entering/exiting Stop mode on CPU1

MS53131V1

Thread PWR_Enter
StopMode() zzz PWR_Exit

StopMode() ISR Thread

IRQx

Enter
critical section

Exit
critical sectionWFI Interrupt

exit

AN5289 Rev 18 23/171

AN5289 STM32WB software architecture

170

Figure 6. Algorithm to enter Stop mode on CPU1

MS53122V1

Yes

No

Enter

ENTER_CRITICAL_SECTION

EXIT_CRITICAL_SECTION

Exit

Poll Sem3 until granted

Get Sem4

Sem4 granted ?

C2DS = set ?

Release Sem4

Release Sem3

Set HSION
Wait for HSIRDY
Set SW to HSI

Wait for SWS to report HSI
Set SMPSSEL to HSI

Yes

No

If Sem4 is busy CPU2 has not switched
the clock to HSI.
It is either in Stop mode, or polling Sem3
to exit Stop mode (in this case, the clock
is switched to HSI and switched back to
another clock by the CPU2)

CPU2 is either in Run mode on a suitable
clock, or polling Sem3 to exit Stop mode

CPU2 is either in Stop mode, or polling
Sem3 to exit Stop mode (in this case, the
clock is switched to HSI and switched
back to another clock by the CPU2)

Enter CStop

STM32WB software architecture AN5289

24/171 AN5289 Rev 18

Figure 7. Algorithm to exit Stop mode on CPU1

Sem5 is used to control the RNG/USB CLK48 source clock. The CPU2 updates or switches
off the clock only when the RNG IP (Sem0) is used.

To avoid a race condition with the CPU2, when the CPU1 needs to switch off the clock it
must always first get Sem0, even if not using the RNG IP. This mechanism is shown in the
BLE P-NUCLEO-WB55.USB dongle examples (see Section 8.1.3 and Figure 9). This does
not impact the CPU2.

Sem5 must be taken before changing RNG, ADC, CLK48, SAI1, LPTIM1, LPTIM2, I2C1,
I2C3, LPUART1, and USART1 source clock on CPU1 (RCC_CCIPR register), to avoid a
race condition with the CPU2 when it configures CLK48 source clock.

MS53123V1

Enter

ENTER_CRITICAL_SECTION

EXIT_CRITICAL_SECTION

Exit

Poll Sem3 until granted

SWS = HSI ?

Release Sem3

Clock configuration

CPU1 must configure all clocks,
depending on the use case (it

must commit CPU2 at 32 MHz)

Yes

No Only if HSE is suitable for CPU1 use case.

Release Sem4

Polling time is short, can be kept in the
critical section.

AN5289 Rev 18 25/171

AN5289 STM32WB software architecture

170

Figure 8. Algorithm to use RNG on CPU1

Note: Sem5 is not taken because the CPU2 does not take it without taking first Sem0. This
algorithm can be updated to take Sem5 before configuring the RNG clock source.

MS53124V1

RNG entry

Configure and switch on RNG clock

Exit

RNG process

Release Sem0

Poll Sem0 until granted

Switch off RNG IP

Switch off RNG clock

Set RNGSEL = CLK48

STM32WB software architecture AN5289

26/171 AN5289 Rev 18

Figure 9. Algorithm to use USB on CPU1

The USB and RNG IPs share the same source clock. Before switching off the clock, the
USB driver must first check whether the CPU2 requires the clock or not. To avoid a race
condition with the CPU2, the CPU1 must first get Sem0 (RNG semaphore, CPU2 does not
use USB) before switching off the clock.

If Sem0 is busy, the CPU1 must wait for Sem0 to be free to switch off the clock. This is
required because there can be a race condition when CPU1 releases the USB and CPU2
releases the RNG at the same time, leading to the oscillator to be kept on.

Sem6 is used to protect the CPU1 timing versus write/erase operations requested by the
CPU2. The CPU1 shall get Sem6 to prevent the CPU2 or other CPU1 processes to either
write or erase data in flash memory. There is no time limit on how long the CPU1 can keep
the semaphore, but, as long as the semaphore is taken, the CPU2 is unable to write either
the pairing or client descriptor information in the memory.

CPU1 must release Sem6 only if it can afford being stalled for the time required to finish the
write or erase operation.

The CPU2 implements the algorithm described in Figure 10, similarly to the CPU1. Before
writing or erasing data in flash memory, it tries to get Sem6 and, if successful, writes/erases

MS53125V1

USB entry

Configure and switch on CLK48

Exit

Switch on USB IP

Switch off CLK48

Poll Sem5 until granted

USB process

Switch off USB IP

Get Sem0

Sem0 granted ?

Release Sem0

Release Sem5

Enable Sem0 IT and
wait for free interrupt

No

Yes

AN5289 Rev 18 27/171

AN5289 STM32WB software architecture

170

data and releases the semaphore. When the CPU1 needs to protect its timing, it polls Sem6
until it gets it.

Sem7 is used to protect the CPU2 timing versus write/erase flash memory operation
requested by CPU1. The CPU1 must get Sem7 before writing or erasing. Sem7 must be
taken and released for each single write or erase operation, but for not more than 0.5 ms in
addition to the write/erase timing. To comply with this requirement the code must be
executed in the critical section. The algorithm is described in Figure 10.

Sem8 is used to ensure that CPU2 does not update the BLE persistent data in SRAM2
while CPU1 reads them.

The CPU2 can be configured to store the BLE persistent data either in the internal NVM
storage on CPU2 or in the SRAM2 buffer provided by the user application. This can be
configured with the system command SHCI_C2_Config() when the CPU2 is requested to
store persistent data in SRAM2, so it can write data in this buffer when needed. To read
consistent data with the CPU1 from the SRAM2 buffer, the flow must be:

1. CPU1 takes Sem8

2. CPU1 reads all persistent data from SRAM2 (most of the time, the goal is to write these
data into an NVM managed by CPU1)

3. CPU1 releases Sem8

There is no timing constraint on how long this semaphore can be kept.

Sem9 is used to ensure that CPU2 does not update the Thread persistent data in SRAM2
while CPU1 reads them.

The CPU2 can be configured to store the Thread persistent data either in the internal NVM
storage on CPU2 or in the SRAM2 buffer provided by the user application. This can be
configured with the system command SHCI_C2_Config() when the CPU2 is requested to
store persistent data in SRAM2, so it can write data in this buffer when needed. To read
consistent data with the CPU1 from the SRAM2 buffer, the flow must be:

1. CPU1 takes Sem9

2. CPU1 reads all persistent data from SRAM2 (most of the time, the goal is to write these
data into an NVM managed by CPU1)

3. CPU1 releases Sem9

There is no timing constraint on how long this semaphore can be kept.

4.4 Sequencer

The sequencer executes the registered functions one by one. It has the following features:

• supports up to 32 functions

• requests functions to be executed

• enables / disables the execution of a function

• provides a blocking interface based on the reception of an event.

The sequencer provides a simple background scheduling function. It provides a hook to
implement a secure way Low-power mode (no event loss) when the sequencer does not
have any pending tasks to be executed. It also provides an efficient mechanism for the
application to wait for a specific event before moving forward. When the sequencer is
waiting for a specific event, it provides a hook where the application can either enter
low-power mode, or execute some other code.

STM32WB software architecture AN5289

28/171 AN5289 Rev 18

4.4.1 Implementation

To use the sequencer, the application must:

• set the number of maximum of supported functions (this is done by defining a value for
UTIL_SEQ_CONF_TASK_NBR)

• register a function to be supported by the sequencer with UTIL_SEQ_RegTask()

• start the sequencer by calling UTIL_SEQ_Run() to run a background while loop

• call UTIL_SEQ_SetTask() when a function needs to be executed.

4.4.2 Interface

4.4.3 Detailed interface and behavior

The sequencer is a packaging of while loops to call functions when requested by the user:

while(1)

{

Table 3. Interface functions

Function Description

void UTIL_SEQ_Idle(void); Called (in critical section - PRIMASK) when there is nothing to execute.

void UTIL_SEQ_Run(
UTIL_SEQ_bm_t mask_bm)

Requests the sequencer to execute functions that are pending and
enabled in the mask mask_bm.

void
UTIL_SEQ_RegTask(UTIL_SEQ_bm
_t task_id_bm, uint32_t
flags, void (*task)(void))

Registers a function (task) associated with a signal (task_id_bm) in the
sequencer. The task_id_bm must have a single bit set.

void UTIL_SEQ_SetTask(

UTIL_SEQ_bm_t task_id_bm,

Requests the function associated with the task_id_bm to be executed.

The task_prio is evaluated by the sequencer only when a function has
finished. If several functions are pending at any one time, the one with the
highest priority (0) is executed.

void UTIL_SEQ_PauseTask(
UTIL_SEQ_bm_t task_id_bm)

Disables the sequencer to execute the function associated with
task_id_bm.

void UTIL_SEQ_ResumeTask(
UTIL_SEQ_bm_t task_id_bm)

Enables the sequencer to execute the function associated with
task_id_bm.

void UTIL_SEQ_WaitEvt(
UTIL_SEQ_bm_t evt_id_bm)

Requests the sequencer to wait for a specific event evt_id_bm and does
not return until the event is set with UTIL_SEQ_SetEvt().

void UTIL_SEQ_SetEvt(
UTIL_SEQ_bm_t evt_id_bm)

Notifies the sequencer that the event evt_id_bm occurred (the event must
have been first requested).

void
UTIL_SEQ_EvtIdle(UTIL_SEQ_bm
_t task_id_bm, UTIL_SEQ_bm_t
evt_waited_bm)

Called while the sequencer is waiting for a specific event.

void UTIL_SEQ_ClrEvt(
UTIL_SEQ_bm_t evt_id_bm)

Clears the pending event.

UTIL_SEQ_bm_t
UTIL_SEQ_IsEvtPend(void)

Returns the evt_id_bm of the pending event.

AN5289 Rev 18 29/171

AN5289 STM32WB software architecture

170

if(task_id1)

{

task_id1 = 0;

Fct1();

}

if (task_id2)

{

task_id2= 0;

Fct2();

}

__disable_irq();

If (! (task_id1|| task_id2))

{

UTIL_SEQ_Idle();

}

__enable_irq();

}

void UTIL_SEQ_Run(UTIL_SEQ_bm_t mask_bm)

Implements the body of the while (1) loop. The mask_bm parameter is the list of functions
that the sequencer is allowed to execute. Each function is associated with one bit in that
mask_bm. At the end of the startup, this API must be called in a while (1) loop with
mask_bm = (~0) to allow the sequencer to execute any pending function.

void UTIL_SEQ_Idle(void)

Called under the critical section (set with the CortexM PRIMASK bit - all interrupts are
masked) when the sequencer does not have any function to executed. This is where the
application must enter the Low-power mode.

void UTIL_SEQ_RegTask(UTIL_SEQ_bm_t task_id_bm, uint32_t flags, void
(*task)(void))

Informs the sequencer to add the function task associated with the flag task_id_bm to its
while loop.

void UTIL_SEQ_SetTask(UTIL_SEQ_bm_t task_id_bm , UTIL_SEQ_bm_t task_prio)

Sets the flag task_id_bm for the scheduler to call the associated function.

The task_prio is evaluated by the sequencer when it needs to decide which function to call
next. This can be done only when the execution of the current function is finished. When
several functions have their flag set, the one with the higher priority is executed (0 is the
highest). This API can be called several times before the function is actually executed with a
different priority. In that case, the sequencer records the highest priority. Whatever the

STM32WB software architecture AN5289

30/171 AN5289 Rev 18

number of API calls before the function is executed, the sequencer runs the associated
function only once.

void UTIL_SEQ_PauseTask(UTIL_SEQ_bm_t task_id_bm) :

Informs the sequencer not to execute the function associated with the flag task_id_bm even
if it is set. If the API UTIL_SEQ_SetTask() is called after UTIL_SEQ_PauseTask(), the
request is recorded but the function is not executed. The mask associated with
UTIL_SEQ_PauseTask() is independent from the mask associated with
void UTIL_SEQ_Run(UTIL_SEQ_bm_t mask_bm).

A function can be executed only when its flag is set and enabled in both masks (default
case).

void UTIL_SEQ_ResumeTask(UTIL_SEQ_bm_t task_id_bm) :

Cancels the request done by UTIL_SEQ_PauseTask(). If this API is called when no
UTIL_SEQ_PauseTask() has been requested, it has no effect.

void UTIL_SEQ_WaitEvt(UTIL_SEQ_bm_t evt_id_bm)

When this API is called, it does not return until the associated evt_id_bm signal is set. Only
one bit in the evt_id_bm 32-bit value needs to be set. While the sequencer is waiting for this
event, it calls UTIL_SEQ_EvtIdle() in a while loop on the event evt_id_bm. This must be
used to replace all code where a polling is made on a flag before moving forward.

void UTIL_SEQ_SetEvt(UTIL_SEQ_bm_t evt_id_bm)

Must be called only when UTIL_SEQ_WaitEvt() has already been called. It sets the signal
evt_id_bm the function UTIL_SEQ_WaitEvt() is waiting for. Calling this API before the
UTIL_SEQ_WaitEvt() function makes the call to UTIL_SEQ_WaitEvt() return immediately as
the flag is already set.

void UTIL_SEQ_EvtIdle(UTIL_SEQ_bm_t task_id_bm, UTIL_SEQ_bm_t
evt_waited_bm)

Called while the API void UTIL_SEQ_WaitEvt() is waiting for the signal to be set with
UTIL_SEQ_SetEvt().

This API is weakly implemented in the sequencer to call UTIL_SEQ_Run(0), so, while
waiting for this event to occur, the function UTIL_SEQ_Idle() allows the system to enter
low-power mode while waiting for the flag.

The application can implement this API to pass parameters different from 0 to the
UTIL_SEQ_Run(mask_bm). Each bit set to 1 in the mask_bm requests the sequencer to
execute the function associated with this flag when it is set with UTIL_SEQ_SetTask(). This
means that when the function UTIL_SEQ_WaitEvt() is called, while it is waiting for the
requested event to return, it can execute the unmasked functions when their flag is set, or
call UTIL_SEQ_Idle() if no tasks is pending execution by the sequencer.

void UTIL_SEQ_ClrEvt(UTIL_SEQ_bm_t evt_id_bm)

This API can be called when, in some applications, the API UTIL_SEQ_WaitEvt() needs to
be called while Evt is already set. In that case, the Evt must be cleared.

AN5289 Rev 18 31/171

AN5289 STM32WB software architecture

170

UTIL_SEQ_bm_t UTIL_SEQ_IsEvtPend(void):

This API returns the Evt that is currently pending. When several UTIL_SEQ_WaitEvt() are
nested, it returns the last one, which means the one that makes the deeper
UTIL_SEQ_WaitEvt() to return to its caller.

4.5 Timer server

The timer server has the following features:

• Up to 255 virtual timers depending on available RAM capacity

• Single shot and repeated mode

• Stops a virtual timer and restarts it with a different timeout value

• Deletes a timer

• Timeout from 1 to 232 - 1 ticks

The timer server provides multiple virtual timers sharing the RTC wake-up timer. Each
virtual timer can be defined as either single shot or a repeated timer. When a repeated timer
comes to the end of a cycle, the user is notified and the virtual timer is automatically
restarted with the same timeout. When a single shot timer ends, the user is notified and the
virtual timer is set to the pending state (which means it is kept registered and can be
restarted at any time). The user can stop a virtual timer and restart it with a different timeout
value. When a virtual timer is no longer needed, the user must delete it to free the slot in the
timer server.

The timer server can be used concurrently with the calendar.

4.5.1 Implementation

To use the timer server, the application must:

• Configure the RTC IP. When the calendar is required in the application, the RTC
configuration must be compatible with the calendar settings requirement. When the
calendar is not used, the RTC can be optimized for a Timer Server usage only.

• Initialize the timer server with HW_TS_Init().

• Implement HW_TS_RTC_Int_AppNot() (optional). When not implemented, the timer
callback is called in the RTC interrupt handler context.

• Create a virtual timer with HW_TS_Create().

• Use the virtual timer with HW_TS_Stop(), HW_TS_Start().

• Delete the virtual when not needed using HW_TS_Delete().

STM32WB software architecture AN5289

32/171 AN5289 Rev 18

4.5.2 Interface

4.5.3 Detailed interface and behavior

The timer server provides virtual timers that run while the system is in
Low-power mode down right down to Standby mode.

void HW_TS_Init(HW_TS_InitMode_t TimerInitMode, RTC_HandleTypeDef *hrtc) :

Thiscommand initializes the timer server based on the RTC IP configuration that must be
made upfront.

TimerInitMode selects the timer server boot mode. When Standby mode is supported and
the device wakes up from standby, set TimerInitMode to hw_ts_InitMode_Limited so that the
timer server context is not reset. Otherwise, TimerInitMode must be set to
hw_ts_InitMode_Full to run full initialization.

hrtc is the Cube HAL RTC handle.

HW_TS_ReturnStatus_t HW_TS_Create(uint32_t TimerProcessID,

uint8_t *pTimerId,

HW_TS_Mode_t TimerMode,

HW_TS_pTimerCb_t pTimerCallBack) :

Table 4. Interface functions

Function Description

void HW_TS_Init(

HW_TS_InitMode_t TimerInitMode,
RTC_HandleTypeDef *hrtc);

Initializes the timer server.

HW_TS_ReturnStatus_t HW_TS_Create(

uint32_t TimerProcessID,

uint8_t *pTimerId,

HW_TS_Mode_t TimerMode,

HW_TS_pTimerCb_t pTimerCallBack)

Creates a virtual timer.

void HW_TS_Stop(uint8_t TimerID) Stops a virtual timer.

void HW_TS_Start(

uint8_t TimerID,

uint32_t timeout_ticks)

Starts a virtual timer.

void HW_TS_Delete(uint8_t TimerID Deletes a virtual timer.

void HW_TS_RTC_Wakeup_Handler(void);
Timer server handler to be called from the RTC interrupt
handler.

uint16_t
HW_TS_RTC_ReadLeftTicksToCount(void);

Returns the number of ticks to count before the next
interrupt.

void HW_TS_RTC_Int_AppNot(

uint32_t TimerProcessID,

uint8_t TimerID,

HW_TS_pTimerCb_t pTimerCallBack)

Reports to the application that a virtual timer has expired.

void HW_TS_RTC_CountUpdated_AppNot(void)
Reports to the application that the number of ticks before
the next interrupt has been updated by the timer server.

AN5289 Rev 18 33/171

AN5289 STM32WB software architecture

170

pTimerId

This is the id returned by the timer server to the caller that needs to be used to
Stop/Start/Delete the created timer.

TimerMode

The timer mode can be either in single shot or repeated mode. When in single shot mode,
the timer is stopped when the timeout is reached. Inrepeated mode, it is restarted with the
same previously programmed value at each timeout. This mode is fixed when the timer is
created. To change the mode, the timer must be deleted and a new one must be created.
Note that in this case the new allocated pTimerId can be different.

pTimerCallBack

User callback on timeout.

TimerProcessID

This is defined by the user and is expected to be used in HW_TS_RTC_Int_AppNot(). When
the timer is created, only the caller knows the Id that has been allocated. The
TimerProcessID is returned in the HW_TS_RTC_Int_AppNot() with the pTimerCallBack so
that relevant decision can be done when implementing HW_TS_RTC_Int_AppNot().

void HW_TS_Stop(uint8_t TimerID)

Stops the timer TimerID. It has no effect if the timer is not running. The timer TimerID must
have been created. When the timer is stopped, the TimerID remains allocated in the timer
server so that the same timer (with the same TimerMode and same pTimerCallBack) can be
restarted with a different value.

void HW_TS_Start(uint8_t TimerID, uint32_t timeout_ticks)

Starts the timer TimerID with the timeout_ticks value. The value of the timeout_ticks
depends on the configuration of the RTC IP. If the TimerID is already running, it is first
stopped in the timer server and restarted with the new timeout_ticks value.

void HW_TS_Delete(uint8_t TimerID)

Deletes the TimerID from the timer server. The TimerID can be allocated to a new virtual
timer. This API can be called on a running TimerID. In that case, it is first stopped and then
deleted.

void HW_TS_RTC_Wakeup_Handler(void)

This interrupt handler must be called by the application in the RTC interrupt handler. This
handler clears all required status flag in the RTC and EXTI peripherals.

STM32WB software architecture AN5289

34/171 AN5289 Rev 18

uint16_t HW_TS_RTC_ReadLeftTicksToCount(void)

This API returns the number of ticks left to be counted before an interrupt is generated by
the timer server. It can be used when the system needs to enter Low-power mode and
decide which Low-power mode to apply, depending on when the next wake-up is expected.

When the timer is disabled (no timer in the list), it returns 0xFFFF.

void HW_TS_RTC_Int_AppNot(uint32_t TimerProcessID,

uint8_t TimerID,

HW_TS_pTimerCb_t pTimerCallBack)

This API must be implemented by the user application.

It notifies the application when a timer expires. This API is running in the RTC wake-up
interrupt context and the application can prefer to call the pTimerCallBack as a background
task depending on how much code is executed in the pTimerCallBack. As long as the
TimerID is only known to the caller, the TimerProcessID can be used to identify to which
module this pTimerCallBack belongs, and the application can assess if it can be called in
the RTC wake-up interrupt context or not.

void HW_TS_RTC_CountUpdated_AppNot(void):

This API must be implemented by the user application.

This API notifies the application that the counter has been updated. This is expected to be
used along with the HW_TS_RTC_ReadLeftTicksToCount () API. The counter can have
been updated since the last call of HW_TS_RTC_ReadLeftTicksToCount () and before
entering Low-power mode. This notification provides the application a way to solve the race
condition to reevaluate the counter value before entering Low-power mode

4.6 Low power manager

The low power manager provides a simple interface to receive the input from up to 32
different users and computes the lowest possible power mode the system can use. It also
provides hooks to the application before entering or on exit of low-power mode.

The Low power manager provides the following features:

• Up to 32 users

• Stop mode and Off mode (standby and shutdown).

• Low-power mode selection

• Low-power mode execution

• callback when entering or exiting low-power mode

• Run mode not supported, when the application must stay in this mode, it must not call
UTIL_LPM_EnterModeSelected ().

There is nothing to do to control the CPU2 low-power mode, the wireless firmware sets on
its own the best low-power mode configuration of CPU2 as soon as CPU2 is started.

The low-power mode selection of CPU2 must be written to SHUTDOWN before the start of
the CPU2, to cover the cases when the application starts but the CPU2 does not. In such
cases, the reset value of the low-power mode selection must be overwritten to allow the

AN5289 Rev 18 35/171

AN5289 STM32WB software architecture

170

device to enter in low-power mode. Otherwise, it is impossible to go lower than Stop 0 mode
until CPU2 starts, because of the reset value of the CPU2 low-power mode selection.

4.6.1 Implementation

The low power manager can handle up to 32 users with different low-power mode requests.

To use the low power manager, the application must:

• create a user Id

• call either UTIL_LPM_SetOffMode() or UTIL_LPM_SetStopMode() at any time with the
defined user Id to set the requested Low-power mode

• call void UTIL_LPM_EnterLowPower() in background.

4.6.2 Interface

4.7 Flash memory management

The STM32WB share one single bank between CPU1 and CPU2. When the flash memory
is either being written or erased, there is no way to fetch instruction from it.

When the CPU executes code from flash memory, it stalls as soon as a write or erase
operation is started.

When the CPU executes code from SRAM, the CPU is not stalled while a write or erase
operation is ongoing (assuming it does not read data from flash memory).

Table 5. Interface functions

Function Description

UTIL_LPM_ModeSelected_t
UTIL_LPM_ReadModeSel(void)

Returns the selected low-power mode to be
applied.

UTIL_LPM_SetOffMode(UTIL_LPM_bm_t
lpm_id_bm, UTIL_LPM_State_t state)

Enables or disables the Off mode for any user at
any time.

void
UTIL_LPM_SetStopMode(UTIL_LPM_bm_t
lpm_id_bm, UTIL_LPM_State_t state)

Enables or disables the Stop mode for any user at
any time.

void UTIL_LPM_EnterLowPower(void) Enters the selected low-power mode.

void UTIL_LPM_EnterSleepMode(void) API called before entering Sleep mode.

void UTIL_LPM_ExitSleepMode(void) API called on exiting Sleep mode.

void UTIL_LPM_EnterStopMode(void) API called before entering Stop mode.

void UTIL_LPM_ExitStopMode(void); API called on exiting Stop mode.

void UTIL_LPM_EnterOffMode(void) API called before entering Off mode.

void UTIL_LPM_ExitOffMode(void);
API called on exiting Off mode. This is called only if
the MCU did not enter the mode as expected.

STM32WB software architecture AN5289

36/171 AN5289 Rev 18

4.7.1 CPU2 timing protection

For security reason, CPU2 is prevented to execute any code from SRAM. To protect the
CPU2 timing, it uses Sem7 to enable or disable flash memory operation requests from
CPU1.

The application on CPU1 must implement the algorithm shown in Figure 10 to write or erase
the flash memory, and also implement in its own driver the following actions (outside the
critical section defined in Figure 10):

• Take Sem2 before any access to the flash memory and release it when it no longer
needs it to access the IP

• When the user driver needs to erase sectors, it must first send the command
SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_ON). When all concerned
sectors are erased, it must send the command
SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_OFF), see Section 4.7.1.

• When the CPU2 timing protections uses the PESD bit mechanism (which is the case
by default, see Section 4.7.1), the FLASH driver must either poll the CFGBSY bit from
the FLASH_SR register or read back the memory until the value is the one to be
written.

AN5289 Rev 18 37/171

AN5289 STM32WB software architecture

170

Figure 10. Algorithm to write/erase data in the flash memory

MS53552V2

Yes

Enter

ENTER_CRITICAL_SECTION

EXIT_CRITICAL_SECTION

Exit

Sem6 free?

Get Sem7?

Write 64 bits or Erase a sector
(only a single operation allowed)

Release Sem7

Yes

No

No

Checks if any process does not
allow Flash memory processing

Checks if CPU2 allows Flash
memory processing

Get Sem2?

HAL_FLASH_Unlock()

SHCI_C2_FLASH_EraseActivity
(ERASE_ACTIVITY_ON)

Yes

Yes

No

CFG_BSY bit set?

No

Yes

Another Write/Erase?

No

Yes

SHCI_C2_FLASH_EraseActivity
(ERASE_ACTIVITY_OFF)

HAL_FLASH_Lock()

Release Sem2

Requests Flash memory
ownership

Only to erase a sector

EXIT_CRITICAL_SECTION

PESD bit set?

No

Yes

STM32WB software architecture AN5289

38/171 AN5289 Rev 18

By default, CPU2 uses the PESD bit mechanism (from FLASH_SR register) to protect its
BLE timing and not Sem7. The algorithm is still valid although checking Sem7 is useless.
The drawback is that if the PESD bit is set by CPU2 at the same time when CPU1 starts a
write or erase operation, CPU1 can fetch code but cannot read literals from the memory,
even if the code to be executed requires this action. It is difficult to control whether CPU1
will be stalled or not when the PESD mechanism is used. Additionally, there is no interrupt
signal on PESD bit release by CPU2, so asynchronous software flow is not possible.

Figure 11. CPU1 and flash memory operation versus PESD bit

The CPU2 use of PESD or Sem7 mechanism to protect the BLE timing is configurable by
CPU1 with the system command SHCI_C2_SetFlashActivityControl(). Although it can be
sent at any time, it is recommended to send it during the initialization phase.

By default, CPU2 protects its timing versus write operations requested by CPU1. When
CPU1 starts an erase operation, it must first send the system command
SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_ON). When CPU1 sends the system
command SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_ON), CPU2 immediately
takes Sem7 until the next radio event, preventing any flash erase or write operations during
this period. When it does not expect to request erase operations anymore, it must send the
system command SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_OFF). These
commands do not need to be sent for each single erase operation. It is recommended to
enable the protection before requesting the first erase operation, and to send the disable
protection after the last erase operation has been performed.

4.7.2 CPU1 timing protection

When CPU1 needs to make sure it will not be stalled due to flash memory operation (write
or erase) requested by CPU2, it must take Sem6. CPU2 does not request any flash memory
operation until Sem6 is released.

When Sem6 is taken, it means CPU2 is already in the process to execute a flash memory
operation (it is either close to be started or it has just finished). CPU1 must poll Sem6 to get
it when it needs to prevent CPU2 to request any flash memory operation.

CPU2 uses the same algorithm described in Figure 10.

4.7.3 Conflict between RF activity and flash memory management

Even if CPU1 does not use Sem6 to prevent CPU2 to start flash memory operations, there
are some cases when it is impossible for CPU2 to start the erase.

MS53539V1

PESD

Flash suspended Flash erase/write
Flash erase/write
requested by CPU1

Run Can fetch code but
cannot write Flash nor read literals Stalled Run

CPU1 execution

AN5289 Rev 18 39/171

AN5289 STM32WB software architecture

170

Write is always possible, but when the NVM is full on CPU2, a write request may need an
erase. In this case, data are not written until the erase is executed.

When the CPU2 needs to protect its timing versus erase (either because it has been notified
by CPU1 with the command SHCI_C2_FLASH_EraseActivity(ERASE_ACTIVITY_ON) or
because internally it needs to erase some sectors), any memory operation is forbidden
25 ms before the radio activity until the end of it. To execute the erase operation when BLE
is running, the application must ensure that there is a radio idle time longer than 25 ms.

• BLE advertising: the advertising interval must be longer than 25 ms + advertising
packet length to be able to execute flash memory erase operation.

• BLE connected: the connection interval must be longer than 25 ms + packet length, to
be able to execute flash memory erase operation.

• Data throughput use case: When data streaming packet is sent, the radio is kept active
to send as much data as possible between two connection intervals. Therefore, the
radio can not be in idle long enough to fit an erase operation. When the device is
master, it can reduce the Connection Event Length parameter (with either the
aci_gap_create_connection() or aci_gap_start_connection_update() command) to
prevent the device filling completely the interval between two connection intervals.
When the device is slave, it must request the master to increase the connection interval
so that the data to be sent fit only part of the interval between two connections events.

CPU2 needs to write data in flash memory when:

• after the pairing phase, only if bonding is enabled (first pairing or if the pairing is
requested with the force_rebond parameter), to store the security information

• after a disconnection to store the GATT database, if the device has been previously
bonded

• when aci_gatt_store_db command is called to store the GATT database for all active
connections, if the device has been previously bonded

• when aci_gap_clear_security_db command is called to clear the bonding table (write to
invalidate one or several records, security and GATT information)

• when aci_gap_remove_bonded_device command is called to remove a specified
device from bonding table (write to invalidate the record, security and GATT information
related to the specified device)

4.8 Debug information from CPU

4.8.1 GPIO

It is possible to output on GPIOs most of the real time activity of CPU2 such as background
tasks, interrupt handlers and BLE IP Core signals. Assignment of a signal to particular GPIO
is fully configurable from the CPU1 side except for the BLE IP Core signals as they are
driven by HW. Therefore, the BLE IP Core GPIOs must be enabled only if not used by the
application.The full configuration is made in the file app_debug.c located in \Core\Src for
each application.

HW signals

The aRfConfigList[] table holds the list of GPIO driven by the hardware according to the
radio activity. There are four parameters for each signal to monitor:

{ GPIOA, LL_GPIO_PIN_9, 0, 0}, /* DTB13 - Tx/Rx Start */

STM32WB software architecture AN5289

40/171 AN5289 Rev 18

The first two parameters define the GPIO used (in this example, PA9 is used to output
DTB13). These two parameters cannot be modified. To monitor the signal, the associated
GPIO must be available on the board.

The third parameter is used to enable (1) or disable (0) the signal. All signals are set to 0 by
default.

The fourth parameter is unused, keep it at 0.

To monitor a signal on the associated GPIO, the third parameter must be set to 1, and the
BLE_DTB_CFG compiler switch at the top of the file must be set to 7.

The most useful signal is DTB13, which shapes all radio activity.

SW signals

The aGpioConfigList [] table holds the list of GPIO that are driven by the software. There are
four parameters for each signal to monitor:

{ GPIOA, LL_GPIO_PIN_0, 0, 0}, /* BLE_ISR - Set on Entry / Reset on Exit */

The first two parameters define the GPIO used to output the signal. These are fully
configurable. The user can select any GPIO unused in the application.

The third parameter is used to enable (1) or disable (0) the signal. All signals are set to 0 by
default.

The fourth parameters is unused and must be kept to 0.

To monitor one signal on the associated GPIO, the third parameter must be set to 1.

4.8.2 SRAM2

Hardfault

When the CPU2 enters the hardfault interrupt handler, it can output different information
before running an infinite loop.

It can set a GPIO if enabled in app_debug.c - aGpioConfigList [].

It writes in SRAM2A the following data:

Security attack

When the buffers provided to the CPU2 to exchange data through the mailbox are not in the
unsecure SRAM, the CPU2 enters an infinite loop and writes the keyword 0x3DE96F61 at
address SRAM2A_BASE.

@SRAM2A_BASE: 0x1170FD0F Keyword that identifies a hardfault issue

@SRAM2A_BASE + 4 Program counter value that generated the hardfault

@SRAM2A_BASE + 8 Link register value when the instruction that generated
the hardfault has been executed

@SRAM2A_BASE + 12 Stack pointer value when the instruction that generated
the hardfault has been executed

AN5289 Rev 18 41/171

AN5289 STM32WB software architecture

170

4.9 FreeRTOS low power

Whatever the stack running on CPU2, the FreeRTOS low power mode shares the same
implementation on the CPU1 for all wireless applications.

The HAL tick is mapped to TIM17 so that it does not collide with the systick reserved for
FreeRTOS. The file stm32wbxx_hal_timebase_tim.c from
\Applications\BLE\BLE_HeartRateFreeRTOS\Core\Src implements the HAL functions:

• HAL_InitTick()

• HAL_SuspendTick()

• HAL_ResumeTick()

The TIM17 user interrupt handler HAL_TIM_PeriodElapsedCallback() is implemented in
main.c to increment the tick used by the HAL. This implementation can be customized to
select another timer.

When FreeRTOS is in idle mode, the systick is switched off and replaced with a low power
timer. The file freertos_port.c from \Applications\BLE\BLE_HeartRateFreeRTOS\Core\Src
implements the tickless mode

• vPortSuppressTicksAndSleep() is reimplemented to support the tickless mode based
on the low power mode available on STM32WB devices

• vPortSetupTimerInterrupt() is reimplemented to start a low power timer available on
STM32WB devices

The current implementation is using the Timer server running on RTC. The timer selection
can be changed by reimplementing the following functions:

• LpTimerInit() to initialize the low power timer to use.

• LpTimerCb() in case something more than just wake-up is required. In the current
implementation, all actions done on wake-up are implemented on exit of low power
mode in vPortSuppressTicksAndSleep() and not in the timer callback.

• LpTimerStart() to start the low power timer before entering low power mode.

• LpGetElapsedTime() to return how long the system has been in low power mode. This
is required to update the systick used by FreeRTOS with vTaskStepTick().

The low power mode is entered with LpEnter(). The current implementation is based on the
low power manager used in all BLE applications, whether they are based on FreeRTOS or
not. The implementation of LpEnter() can be customized.

BLE

The number of functions to be called in the background depends upon the application,
which also determines if each function is called from a dedicated or a single common task.
The BLE architecture supports any combination.

STM32WB software architecture AN5289

42/171 AN5289 Rev 18

Whatever the BLE application, there must be at least two functions to be called in a task:

• hci_user_evt_proc(): when hci_notify_asynch_evt() is called from the middleware,
this function must be called in the background. hci_user_evt_proc() must not be called
inside hci_notify_asynch_evt() as it can be called from the IPCC interrupt context.
There is no timing constraint between the time hci_notify_asynch_evt() is called from
the middleware and the time when hci_user_evt_proc() is called in the background.
However, in some data throughput use cases, the performance is better when the time
is short enough to read the events at the same rate they are notified. When several
hci_notify_asynch_evt() are received, the hci_user_evt_proc() function needs to be
called only once from the background. It does not hurt to call several times
hci_user_evt_proc() from the background whereas there was only one or no
notification with hci_notify_asynch_evt().

• shci_user_evt_proc(): the requirement is the same as for hci_user_evt_proc() with
the associated notification shci_notify_asynch_evt(). Note that there is no currently
data throughput on this system channel.

As long as it is not possible to send a BLE command while there is already one pending, or
a system command while there is already one pending, the middleware provides hook so
that the application can implement a semaphore mechanism.

When hci_cmd_resp_wait() is called from the middleware, a semaphore must be taken and
released on reception of hci_cmd_resp_release(). The application must not return from
hci_cmd_resp_wait() until the semaphore is released.

Another semaphore must be used to handle the same mechanism on the system channel
with shci_cmd_resp_wait()/shci_cmd_resp_release().

4.10 Device information table

As soon as the System Ready Event is received from the CPU2, the device information
table (DIT) can be read from the SRAM2A.

The DIT has a different mapping when filled by the FUS (see [6]) or by the wireless
firmware.

The system command SHCI_GetWirelessFwInfo() can decode the two DIT mappings.

The DIT address can be found at the start of SRAM2 (+ IPCCDBA offset - user option byte).
Unless modified by the user, IPCCDBA is always set to 0, hence the DIT address can be
found at the first address of SRAM2A.

uint32_t Safe Boot Version Safe boot version

uint32_t FUS Version FUS version

uint32_t FUS MemorySize Memory required by the FUS

uint32_t FusInfo Reserved - Set to 0

uint32_t Wireless Firmware Version Wireless firmware version

uint32_t Wireless Firmware MemorySize Memory required by the wireless firmware

uint32_t InfoStack Wireless firmware information

AN5289 Rev 18 43/171

AN5289 STM32WB software architecture

170

The Build information is always different from 0 for all official versions.

The Branch information is for internal use.

Only the InfoStack LSB is used, it provides the information on which wireless firmware is
running on CPU2, namely:

• INFO_STACK_TYPE_BLE_STANDARD: 0x01

• INFO_STACK_TYPE_BLE_HCI: 0x02

• INFO_STACK_TYPE_BLE_LIGHT: 0x03

• INFO_STACK_TYPE_BLE_BEACON: 0x04

• INFO_STACK_TYPE_THREAD_FTD: 0x10

• INFO_STACK_TYPE_THREAD_MTD: 0x11

• INFO_STACK_TYPE_ZIGBEE_FFD: 0x30

• INFO_STACK_TYPE_ZIGBEE_RFD: 0x31

• INFO_STACK_TYPE_MAC: 0x40

• INFO_STACK_TYPE_BLE_THREAD_FTD_STATIC: 0x50

• INFO_STACK_TYPE_BLE_THREAD_FTD_DYAMIC: 0x51

• INFO_STACK_TYPE_802154_LLD_TESTS: 0x60

• INFO_STACK_TYPE_802154_PHY_VALID: 0x61

• INFO_STACK_TYPE_BLE_PHY_VALID: 0x62

• INFO_STACK_TYPE_BLE_LLD_TESTS: 0x63

• INFO_STACK_TYPE_BLE_RLV: 0x64

• INFO_STACK_TYPE_802154_RLV: 0x65

• INFO_STACK_TYPE_BLE_ZIGBEE_FFD_STATIC: 0x70

• INFO_STACK_TYPE_BLE_ZIGBEE_RFD_STATIC: 0x71

• INFO_STACK_TYPE_BLE_ZIGBEE_FFD_DYNAMIC: 0x78

• INFO_STACK_TYPE_BLE_ZIGBEE_RFD_DYNAMIC: 0x79

• INFO_STACK_TYPE_RLV: 0x80

4.11 ECCD error management

An NMI interrupt can be generated because of an ECCD flash memory error, either in the
NVM data section, or in the code data section.

When the ECCD is generated from the NVM data section, the CPU2 can erase the NVM to
remove the error.

Figure 12. Format of version and memory information

Version
Version - Major Version - Minor Subversion Branch Build

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Memory
size

SRAM2b
(no. of 1 KB sectors)

SRAM2a
(no. of 1 KB sectors)

Reserved
Flash memory

(no. of 4 KB sectors)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STM32WB software architecture AN5289

44/171 AN5289 Rev 18

When the ECCD is generated from the code section, the CPU2 must restart on the FUS to
request a new wireless firmware install.

On ECCD error the NMI is generated to both CPUs. The algorithm shown in Figure 13
(WB_NMI_NVM_RECOVERY_KEYWORD = 0xAFB449C9, WB_NMI_RESET_KEYWORD
= 0x8518C6F2 and WB_NMI_FUS_JUMP_KEYWORD = 0x7E3FF448) describes the way
the CPU2 manages the ECCD error and the mechanism to allow the CPU1 to hold CPU2
error processing.

AN5289 Rev 18 45/171

AN5289 STM32WB software architecture

170

Figure 13. ECC management in NMI interrupt handler

MS54386V1

Erase NVM

Write WB_NMI_NVM_RECOVERY
_KEYWORD at SRAM2A_BASE

SRAM2A_BASE =
WB_NMI_NVM_RESET

_KEYWORD?

Yes

No

Wait 500 μs

HAL_NVIC_SystemReset
(resets the device)

Write WB_NMI_NVM_RECOVERY
_KEYWORD at SRAM2A_BASE

SRAM2A_BASE =
WB_NMI_NVM_RECOVERY_

KEYWORD?

Yes

No

Wait 500 μs

Write WB_NMI_FUS_JUMP
_KEYWORD at SRAM2A_BASE

SRAM2A_BASE =
WB_NMI_FUS_JUMP

_KEYWORD?

Yes

No

Wait 500 μs

Enter

Cpuid from
FLASH_ECCR = 1

Clear PES bit in FLASH_C2ACR register
Clear PES bit in FLASH_ACR register

Unlock Flash memory by writing KEY1 then
KEY2 in FLASH_OPTKEYR register

Yes

No cpuid = 0 for CPU1
cpuid = 1 for CPU2

Loop here and wait for
reset from CPU1

Addr_ecc from
FLASH_ECCR within NVM

location?

Yes – Erase NVMNo – Jump on FUS

Jump on FUS
(reuires a device reset initiated by the CPU2)

Mechanism implemented to give to the
CPU1 in its NMI interrupt handler the

opportunity to hold the recovery
processing executed by the CPU2

System initialization AN5289

46/171 AN5289 Rev 18

5 System initialization

5.1 General concepts

All applications begin with three sets of files (see Figure 14):

1. main.c: all HW configuration that is common to any application (the clock provided to
the CPU2 must be always 32 MHz)

2. app_entry.c: all SW configuration and implementation that is common to any
application

3. app_ble.c / app_thread.c / app_xxx.c: application dedicated files

Figure 14. System initialization

5.2 CPU2 startup

At startup, the CPU2 runs the minimal set of initializations to make available all supported
system features. At the end of the initialization, the CPU2 reports the System ready event
over the system channel to the CPU1. At this time, the CPU1 can send any System
command to the CPU2, including all commands required to manage the keys in the
customer key storage (CKS) in the secure CPU2 flash memory.

During the CPU2 startup phase, some shared resources are involved:

• The RNG peripheral fills a pool used when some random numbers are required for
operation, so that these numbers are available without delay when the RNG IP is

MS51825V1

Main.c
• Initializes the system (clocks, power mode, RTC, timer server, …)
• Implements the background while loop()

App_entry.c
• Initializes the BSP (LEDs, buttons, …) and the debug capabilities
• Initializes the System channel of the Mailbox
• The user can add here its own app_xxx init
• Returns to the background while loop()
• On receive of the System ready event from the CPU2, calls APP_BLE_Init() to

initialize the BLE stack and/or APP_THREAD_Init() to initialize the Open
Thread stack

app_ble.c
• Initializes the BLE channel in the Mailbox
• Starts the BLE stack on the CPU2
• Starts the BLE application

app_thread.c app_xxx.c

AN5289 Rev 18 47/171

AN5289 System initialization

170

already used by the CPU1. The RNG peripheral access requires getting Sem0. In
addition, the CPU2 makes one attempt to get Sem5. If this is successful, it switches ON
the HSI48 oscillator and configures the 48 MHz clock selection of the RNG IP to be
HSI48. This assumes the RCC is configured to feed the RNG IP with a 48 MHz clock
and not either LSI or LSE. In the latter case, the previous step is done anyway even
though not relevant and the RNG operates on the selected clock. When Sem5 is busy,
the CPU2 does not change anything in the RNG clock configuration and uses the
current configuration. The HSI48 oscillator is switched OFF by the CPU2 when a
wireless stack is started. This requires Sem5 to be available and only one attempt to
take Sem5 is made.

• The NVM consistency is checked, and, if corrupted, it is reformatted. This operation
requires to erase flash memory sectors. The access to the NVM at startup is compliant
with the general rules to start any process on the memory. It first requires getting Sem2
to take the ownership of the flash memory, the CPU1 has the capability to hold any
operation using Sem6.

All these steps must be completed before sending the System ready event so when any
semaphore is required by the CPU2, it polls on it until it is free.

The CPU2 can execute its startup sequence until it reports the System ready event without
the need for an external HSE or LSE oscillator.

Once the CPU2 has reported the System ready event, all system commands are supported
without any external HSE or LSE oscillator.

HSE and LSE oscillators are required when a wireless protocol stack is started. If power
consumption is not an issue it is possible to get rid of the external LSE oscillator and
configure the device to use the HSE (32 MHz) / 1024 (= 32.768 kHz) instead.

Note: On STM32WB1x devices the HSI48 oscillator is not present, so when a wireless protocol
stack is running, LSE or LSI oscillators must be active.

PLL management AN5289

48/171 AN5289 Rev 18

6 PLL management

6.1 How to switch the system clock between HSE and PLL

To switch the system clock between HSE and PLL clock, the C2HPRE divider in
RCC_EXTCFGR register must be changed to provide to CPU2 a clock at 32 MHz.

6.1.1 Case 1: Before CPU2 is started

If CPU2 is not started, C2HPRE divider can be modified by CPU1. The algorithm shown in
the next two figures describe how to switch the system clock between PLL and HSE and
vice versa.

Figure 15. Algorithm to switch the system clock from PLL to HSE

ENTER

ENTER_CRITICAL_SECTION

Poll Sem3 until granted

Switch system clock to HSE

Wait for SWS = HSE

Divide by 1 the clock feeding CPU2

Configure Wait state according to 32 MHz

EXIT_CRITICAL_SECTION

Switch off the PLL (not mandatory)

Release Sem3
MS56508V1

AN5289 Rev 18 49/171

AN5289 PLL management

170

Figure 16. Algorithm to switch the system clock from HSE to PLL

6.1.2 Case 2: CPU2 is started

C2HPRE divider cannot be updated by CPU1, who must call the
SHCI_C2_SetSystemClock system command to request CPU2 to manage the switch of the
system clock

Once CPU2 is started, C2HPRE divider in RCC_EXTCFGR register must not be updated by
the CPU1, only CPU2 can modify this divider. If CPU1 needs to switch the system clock
from HSE to PLL and vice versa, it must use SHCI_C2_SetSystemClock system command.

ENTER

ENTER_CRITICAL_SECTION

Poll Sem3 until granted

Switch on the PLL

Release Sem3

EXIT_CRITICAL_SECTION

Configure the PLL

Wait for PLL to be locked

ENTER_CRITICAL_SECTION

Poll Sem3 until granted

Configure Wait state according to 64 MHz

Divide by 2 the clock feeding CPU2

Switch system clock to PLL

Wait for SWS = PLL

Release Sem3

EXIT_CRITICAL_SECTION

Can be done once, at product initialization

MS56250V1

PLL management AN5289

50/171 AN5289 Rev 18

The SHCI_C2_SetSystemClock system command has one parameter that can take the
following values:

• SET_SYSTEM_CLOCK_HSE_TO_PLL

• SET_SYSTEM_CLOCK_PLL_ON_TO_HSE

• SET_SYSTEM_CLOCK_PLL_OFF_TO_HSE

To switch the system clock from HSE to PLL, the flow is:

1. CPU1 configures and starts the PLL (PLLON = 1)

2. CPU1 does not need to wait for PLL to be ready

3. CPU1 calls the system command
SHCI_C2_SetSystemClock(SET_SYSTEM_CLOCK_HSE_TO_PLL - 0x00). CPU2 is
responsible to wait for PLL to be locked, set the FLASH LATENCY to 3 WS, set
C2HPRE divide to divide the CPU2 clock by 2, and switch the system clock on PLL.

4. In return of the command, the system clock runs on the PLL.

To switch the system clock from PLL to HSE, the flow is:

1. CPU1 starts HSE (HSEON = 1)

2. CPU1 does not need to wait for HSE to be ready

3. CPU1 calls the system command
SHCI_C2_SetSystemClock(SET_SYSTEM_CLOCK_PLL_ON_TO_HSE - 0x01) or
SHCI_C2_SetSystemClock(SET_SYSTEM_CLOCK_PLL_OFF_TO_HSE - 0x02).
CPU2 is responsible to switch the system clock on HSE, set C2HPRE divider to divide
the CPU2 clock by 1, and set the FLASH LATENCY to 1 WS. The PLL is switched off if
requested with parameter 0x02. Otherwise, CPU1 must switch it off.

4. On return of the command, the system clock is running on HSE.

Before entering in Stop mode (or Standby on STM32WB1x), the CPU1 must request the
switch from PLL to HSE with the system command if the system clock used is the PLL. To
call this command from critical section, the system command must be used in polling mode
(see How to use the system command in polling mode). To reduce the duration when this
command is sent from critical section, the BLE command can be used in blocking mode
(see How to use BLE commands in blocking mode).

Note: If the applications use only Sleep mode, it is advised to switch on the PLL before CPU2
starts. When the device is in Sleep mode, CPU2 does not make any change on the system
clock. It is not required to switch on HSE on CPU1 before entering Sleep mode. The
requirement is valid only for Stop mode (and Standby mode for STM32WB1x devices).

AN5289 Rev 18 51/171

AN5289 Step by step design of a BLE application

170

7 Step by step design of a BLE application

This section provides information and code examples on how to design and implement a
BLE application on a STM32WB device.

7.1 Initialization phase

Several steps are mandatory to initialize the application.

• Initialize the device (HAL, reset device, clock and power configuration)

• Configure platform (buttons, LEDs)

• Configure hardware (UART, debug)

• Configure the BLE device public address (if used):
– aci_hal_write_config_data() API

• Configure Tx Power
– aci_hal_set_tx_power_level() API

• Init BLE GATT layer:
– aci_gatt_init() API

• Init BLE GAP layer depending on the selected device role:
– aci_gap_init(“role”)API

• Set the proper security I/O capability and authentication requirement (if BLE security is
used):
– aci_gap_set_io_capability() and

aci_gap_set_authentication_requirement() APIs

• Define the required services, characteristics and characteristic descriptors if the device
is a GATT server:
– aci_gatt_add_service(), aci_gatt_add_char(),

aci_gatt_add_char_desc() APIs

• Use sequencer to manage tasks and Low power

7.2 Advertising phase (GAP peripheral)

To establish a connection between a BLE GAP central (master) device and a BLE GAP
peripheral (slave) device, the GAP discoverable mode must be initiated on the peripheral
device. The APIs in Table 6 can be used.

Step by step design of a BLE application AN5289

52/171 AN5289 Rev 18

7.3 Discoverable and connectible phase (GAP central)

To create a connection between two devices, the GAP central can discover the remote and
then initiate a connection to the target device. It is also possible to initiate a direct
connection to the specified device.

The APIs that can be used for the GAP discovery procedure are listed in Table 7.

Table 6. Advertising phase API description

API name Description

aci_gap_set_discoverable()
Sets the device in general discoverable mode.
The device is discoverable until the device issues the
aci_gap_set_non_discoverable() API.

aci_gap_set_limited_discoverable()

Sets the device in a limited discoverable mode. The device
is discoverable for a maximum period TGAP
(lim_adv_timeout) of 180 seconds.

The advertising can be disabled at any time by calling
aci_gap_set_non_discoverable() API.

aci_gap_set_direct_connectable()

Sets the device in direct connectible mode. The device is
in this mode for 1.28 seconds, if no connection is
established within this period, the device enters non-
discoverable mode and advertising must be enabled
again explicitly.

aci_gap_set_non_connectable() Puts the device into non-connectible mode

aci_gap_set_undirect_connectable() Puts the device into undirected connectible mode.

Table 7. GAP central APIs

API Description

aci_gap_start_limited_discover
y_proc ()

Starts the limited discovery procedure. The controller starts the
active scanning. Only the devices in limited discoverable mode
are returned to the upper layers.

aci_gap_start_general_discover
y_proc ()

Starts the general discovery procedure. The controller starts
active scanning.

The following APIs be used in the procedure to establish the GAP connection

aci_gap_start_auto_connection_
establish_proc ()

Starts the auto connection procedure. The specified devices are
added to the controller white list and initiate connection calls to
the GAP controller using the initiator filter policy set to “use
white list to determine which advertiser to connect to”.

aci_gap_create_connection () Starts the direct connection procedure. A create connection call
is made to the controller by GAP with the initiator filter policy set
to “ignore white list and process connectible advertising packets
only for the specified device”.

AN5289 Rev 18 53/171

AN5289 Step by step design of a BLE application

170

7.4 Services and characteristic configuration (GATT server)

To add a service and its related characteristics, a user application chooses from one of two
profiles defined here:

• Standard profile defined by the Bluetooth SIG.
The user must follow the profile specification and services, and the characteristic
specification documents to implement them using the related defined profile, services
and characteristics 16-bit UUID (refer to Bluetooth SIG web page).

• Proprietary, non-standard profile.
The user must define custom services and characteristics. In this case, 128-bit UIDS
are required and must be generated by profile implementers (refer to UUID generator
web page on www.famkruithof.net).

A service can be added using the following procedure:

aci_gatt_add_service(uint8_t Service_UUID_Type,

Service_UUID_t *Service_UUID,

uint8_t Service_Type,

uint8_t Max_Attribute_Records,

uint16_t *Service_Handle);

This procedure returns the pointer to the service handle (Service_Handle), which is used to
identify the service within the user application. A characteristic can be added to this service
using the following procedure:

aci_gatt_add_char(uint16_t Service_Handle,

uint8_t Char_UUID_Type,

Char_UUID_t *Char_UUID,

uint8_t Char_Value_Length,

uint8_t Char_Properties,

aci_gap_start_auto_connection_
establish_proc ()

Starts the auto connection procedure. The specified devices are
added to the controller white list and a create connection call is
made to the controller by GAP with the initiator filter policy set to
“use white list to determine which advertiser to connect to”.

aci_gap_start_general_connecti
on_establish_proc()

Starts a general connection procedure. The device enables a
controller scan with the scanner filter policy set to “accept all
advertising packets” and from the scanning results, all the
devices are sent to the upper layer using the event callback
hci_le_advertising_report_event().

aci_gap_start_selective_connec
tion_establish_proc ()

Starts a selective connection procedure. The GAP adds the
specified device addresses into the white list and enables a
controller scan with the scanner filter policy set to “accept
packets only from devices in white list”. All the devices found are
sent to the upper layer by the event callback
hci_le_advertising_report_event()

aci_gap_terminate_gap_proc() Terminates the specified GAP procedure.

Table 7. GAP central APIs (continued)

API Description

Step by step design of a BLE application AN5289

54/171 AN5289 Rev 18

uint8_t Security_Permissions,

uint8_t GATT_Evt_Mask,

uint8_t Enc_Key_Size,

uint8_t Is_Variable,

uint16_t *Char_Handle);

This procedure returns the pointer to the characteristic handle (Char_Handle), which is used
to identify the characteristic within the user application.

If the characteristic owner is in Notify or Indicate mode and enabled, the GATT server side
must use the following API to send a notification or indication to the GATT client.

aci_gatt_update_char_value()

7.5 Service and characteristic discovery (GATT client)

Once two devices are connected, the application data exchange is based on GATT
client-server architecture.

One device must implement the F and remove the GATT client.

The following APIs are used by the GATT client to discover services and characteristics, to
enable//disable notification/indication to the GATT server, to write/read characteristics and
to confirm GATT server Indication.

Table 8. GATT client APIs

API Description

aci_gatt_disc_all_primary_services () Starts the GATT client procedure to discover all
primary services on the GATT server. It is used when
a GATT client connects to a device and wants to find
all the primary services provided on the device to
determine what it can do.

The procedure responses are given through the
aci_att_read_by_group_type_resp_event() event
callback

aci_gatt_disc_primary_service_by_uuid() Starts the GATT client procedure to discover a
primary service on the GATT server by using its
UUID. It is used when a GATT client connects to a
device and wants to find a specific service without the
need for any other service.

The procedure responses are given through the
aci_att_find_by_type_value_resp_event() event
callback

aci_gatt_find_included_services() Starts the procedure to find all included services. It is
used when a GATT client wants to discover
secondary services once the primary services have
been discovered.

The procedure responses are given through the
aci_att_read_by_type_resp_event() event callback.

AN5289 Rev 18 55/171

AN5289 Step by step design of a BLE application

170

For all commands, the end of the procedure is indicated by aci_gatt_proc_complete_event()
event callback.

7.6 Security (pairing and bonding)

The BLE security model includes five security features:

1. Pairing: process for creating one or more shared secret keys.

2. Bonding: act of storing the keys created during pairing for use in subsequent
connections in order to form a trusted device pair.

3. Device authentication: verification to ensure two devices have the same keys.

4. Encryption: provides message confidentiality.

5. Message integrity: protects against message forgeries (4-byte message integrity
check, or MIC)

BLE uses four pairing methods:

1. Just works

2. Out of band

3. Passkey entry

4. Numeric comparison (only secure connections) from Bluetooth 4.2

Method to determine computation of security keys:

• Legacy encryption - short temporary key (STK). STK is created to encrypt a
connection. Then, if bonding, LTK will be used for subsequent connections.

• Secure connections - Long term key (LTK). LTK is created to encrypt the connection.

aci_gatt_disc_all_char_of_service() Starts the GATT procedure to discover all the
characteristics of a given service.

The procedure responses are given through the
aci_att_read_by_type_resp_event() event callback.

aci_gatt_disc_char_by_uuid() Starts the GATT procedure to discover all the
characteristics specified by a UUID.

The procedure responses are given through the
aci_gatt_disc_read_char_by_uuid_resp_event()
event callback.

aci_gatt_disc_all_char_desc() Starts the procedure to discover all characteristic
descriptors on the GATT server.

The responses are given through the
aci_att_find_info_resp_event() event callback.

Table 8. GATT client APIs (continued)

API Description

Step by step design of a BLE application AN5289

56/171 AN5289 Rev 18

7.6.1 Security modes and level

LE security Mode 1 (Link layer):

• No security - level 1

• Unauthenticated pairing with encryption - level 2

• Authenticated pairing with encryption - level 3

• Authenticated LE secure connections pairing with encryption BT 4.2 - level 4

Authenticated pairing: pairing is performed with man In the middle (MITM) protection

Unauthenticated pairing: pairing is performed without MITM protection

LE security Mode 2 (ATT layer): not supported

• unauthenticated pairing with data signing

• authenticated pairing with data signing

7.6.2 Security commands

During the device initialization phase, the security properties can be initialized with the
following commands:

aci_gap_set_io_capability()

Sets the IO capabilities of the device. This command must be given only when the device is
not in a connected state.

aci_gap_set_authentication_requirement()

Sets the authentication requirements for the device. This command must be given only
when the device is not in a connected state.

This command defines bonding mode information, MITM mode, LE secure connection
support values, keypress notification support values, encryption key size, use or not of fixed
pin, its value, and identity address type.

• SC_Support parameter defines the LE Secure connections support values.

– 0x00: Secure connections pairing not supported (legacy pairing mode)

– 0x01: Secure connections pairing supported but optional

– 0x02: Secure connections pairing supported and mandatory (SC only mode)

Once the connection is established, the security procedure can be started:

• By the master with aci_gap_set_pairing_req()

– Sends the SM pairing request to start a pairing process. The authentication
requirements and IO capabilities must be set before issuing this command.

– The force_rebond parameter value determines if the pairing request is sent even if
the device was previously bonded.

• By the slave with aci_gap_slave_security_req()

– Sends a slave security request to the master. This command must be issued to
notify the master of the security requirements of the slave. The master can encrypt
the link, initiate the pairing procedure, or reject the request.

– aci_gap_pairing_complete_event is returned after the pairing process is
completed.

AN5289 Rev 18 57/171

AN5289 Step by step design of a BLE application

170

Depending on the SC_Support parameter value, the device answers to security requests
with one of the commands listed in Table 9.

7.6.3 Security information commands

Table 9. Security commands

Command Description

aci_gap_pass_key_resp() This command must be sent by the host in response to
aci_gap_pass_key_req_event.

The command parameter contains the pass key used during the
pairing process if no fixed pin.

aci_gap_numeric_comparison_
value_confirm_yesno()

This command allows the user to confirm or not the numerical
comparison value shown through the
aci_gap_numeric_comparison_value_event.

When devices are bonded, the keys are stored in the non-volatile
memory area. This means that if devices are previously bonded,
and one of devices is unplugged, keys are not lost.

When aci_gap_set_pairing_req() command is sent, with
force_rebond parameter set to no force rebond, the pairing
completes without any other exchange.

To clear the security database:

aci_gap_clear_security_db() All the devices in the security database are be removed.

Table 10. Security information commands

Command Description

aci_gap_get_bonded_devices() This command gets the list of the devices which are bonded. It
returns the number of addresses and the corresponding address
types and values.

aci_gap_is_device_bonded() This command determines whether the device, whose address
is specified in the command, is bonded. If the device uses a
resolvable private address and has been bonded, then the
command returns ble_status_success.

aci_gap_get_security_level() This command can be used to get the current security settings
of the device.

If keypress notification is supported, use:

aci_gap_passkey_input() This command permits to tell the stack the input type detected
during passkey input.

Step by step design of a BLE application AN5289

58/171 AN5289 Rev 18

7.7 Privacy feature

The BLE privacy feature reduces the ability to track a device over a period of time by
changing the device address on a frequent basis.

The address of a device using the privacy mode can be resolved using the IRK (identity
resolving key), which is one of the encryption keys exchanged during the pairing process.

Devices need first to be initialized with privacy disabled, then connected and paired.

Then, for privacy enabled on both devices, send on both sides:

Hci_reset()

aci_gap_init() - privacy enabled

aci_gap_add_devices_to_resolving_list()

This command is used to add one device to the list of address translations used to resolve
Resolvable Private Addresses in the controller

From central side, send:

aci_gap_create_connection()

or

aci_gap_start_auto_connection_establish_proc()

or

aci_gap_start_general_connection_establish_proc() (then
aci_gap_create_connection) : own_address_type = resolvable private address,
peer_address_type = public or random

From peripheral side, send:

aci_gap_set_discoverable()

or

aci_gap_set_direct_connectable()

or

aci_gap_set_undirected_connectable()

own_address_type = resolvable private address

When the connection is established, the LE enhanced connection complete event is
generated.

If OOB is supported, use:

aci_gap_set_oob_data() This command is sent by the user to input the OOB data arrived
via OOB communication.

aci_gap_get_oob_data() This command is sent by the user to get (extract from the stack)
the OOB data generated by the stack itself.

Table 10. Security information commands (continued)

Command Description

AN5289 Rev 18 59/171

AN5289 Step by step design of a BLE application

170

7.8 How to use the 2 Mbps feature

During the device initialization phase, the preferred TX_PHYS, RX_PHYS values can be
initialized with the following command:

When the command HCI_LE_Set_Phy() is used, event hci_le_phy_update_complete is
received by the master.

7.9 How to update connection parameters

When a connection is established, it is possible to update connection parameters.

7.10 Event and error code description

When a stack API is called, get the API return status and to monitor and track any potential
error conditions.

BLE_STATUS_SUCCESS (0x00) is returned when the API is successfully executed.

All commands (HCI - ACI) are acknowledged by the hci_command_status_event().

Table 11. 2 Mbps feature commands

Command Description

HCI_LE_Set_default_Phy() Specifies the preferred PHY to implement (for RX and TX), not linked to
a connection. By default, the preferred PHY is 2M.

Once a connection is established (1M), the preferred PHY for TX and RX can be sent by each device:

HCI_LE_Set_Phy() Makes it possible for the host to specify the preferred values for a
connection.

During a connection, the RX or TX PHY used can be read:

HCI_LE_Read_Phy() Reads the current PHY TX and RX for a connection.

Table 12. Proprietary connection data

Command Description

When the master device (central) is initiator of the update:

aci_gap_start_connection_update() Starts the connection update (only when role is
master). On completion of the procedure, an
HCI_LE_CONNECTION_UPDATE_COMPLETE
_EVENT event is returned to the upper layer.

When the slave device (peripheral) is initiator of the update:

aci_l2cap_connection_parameter_update_req() Sends an L2CAP connection parameter update
request from the slave to the master. An
HCI_L2CAP_CONNECTION_UPDATE_RESP_
EVENT event is raised when the master
responds to the request (accepts or rejects it).

Step by step design of a BLE application AN5289

60/171 AN5289 Rev 18

This command status event is used to indicate that the command described by the
Command_Opcode parameter has been received, and that the BLE stack controller is
currently performing the task for this command.

For any problem, the Status event parameters contains the corresponding error code (see
[7], v5.0, Vol. 2, part D).

On the GATT client side, the GATT discovery procedure can fail due to several reasons. The
aci_gatt_error_resp_event() is generated when an error response is received from the
GATT server. This does not mean that the procedure ended with an error, but this error is
part of the procedure itself.

All GATT client procedures have to be completed with either a success or error on the
aci_gatt_proc_complete_event(), so the GATT client can start a new procedure.

AN5289 Rev 18 61/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

8 BT-SIG and proprietary GATT-based BLE application

This section describes the specification and implementation of the following applications
running on CPU1:

• STMicroelectronicsg specific application

– Transparent mode - Direct test mode

• BT-SIG GATT-based application

– Heart rate sensor

• STMicroelectronics proprietary GATT-based application

– P2P application (server / client)

– FUOTA

Figure 17. GATT-based BLE application

8.1 Transparent mode - Direct test mode (DTM)

8.1.1 Purpose and scope

Among the set of HCI commands is a subset of commands used in order to enable direct
test mode (DTM) as described in the Bluetooth Specification Core v5.0 Low Energy
Controller Volume.

DTM is used to control the DUT and provides a report to the tester. According to the
specification, the DTM must be set up using one of the two methods below:

1. Over HCI (the one implemented in STM32WB devices)

2. Through a 2-wire UART interface.

STM32WB supports the DTM as per Bluetooth Core Specification v5.0 [Vol. 6, Part F].

CPU1

User code

MS51826V1
SRAM2 IPCC

ACI - HCI

Profiles Services

Application

BT-SIG and proprietary GATT-based BLE application AN5289

62/171 AN5289 Rev 18

Here are the HCI test commands, which are fully compliant with the specifications:
• HCI_LE_Transmitter_Test

• HCI_LE_Enhanced_Transmitter_Test

• HCI_LE_Receiver_Test

• HCI_LE_Enhanced_Receiver_Test

• HCI_LE_Test_End

The number of the received test packets is a return value of the function HCI_LE_Test_End.

The additional available functions are listed in Table 13.

The command sequence below is a typical flow for enabling CW transmission from the
STM32WB radio:

hci_reset

aci_hal_set_tx_power_level

aci_hal_tone_start

aci_hal_tone_stop

8.1.2 Transparent mode application principle

This firmware is used to:

• Receive commands on UART RX

• Transmit events on UART TX

• Communicate with the BLE stack via the IPCC.

No interpretation is done by CPU1 application firmware.

A set of commands/events must go through the STM32WB UART to control BLE stack via
Transparent mode application.

Level shifter, VCP ST-LINK or applicative VCP can be used to manage the TX and RX.

8.1.3 Configuration

STM32WB is seen as a 2-wire UART interface (TXD, RXD). CPU1 application to be used is
“Ble_TransparentMode”. This firmware does not interpret the command and event but just

Table 13. Direct test mode functions

Function Description

aci_hal_le_tx_test_packet_number This command provides the number of
transmitted test packets during a DTM test.

aci_hal_set_tx_power_level This command is used to set the TX output
power. The ACI command set (see [3]) contains
a complete description of the TX power level
values.

aci_hal_tone_start This command is used to generate a continuous
waveform (CW) from the STM32WB radio.

aci_hal_tone_stop This command is used to terminate the CW
emission.

AN5289 Rev 18 63/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

communicates to the wireless BLE stack via the IPCC and the selected UART interface
(USART1 or LPUART1).

The UART interface and configuration selection is done usingapp_conf.h:

#define CFG_UART_GUI hw_uart1

The P-NUCLEO-WB55 board includes the ST-LINK with Virtual COM port capability.

The following project is configured to communicate via the VCP of the ST-LINK:
\Projects\ NUCLEO-WB55.Nucleo\Applications\BLE\Ble_TransparentMode.

The UART1 (PB6, PB7) is connected to the P-NUCLEO-WB55 board ST-LINK VCP.

Figure 18. Transparent mode with P-NUCLEO-WB55 board and ST-LINK VCP

The P-NUCLEO-WB55 dongle board is provided without the ST-LINK. The project
.\Projects\ NUCLEO-WB55.USBDongle\Applications\BLE\BLE_TransparentModeVCP
includes Virtual COM port implementation in addition to the transparent mode feature.

It is also possible to connect the STM3232WB UART interface directly to RS232 serial
communication via a level shifter (not included on the NUCLEO-WB55RG board). This
approach can be used to connect, among others, an RF tester.

Nucleo board

STM32WB microcontroller

Computer

MS51827V1

STM32CubeMonitor-RF

VCOM ST-LINK

Transparent
mode

firmware

BLE
stack

USB UART
Tx/Rx

BT-SIG and proprietary GATT-based BLE application AN5289

64/171 AN5289 Rev 18

Figure 19. Transparent mode with P-NUCLEO-WB55 board and level shifter

8.1.4 RF certification - Application implementation

The direct test mode (DTM) is specified by the Bluetooth SIG to provide a selection of
different RF tests for BLE devices including remote control commands for the USB or
RS232 interface.

BLE RF is placed in either continuous transmit or receive mode with or without modulation
for RF evaluation. Figure 20 illustrates a simple setup.

Figure 20. Simple setup with BLE RF tester and P-NUCLEO board

8.2 Heart rate sensor application

The heart rate profile is composed by two actions:

• Collector: GAP central and GATT client to receive heart rate measurement and other
data

• Heart rate sensor: GAP peripheral and GATT server to provide heart rate measurement
and other data.

Nucleo board

STM32WB microcontroller

Computer

MS51828V1

STM32CubeMonitor-RF

UART Level
shifter

Transparent
mode

firmware

BLE
stack

RS232
Tx/Rx

AN5289 Rev 18 65/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

Figure 21. Heart rate profile structure

The STM32WBCube_FW_WB_V1.0.0 release is provided with a heart rate sensor example.

This section describes the steps to create a Bluetooth SIG heart rate sensor application,
aiming at transmitting heart rate from a sensor (for fitness application) each second and is
composed of the following steps (illustrated in Figure 22):

• STM32WB user application initialization

• Heart rate service implementation - Middleware

• Heart rate sensor peripheral - User

• Heart rate sensor measurement update - User.

Figure 22. Simple setup with BLE RF tester and P-NUCLEO board

8.2.1 How to use STM32WB heart rate sensor application

• Open BLE_HeartRate project and follow readme.txt instructions

• Connect the ST BLE sensor mobile application to your heart rate application

MS51832V1

GAP central

GATT client

Collector

GAP peripheral

GATT server

Heart rate sensor

Hearth rate service

Device information service

BT-SIG and proprietary GATT-based BLE application AN5289

66/171 AN5289 Rev 18

Figure 23. Smart phone - ST BLE sensor with heart rate application

8.2.2 STM32WB heart rate sensor application - Middleware application

In Middlewares\STM32_WPAN\ble\core\Src\, the subfolder to insert BLE services is blesvc.

Warning: Do not modify the files in this folder.

• svc_ctl.c: Initializes the BLE stack and manages the services of the application (GATT
events)

• hrs.c: used for the creation of:

– A service and its characteristics for the application,

– To update the service characteristics,

– To receive the notification or write command and

– to make a link between the BLE stack and the applicative.

For the application, the subfolder to create specific code is STM32_WPAN\app

• app_entry.c: Initializes the BLE Transport layer and the BSP (e.g. LEDs, buttons)

• app_ble.c: Initializes the GAP and manages the connection (e.g. advertising, scan)

• hrs_app.c: Initializes the GATT and manages the application

AN5289 Rev 18 67/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

Heart rate service functionalities:
Middlewares\STM32_WPAN\ble\core\Src\blesvc\hrs.c

The purpose of the service implementation is to register the heart rate services and selected
characteristics withthe BLE stack GATT database.

/**

 * @brief Service Heart Rate initialization

 * @param None

 * @retval None

 */

void HRS_Init(void)

{

REGISTER HEART RATE EVENT HANDLER

? SVCCTL_RegisterSvcHandler(HeartRate_Event_Handler);

REGISTER HEART RATE SERVICE GATT DATABASE TO BLE STACK

Add Heart Rate Service

Add Heart Rate characteristics

Measurement Value (mandatory)

Table 14. Heart rate service functionalities

Function Description

Service Init - HRS_Init() – Registers the heart rate event handle to the service controller

– Initializes the service UUID

aci_gatt_add_serv – Adds the heart rate service as primary service

– Initializes the heart rate measurement characteristic

aci_gatt_add_char – Adds the heart rate characteristic

– Initializes the body sensor location characteristic

aci_gatt_add_char
– Adds the body sensor location characteristic

– Updates the heart rate measurement characteristic

aci_gatt_update_char_value – Updates the requested characteristics within the specified value

– Updates the body sensor location characteristic value

aci_gatt_update_char_value – Updates the requested characteristics within the specified value

HeartRate_Event_Handler(void
*Event)

– Manages the HCI Vendor Type Event

EVT_BLUE_GATT_WRITE_PERMIT_REQ – Server receives a Write command

– HR control point characteristic value

– Resets energy expended command, then:

Sends an aci_gatt_write_response() with an OK status.
Notifies the HRS application to reset expended energy
Or sends an aci_gatt_write_response() with an error.

EVT_BLUE_GATT_ATTRIBUTE_MODIFIED – HR measurement characteristic description value

– ENABLE or DISABLE notification

– Notifies HRS application of the measurement notification

BT-SIG and proprietary GATT-based BLE application AN5289

68/171 AN5289 Rev 18

Body sensor Location (Optional)

Heart rate control point(Optional)

Add Over The Air Reboot Request characteristic (Optional)

}

• Manage the GATT event dedicated to the HR service

/**

 * @brief Heart Rate Service Event handler

 * @param Event: Address of the buffer holding the Event

 * @retval Ack: Return whether the GATT Event has been managed or not

 */

static SVCCTL_EvtAckStatus_t HeartRate_Event_Handler(void *Event)

{

MANAGE GATT EVENT FROM BLE STACK

? EVT_BLUE_GATT_WRITE_PERMIT_REQ

? EVT_BLUE_GATT_ATTRIBUTE_MODIFIED

NOTIFY USER APPLICATION – HRS_Notification

? HRS_RESET_ENERGY_EXPENDED_EVT

? HRS_NOTIFICATION_ENABLED

? HRS_NOTIFICATION_DISABLED

? HRS_STM_BOOT_REQUEST_EVT

}

• Allow the application to update the characteristics to BLE stack GATT database

/**

 * @brief Characteristic update

 * @param UUID: UUID of the characteristic

 * @retval BodySensorLocationValue: The new value to be written

 */

tBleStatus HRS_UpdateChar(uint16_t UUID, uint8_t *pPayload)

{

UPDATE BODY SENSOR LOCATION

UPDATE HEART RATE MEASUREMENT VALUE

}

AN5289 Rev 18 69/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

Service controller functionalities:
Middlewares\STM32_WPAN\ble\core\Src\blesvc\svc_ctl.c

The SVCCTL_Init() has different function:

• Calls the initialization function of all the developed services

– HR server - HRS_Init()

• Registers the service event handler

– SVCCTL_RegisterSvcHandler()

– Function receiving the GATT events from the svc_ctl.c and redirecting them to the
application (hrs_app.c)

• Registers client event handler (not applicable to HR sensor project)

– SVCCTL_RegisterCltHandler()

HR sensor application initialization:
Applications\BLE\BLE_HeartRate\STM32_WPAN\App\app_ble.c

HR sensor peripheral initialization - APP_BLE_Init()

• Initializes the BLE stack on CPU2

– SHCI_C2_BLE_Init()

• Initializes the HCI, GATT and GAP layers

– Ble_Hci_Gap_Gatt_Init()

• Initializes the BLE Services

– SVCCTL_Init()

• Calls heart rate server and device information application initialization

– HRSAPP_Init()

– DISAPP_Init()

• Configures and starts advertising: ADV parameters, Local name, UUID, ...

– aci_gap_set_discoverable() - Sets the device in general discoverable mode

– aci_gap_update_adv_data() - Adds information in advertising data packet

• Manages GAP Event - SVCCTL_App_Notification()

– EVT_LE_CONN_COMPLETE

Provides the connection interval information, slave latency, Supervision timeout

• Provides the new information of the connection

– EVT_LE_CONN_UPDATE_COMPLETE

• Informs the application about the link disconnection and the reason

– EVT_DISCONN_COMPLETE

• Informs the application weather the link is encrypted

– EVT_ENCRYPT_CHANGE

HR sensor application control:
Applications\BLE\BLE_HeartRate\STM32_WPAN\App\hrs_app.c

The hrs_app.c file initializes the sensor application, creates timers

BT-SIG and proprietary GATT-based BLE application AN5289

70/171 AN5289 Rev 18

Figure 24. Heart rate project - Interaction between middleware and user application

8.3 STMicroelectronics proprietary advertising

When the device is a peripheral, it advertises information such as Bluetooth address and
advertising payload (0 to 31 bytes long).

The advertising information is represented by advertising data elements, standardized on
the Bluetooth SIG:

• First byte: length of the element (excluding the length byte itself)

• Second byte: AD type - specifies what data is included in the element

• AD data: one or more bytes, the meaning of which s defined by AD type.

The AD type “0xFF” is used to provide manufacturer specific data.

The implementation of STMicroelectronics proprietary GATT-based applications such as
P2P and FUOTA applications is proposed with the manufacturer specific AD type data. It is
a way for the remote device (scanner) to filter the peripheral devices and access the
requested application.

Table 15. HR sensor application control

Function Description

HRSAPP_Init() Receives and reacts to the internal events coming from the BLE stack
at GATT level.

HRS_Notification() Calls the service functions to update the characteristics (notify/write).

HRSAPP_Measurement() -

MS52428V

BLE stack (IPCC, transport layer)

svc_ctl.c

app_ble.c

APP_BLE
_Init

SVCCTL_App
_Notification

GAP event

Event
(GAP, GATT)

GAP command

SVCCTL_UserEvtRxSVCCTL_Init

GATT
notification

hrs_app.c

HRS_
Notification

dis_app.c

DISAPP
_Init

dis.c

DIS_Init

Add service
Add characteristic

GATT command

hrs.c
HRS_Init

Add service
Add characteristic
Register event handler

GATT command

HRS_
UpdateChar

HRS_RESET_ENERGY_EXPENDED_EVT
HRS_NOTIFICATION_ENABLED
HRS_NOTIFICATION_DISABLED
HRS_STM_BOOT_REQUEST_EVT

Event from BLE stack Command to the BLE stack

DIS_MANUFACTURER
_NAME_STRING

DIS_App_Update_Char

GATT update
characteristic

HRS notification

GATT event

HeartRate
_Event_Handler

Initialization

HRSAPP
_ Init

AN5289 Rev 18 71/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

Group B features

• Bit mask Thread: used to advertise the presence of the Thread switch characteristics.

• Bit mask OTA reboot request: used to advertise presence of the BLE reboot
characteristics.

The advertising procedure is managed at user application level in the app_ble.c.

 Here is an example for BLE_p2p Server project advertising startup.

/* Local name to be advertised */

static const char local_name[] = { AD_TYPE_COMPLETE_LOCAL_NAME, 'P', '2',
'P', 'S', 'R', 'V', '1' };

/* manufacturer data & legacy data to be advertised */

uint8_t manuf_data[14] = {

 sizeof(manuf_data)-1, AD_TYPE_MANUFACTURER_SPECIFIC_DATA,

Table 16. AD structure according to the Bluetooth 5 Core specification Vol. 3 part C

Field name Type Len Record size

TX_POWER_LEVEL 0x0A 2 3

COMPLETE_NAME 0x09 8 9

MANUF_SPECIFIC 0xFF 13 14

FLAGS 0x01 2 3

Table 17. STM32WB manufacturer specific data

Octet 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Name Len Type Ver DevID
Group A
features

Group B
features

Public device address (48 bits),
optional

Value 0x0D 0xFF 0x01 0xXX RFU 0xXXXX 0xXXXXXXXXXX

Table 18. Group B features - Bit mask

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RFU
Thread
support

OTA reboot
request

RFU

Table 19. Device ID Enum

ID HW

0x00 Generic

0x83 STM32WB P2P server 1

0x84 STM32WB P2P server 2

0x85 STM32WB P2P router

0x86 STM32WB FUOTA

BT-SIG and proprietary GATT-based BLE application AN5289

72/171 AN5289 Rev 18

 0x01/*SKD version */,

 CFG_DEV_ID_P2P_SERVER1 /* STM32WB - P2P Server 1*/,

 0x00 /* GROUP A Feature */,

 0x00 /* GROUP A Feature */,

 0x00 /* GROUP B Feature */,

 0x00 /* GROUP B Feature */,

 0x00, /* BLE MAC start -MSB */

 0x00,

 0x00,

 0x00,

 0x00,

 0x00, /* BLE MAC stop */

};

/* Local device BD address*/

const uint8_t *bd_addr;

bd_addr = SVCCTL_GetBdAddress();

/* BLE MAC update for Advertising manufacturer data*/

manuf_data[sizeof(manuf_data)-6] = bd_addr[5];

manuf_data[sizeof(manuf_data)-5] = bd_addr[4];

manuf_data[sizeof(manuf_data)-4] = bd_addr[3];

manuf_data[sizeof(manuf_data)-3] = bd_addr[2];

manuf_data[sizeof(manuf_data)-2] = bd_addr[1];

manuf_data[sizeof(manuf_data)-1] = bd_addr[0];

/* Put the GAP peripheral in general discoverable mode:

Advertising_Type: ADV_IND(undirected scannable and connectable);

Advertising_Interval_Min;

Advertising_Interval_Max;

Own_Address_Type: PUBLIC_ADDR (public address: 0x00);

Adv_Filter_Policy: NO_WHITE_LIST_USE (no whit list is used);

Local_Name_Length

Local_Name:

Service_Uuid_Length: 0 (no service to be advertised);

Service_Uuid_List: NULL;

Slave_Conn_Interval_Min: 0 (Slave connection internal minimum value);

Slave_Conn_Interval_Max: 0 (Slave connection internal maximum value).

*/

result = aci_gap_set_discoverable(ADV_IND,

CFG_FAST_CONN_ADV_INTERVAL_MIN,

CFG_FAST_CONN_ADV_INTERVAL_MAX,

PUBLIC_ADDR,

NO_WHITE_LIST_USE, /* use white list */

sizeof(local_name), (uint8_t*) local_name,

AN5289 Rev 18 73/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

0,

NULL,

0, 0);

 /* Update Advertising data with manufacturer specific information*/

result = aci_gap_update_adv_data(sizeof(manuf_data), (uint8_t*)
manuf_data);

The result is always compared to BLE_STATUS_SUCCESS (0x00).

8.4 Proprietary P2P application

Three components can be used to demonstrate the different data communication types:

1. P2P server project

2. P2P client project

3. Smart phone application.

The combination of the different components results in the demonstrations shown in figures
Figure 25 and Figure 26.

Figure 25. P2P server to client demonstration

Figure 26. P2P server to ST BLE sensor smart phone application

8.4.1 P2P server specification

The P2P server application must be used to demonstrate point to point communication. It
acts as a peripheral device with the following GATT service and characteristics.

BT-SIG and proprietary GATT-based BLE application AN5289

74/171 AN5289 Rev 18

To be used, a GAP central and GATT client device must discover and connect to the P2P
server application. Figure 27 explains the data exchange procedure.

Figure 27. P2P server/client communication sequence

Table 20. P2P service and characteristic UUIDs

Groups Service Characteristic Size Mode UUID

LED button
control

P2P service - - - 0000FE40-cc7a-482a-984a-7fed5b3e58f

- Write 2 Read / Write 0000FE41-8e22-4541-9d4c-21edae82ed19

- Notify 2 Notify 0000FE42-8e22-4541-94dc-21edae82ed19

Table 21. P2P specification

Write

Octets LSB 0 1

Name Device selection LED control

Value

– 0x01: P2P server 1

– 0x02: P2P server 2

– 0x0x: P2P server x

– 0x00: All

– 0x00 LED off

– 0x01 LED on

– 0x02 Thread switch

Notify

Octets LSB 0 1

Name Device selection Button

Value

– 0x01: P2P server 1

– 0x02: P2P server 2

– 0x0x: P2P server x

– 0x00 switch off

– 0x01 switch on

AN5289 Rev 18 75/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

8.4.2 How to use the P2P server application

1. Flash your P-NUCLEO-WB55 board with the ble_P2P_Server project

2. Once flashed, connect the ST BLE sensor mobile application to your board, and use
SW1 button to notify the smart phone.

Figure 28. P2P server connected to ST BLE sensor smart phone application

8.4.3 P2P server application - Middleware application

The P2P service and characteristics are created using the p2p_stm.c file.

p2p_stm.c: creates the service and the characteristics in the application to update the
characteristics, to receive the notification or write command, and to make a link between the
BLE wireless stack and the applicative part.

In the application, the subfolder to create specific code is “User”

• app_entry.c: initializes the BLE Transport layer and the BSP (e.g. LEDs, buttons)

• app_ble.c: initializes the GAP and manage the connection (e.g. advertising, scan)

• p2p_server_app.c: initializes the GATT and manage the application.

BT-SIG and proprietary GATT-based BLE application AN5289

76/171 AN5289 Rev 18

P2P service functionalities:
Middlewares\STM32_WPAN\ble\core\Src\blesvc\p2p_stm.c

P2P server application control:
Applications\BLE\BLE_p2pServer\STM32_WPAN\App\p2p_server_app.c

The p2p_server_app.c file

Initializes the P2P server application, Create Timers

P2PS_APP_Init()

Receives and reacts to the internal events coming from the BLE stack at GATT level.

P2PS_STM_App_Notification ()

void P2PS_STM_App_Notification(P2PS_STM_App_Notification_evt_t
*pNotification)

{

Switch (pNotification->P2P_Evt_Opcode)

{

 case P2PS_STM__NOTIFY_ENABLED_EVT:

 P2P_Server_App_Context.Notification_Status = 1;

 APP_DBG_MSG("-- P2P APPLICATION SERVER : NOTIFICATION ENABLED\n");

 APP_DBG_MSG(" \n\r");

 break;

Table 22. P2P service functionalities

Function Description

Service Init - P2PS_STM_Init
()

– Register PeerToPeer_Event_Handler to Service controller

– Initializes Service UUID

aci_gatt_add_serv - adds P2P service as Primary services

– Initializes P2P write characteristic

aci_gatt_add_char - adds Write characteristic

– Initializes P2P Notify characteristic

aci_gatt_add_char - adds Notify characteristic

– Updates notification characteristic - P2PS_STM_App_Update_Char()

aci_gatt_update_char_value - updates the notify characteristics with a
value aligned with the specification

PeerToPeer_Event_Handler
(void *Event) - manages HCI
Vendor Type Event:

EVT_BLUE_GATT_ATTRIBUTE_MODIFIED

– Receives the configuration of the Descriptor value of the Notify
characteristics

– ENABLE or DISABLE notification

– Informs the application, P2PS_STM__NOTIFY_ENABLED_EVT or
P2PS_STM_NOTIFY_DISABLED_EVT

– Receives data on the write characteristic and Informs P2P application

P2PS_STM_WRITE_EVT

– Receives data on the Reboot request characteristic and informs P2P
application (to be used for FUOTA procedure)

P2PS_STM_BOOT_REQUEST_EVT

AN5289 Rev 18 77/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

 case P2PS_STM_NOTIFY_DISABLED_EVT:

 P2P_Server_App_Context.Notification_Status = 0;

. APP_DBG_MSG("-- P2P APPLICATION SERVER : NOTIFICATION DISABLED\n");

 APP_DBG_MSG(" \n\r");

 break;

 case P2PS_STM_WRITE_EVT:

 if(pNotification->DataTransfered.pPayload[0] == 0x00){

. if(pNotification->DataTransfered.pPayload[1] == 0x01)

 {

 BSP_LED_On(LED_BLUE);

 APP_DBG_MSG("-- P2P APPLICATION SERVER : LED1 ON\n");

 APP_DBG_MSG(" \n\r");

 P2P_Server_App_Context.LedControl.Led1=0x01;

 }

 if(pNotification->DataTransfered.pPayload[1] == 0x00)

 {

 BSP_LED_Off(LED_BLUE);

 APP_DBG_MSG("-- P2P APPLICATION SERVER : LED1 OFF\n");

 APP_DBG_MSG(" \n\r");

 P2P_Server_App_Context.LedControl.Led1=0x00;

 }

 }

Calls the service function to update the characteristic (notify).

P2PS_Send_Notification ()

void P2PS_Send_Notification(void)

{

 if(P2P_Server_App_Context.ButtonControl.ButtonStatus == 0x00){

 P2P_Server_App_Context.ButtonControl.ButtonStatus=0x01;

 } else {

 P2P_Server_App_Context.ButtonControl.ButtonStatus=0x00;

 }

 if(P2P_Server_App_Context.Notification_Status){

 APP_DBG_MSG("P2P APPLICATION SERVER : INFORM CLIENT BUTTON 1 PUSHED \n
");

 APP_DBG_MSG(" \n\r");

 P2PS_STM_App_Update_Char(P2P_NOTIFY_CHAR_UUID, (uint8_t *)
&P2P_Server_App_Context.ButtonControl);

 } else {

 APP_DBG_MSG("P2P APPLICATION SERVER : CAN'T INFORM CLIENT - NOTIFICATION
DISABLED\n ");

 }

BT-SIG and proprietary GATT-based BLE application AN5289

78/171 AN5289 Rev 18

return;

}

8.4.4 P2P client application - Middleware application

Figure 29. P2P server software communication

There is no service created for the P2P client. It is only necessary to register the GATT client
Handler SVCCTL_RegisterCltHandler() to be notified of any GATT events at application
level.

In the application, the subfolder to create specific code is “User”

• app_entry.c: initializes the BLE transport layer and the BSP (e.g. LEDs, buttons)

• app_ble.c: initializes the GAP and manages the connection (scan and connect)

• p2p_client_app.c: initializes the GATT and manages the GATT client application.

P2P client - Scan and connect

The app_ble.c file

• Executes a scan to search for any P2P server advertising IDs:

static void Scan_Request(void)

{

 tBleStatus result;

 if (BleApplicationContext.Device_Connection_Status !=
APP_BLE_CONNECTED_CLIENT)

 {

 BSP_LED_On(LED_BLUE);

 result = aci_gap_start_general_discovery_proc(SCAN_P, SCAN_L,
PUBLIC_ADDR, 1);

MS52421V2

BLE stack (IPCC, transport layer)

p2p_client_app.c

svc_ctl.c

app_ble.c

APP_BLE_Init SVCCTL_App
_Notification

Event from
BLE stack

GAP event

Event

Command to
the BLE stack

P2PS
_STM_App
_Notification

GAP command
(e.g. Advertising,
Interval connection update)

GATT event
(EVT_BLUE_GATT_ATTRIBUTE_MODIFIED)

Inizialization

SVCCTL_UserEvtRx

P2PS_STM__NOTIFY_ENABLED_EVT
P2PS_STM_NOTIFY_DISABLED_EVT
P2PS_STM_WRITE_EVT
P2PS_STM_BOOT_REQUEST_EVT

p2p_stm.c

P2PS
_STM_Init

Add P2P service
Add Characteristics
Register the event handler

SVCCTL_Init

PeerToPeer
_Event_Handler

P2PS
_STM_App

_Update_Char

GATT notification

GATT event

AN5289 Rev 18 79/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

 if (result == BLE_STATUS_SUCCESS)

 {

 APP_DBG_MSG(" \r\n\r** START GENERAL DISCOVERY (SCAN) ** \r\n\r");

 } else {

 APP_DBG_MSG("-- BLE_App_Start_Limited_Disc_Req, Failed \r\n\r");

 BSP_LED_On(LED_RED);

 }

 }

return;

}

• Receives the ADV events report to be filtered to save the P2P server BD address:J’rric

case AD_TYPE_MANUFACTURER_SPECIFIC_DATA: // Manufactureur Specific

 if (adlength >= 7 && le_advertising_event->Advertising_Report[0].Data[k +
2] == 0x01) {

 APP_DBG_MSG("--- ST MANUFACTURER ID --- \n");

 switch (le_advertising_event->Advertising_Report[0].Data[k + 3]) {

 case CFG_DEV_ID_P2P_SERVER1:

 APP_DBG_MSG("-- SERVER DETECTED -- VIA MAN ID\n");

 BleApplicationContext.DeviceServerFound = 0x01;

 SERVER_REMOTE_BDADDR[0] = le_advertising_event-
>Advertising_Report[0].Address[0];

 SERVER_REMOTE_BDADDR[1] = le_advertising_event-
>Advertising_Report[0].Address[1];

 SERVER_REMOTE_BDADDR[2] = le_advertising_event-
>Advertising_Report[0].Address[2];

 SERVER_REMOTE_BDADDR[3] = le_advertising_event-
>Advertising_Report[0].Address[3];

 SERVER_REMOTE_BDADDR[4] = le_advertising_event-
>Advertising_Report[0].Address[4];

 SERVER_REMOTE_BDADDR[5] = le_advertising_event-
>Advertising_Report[0].Address[5];

 break;

• Initiates the connection to any detected P2P servers:

static void Connect_Request(void)

{

 tBleStatus result;

 APP_DBG_MSG("\r\n\r** CREATE CONNECTION TO SERVER ** \r\n\r");

 if (BleApplicationContext.Device_Connection_Status !=
APP_BLE_CONNECTED_CLIENT) {

 result = aci_gap_create_connection(

SCAN_P,

SCAN_L,

PUBLIC_ADDR, SERVER_REMOTE_BDADDR,

PUBLIC_ADDR,

CONN_P1,

BT-SIG and proprietary GATT-based BLE application AN5289

80/171 AN5289 Rev 18

CONN_P2,

0,

SUPERV_TIMEOUT,

CONN_L1,

CONN_L2);

• Starts “Services Discovery Procedure” once connection is established:

case EVT_LE_CONN_COMPLETE:

/**

* The connection is established

*/

connection_complete_event = (hci_le_connection_complete_event_rp0 *)
meta_evt->data;

BleApplicationContext.BleApplicationContext_legacy.connectionHandle =
connection_complete_event->Connection_Handle;

BleApplicationContext.Device_Connection_Status = APP_BLE_CONNECTED_CLIENT;

APP_DBG_MSG("\r\n\r** CONNECTION EVENT WITH SERVER \n");

handleNotification.P2P_Evt_Opcode = PEER_CONN_HANDLE_EVT;

handleNotification.ConnectionHandle =

 BleApplicationContext.BleApplicationContext_legacy.connectionHandle;

P2PC_APP_Notification(&handleNotification);

result = aci_gatt_disc_all_primary_services(

BleApplicationContext.BleApplicationContext_legacy.connectionHandle);

if (result == BLE_STATUS_SUCCESS) {

 APP_DBG_MSG("\r\n\r** GATT SERVICES & CHARACTERISTICS DISCOVERY \n");

 APP_DBG_MSG("* GATT : Start Searching Primary Services \r\n\r");

}

At this step, all the GATT events is transferred to the GATT client events handler managed
in the p2p_client_app.c.

P2P client - Application control - GATT client communication

The p2p_client_app.c file:

• Initializes the P2P client application and registers the Client Event Handler

– P2PC_APP_Init()

– SVCCTL_RegisterCltHandler()

• Starts discovery procedures and managesthe remote P2P server characteristics

– aci_gatt_disc_all_char_of_service()

– aci_gatt_disc_all_char_desc()

– aci_gatt_write_char_desc()

case APP_BLE_DISCOVER_SERVICES:

APP_DBG_MSG("P2P_DISCOVER_SERVICES\n");

break;

case APP_BLE_DISCOVER_CHARACS:

AN5289 Rev 18 81/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

APP_DBG_MSG("* GATT : Discover P2P Characteristics\n");

aci_gatt_disc_all_char_of_service(aP2PClientContext[index].connHandle,

aP2PClientContext[index].P2PServiceHandle,

aP2PClientContext[index].P2PServiceEndHandle);

break;

case APP_BLE_DISCOVER_WRITE_DESC:

APP_DBG_MSG("* GATT : Discover Descriptor of TX - Write Characteritic\n");

aci_gatt_disc_all_char_desc(aP2PClientContext[index].connHandle,

aP2PClientContext[index].P2PWriteToServerCharHdle,

aP2PClientContext[index].P2PWriteToServerCharHdle+2);

break;

case APP_BLE_DISCOVER_NOTIFICATION_CHAR_DESC:

APP_DBG_MSG("* GATT : Discover Descriptor of Rx - Notification
Characteritic\n");

aci_gatt_disc_all_char_desc(aP2PClientContext[index].connHandle,

aP2PClientContext[index].P2PNotificationCharHdle,

aP2PClientContext[index].P2PNotificationCharHdle+2);

break;

case APP_BLE_ENABLE_NOTIFICATION_DESC:

APP_DBG_MSG("* GATT : Enable Server Notification\n");

aci_gatt_write_char_desc(aP2PClientContext[index].connHandle,

aP2PClientContext[index].P2PNotificationDescHandle,

2,

(uint8_t *)&enable);

aP2PClientContext[index].state = APP_BLE_CONNECTED_CLIENT;

break;

case APP_BLE_DISABLE_NOTIFICATION_DESC :

APP_DBG_MSG("* GATT : Disable Server Notification\n");

aci_gatt_write_char_desc(aP2PClientContext[index].connHandle,

aP2PClientContext[index].P2PNotificationDescHandle,

2,

(uint8_t *)&enable);

aP2PClientContext[index].state = APP_BLE_CONNECTED_CLIENT;

break;

• Manages GATT Events to find and to register the remote device characteristics
handles

– SVCCTL_EvtAckStatus_t Event_Handler()

uuid = UNPACK_2_BYTE_PARAMETER(&pr->Attribute_Data_List[idx]);

if(uuid == P2P_SERVICE_UUID){

APP_DBG_MSG("-- GATT : P2P_SERVICE_UUID FOUND - connection handle 0x%x \n",
aP2PClientContext[index].connHandle);

aP2PClientContext[index].P2PServiceHandle = UNPACK_2_BYTE_PARAMETER(&pr-
>Attribute_Data_List[idx-16]);

aP2PClientContext[index].P2PServiceEndHandle = UNPACK_2_BYTE_PARAMETER
(&pr->Attribute_Data_List[idx-14]);

aP2PClientContext[index].state = APP_BLE_DISCOVER_CHARACS ;

BT-SIG and proprietary GATT-based BLE application AN5289

82/171 AN5289 Rev 18

}

uuid = UNPACK_2_BYTE_PARAMETER(&pr->Handle_Value_Pair_Data[idx]);

/* store the characteristic handle not the attribute handle */

handle = UNPACK_2_BYTE_PARAMETER(&pr->Handle_Value_Pair_Data[idx-14]);

if(uuid == P2P_WRITE_CHAR_UUID){

APP_DBG_MSG("-- GATT : WRITE_UUID FOUND - connection handle 0x%x\n",
aP2PClientContext[index].connHandle);

aP2PClientContext[index].state = APP_BLE_DISCOVER_WRITE_DESC;

aP2PClientContext[index].P2PWriteToServerCharHdle = handle;

}

else if(uuid == P2P_NOTIFY_CHAR_UUID){

APP_DBG_MSG("-- GATT : NOTIFICATION_CHAR_UUID FOUND - connection handle
0x%x\n", aP2PClientContext[index].connHandle);

aP2PClientContext[index].state = APP_BLE_DISCOVER_NOTIFICATION_CHAR_DESC;

aP2PClientContext[index].P2PNotificationCharHdle = handle;

}

Once the P2P server services and characteristics handle are discovered, the application is
able to:

• Control the remote device using the “Write” characteristic

tBleStatus Write_Char(uint16_t UUID, uint8_t Service_Instance, uint8_t
*pPayload){

tBleStatus ret = BLE_STATUS_INVALID_PARAMS;

uint8_t index;

index = 0;

while((index < BLE_CFG_CLT_MAX_NBR_CB) && (aP2PClientContext[index].state
!= APP_BLE_IDLE)){

switch(UUID){

case P2P_WRITE_CHAR_UUID:

ret =aci_gatt_write_without_resp(aP2PClientContext[index].connHandle,

aP2PClientContext[index].P2PWriteToServerCharHdle,

2, /* charValueLen */

(uint8_t *) pPayload);

break;

• Receive notifications via the “Notify” characteristics

void Gatt_Notification(P2P_Client_App_Notification_evt_t *pNotification){

switch(pNotification->P2P_Client_Evt_Opcode){

case P2P_NOTIFICATION_INFO_RECEIVED_EVT: {

P2P_Client_App_Context.LedControl.Device_Led_Selection=pNotification-
>DataTransfered.pPayload[0];

switch(P2P_Client_App_Context.LedControl.Device_Led_Selection) {

case 0x01 : {

P2P_Client_App_Context.LedControl.Led1=pNotification-
>DataTransfered.pPayload[1];

if(P2P_Client_App_Context.LedControl.Led1==0x00){

BSP_LED_Off(LED_BLUE);

APP_DBG_MSG(" -- P2P CLIENT : NOTIFICATION RECEIVED - LED OFF \n\r");

AN5289 Rev 18 83/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

} else {

BSP_LED_On(LED_BLUE);

APP_DBG_MSG(" -- P2P CLIENT : NOTIFICATION RECEIVED - LED ON\n\r");

}

break;

}

Figure 30. P2P client software communication

8.5 FUOTA application

FUOTA is a standalone application able to install a BLE service to download the new CPU2
wireless stack, CPU1 application or configuration binaries:

• It requires that the first six flash memory sectors of the application (where the FUOTA
application is written) are never deleted.

• The FUOTA application enables:

– The update of the whole CPU1 application

– To download CPU2 wireless firmware to be applied by the FUS

– To download user data atany address in CPU1 user flash memory.

8.5.1 CPU1 user flash memory mapping

The FUOTA BLE application cannot updated itself, but is able to:

• Jump on an existing application (Sector index 7)

• Run and install the STMicroelectronics proprietary FUOTA GATT service and
characteristics to upload any data in specified area of a remote device.

The User data section can be used to update parts of the configuration for the application.

MS52420V1

BLE stack (IPCC, transport layer)

p2p_client_app.c

svc_ctl.c

app_ble.c

APP_BLE_Init SVCCTL_App
_Notification

Event from
BLE stack

GAP
event

Event

Command to
the BLE stack

Write_Char

Gatt_Notification

GATT event

GAP command (e.g.
Scanning, Create connection)

GATT/ATT command (e.g.
Write, Search for characteristics)

Update_Service

Initialization

SVCCTL_Init SVCCTL_UserEvtRx

Event_Handler

BT-SIG and proprietary GATT-based BLE application AN5289

84/171 AN5289 Rev 18

The application area contains the application standalone binary. It can be fully updated with
FUOTA application.

Figure 31. FUOTA memory mapping

8.5.2 BLE FUOTA application startup

Once the project BLE_Ota is compiled and loaded, the application can:

• Either jump to the available application if binary code is present on application sectors
(sector index 7)

– no more activity related to BLE_Ota application

• Or start STMicroelectronics proprietary FUOTA GATT service and characteristics
advertising:

– the local name Advertising Data (AD) elements with “STM_OTA”

– the manufacturer AD elements with Device ID “STM32WB FW Update OTA
application”

The second possibility allows a remote device to upload a new binary (CPU2 wireless stack,
CPU1 application or user data firmware update).

Note: If only STMicroelectronics proprietary FUOTA GATT service and characteristics are used it
is important to erase application sectors (from 7 onwards).

MS51861V1

Sector index 0

Cortex® M0+
wireless FW update

n2 sectors

Free Flash memory

Application

n1 sectors

User data

1 sector

FUOTA application

6 sectors

Sector index 5

Sector index (S-n2)

Sector index 7

Sector index S

0x0800 0000

0x0800 6000

0x0800 7000

0x08xx xxxx

AN5289 Rev 18 85/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

Figure 32. FUOTA startup procedure

8.5.3 BLE FUOTA services and characteristics specification

The BLE FUOTA application (BLE_Ota project) is exported as a GATT service with the
following characteristics:

• Base address to provide information where to store the new binary

• File upload reboot confirmation to confirm the reboot of the application after new binary
file uploaded

• OTA raw data to transfer the data (binary file divided into packets).

MS51842V1

Boot

SW reset sourceFW application
available

Boot mode
from SRAM1

Update SRAM1 to delete all
sectors part of the FW application

Start OTA loader application:
• Delete sectors according to info from SRAM1
• Install OTA BLE service
• Advertise

• Update CPU VTOR register to set new
vector table address

• Set MSP to the value from application
• Jump to reset handler for application

OTA

Application

Yes

NoNo

Yes

Table 23. FUOTA service and characteristics UUID

Group Service Characteristic Size Mode UUID

LED
button
control

OTA FW
update

- - - 0000FE20-cc7a-482a-984a-7f2ed5b3e58f

- Base address 4 bytes
Write without
response

0000FE22-8e22-4541-9d4c-21edae82ed19

-
File upload reboot
confirmation

1 byte Indicate 0000FE23-8e22-4541-9d4c-21edae82ed19

- OTA raw data 20 bytes
Write without
response

0000FE24-8e22-4541-9d4c-21edae82ed19

BT-SIG and proprietary GATT-based BLE application AN5289

86/171 AN5289 Rev 18

8.5.4 Flow description example to upload new CPU1 application binary

There are two types of procedures to upload a new binary:

• Only STMicroelectronics proprietary FUOTA GATT service and characteristics
application is loaded (no application binary present on sector 7)

• Application is already running with the support of the Reboot request characteristic

Table 24. Base address characteristics specification

Bit LSB [0:7] [8:31]

Name Action Address

Value

– 0x00: STOP all uploads

– 0x01: START M0+ file upload

– 0x02: START M4 file upload

– 0x07: File upload finished

– 0x08: Cancel upload

0x007000

Table 25. File upload confirmation reboot request characteristics specification

Octets LSB 0

Name Indication

Value 0x01 Reboot

Table 26. Raw data characteristics specification

Octets LSB 0 1 ... 19

Name Raw data

Value File data

Table 27. Reboot request characteristics specification

Octets LSB 0 1 2

Name Boot mode Sector index Number of sectors to erase

Value
– 0x00 application

– 0x01 FUOTA application
07 → 0x0800 7000 0x00 ... 0xFF

AN5289 Rev 18 87/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

Starting from application including the reboot request characteristic, this is the flow to
update CPU1 application:

1. BLE application includes the reboot characteristics.

2. Once the GAP connection is established, the remote GATT client device researches
services and characteristics (reboot request characteristics detected).

3. Next, in order to switch to the FUOTA application, the remote device writes the Reboot
request characteristics with information for boot mode option and sectors to erase.

4. At this stage the BLE Link is disconnected to reboot on STMicroelectronics proprietary
FUOTA GATT service and characteristics application.

5. Application sectors are erased with the information provided by the reboot
characteristics and STMicroelectronics proprietary FUOTA GATT service and
characteristics application starts advertising.

6. New connection has to be established by the remote device to discover the FUOTA
service and characteristics.

7. The base address characteristic is used to initiate the new binary upload.

8. All the data is transferred via the raw data characteristic and programmed directly to
the flash memory once received.

9. The end of file transfer is confirmed by the base address characteristic.

10. Confirmation of the received file is indicate by the file upload confirmation
characteristic.

11. At this stage, the FUOTA application checks the integrity of the new binary and reboots
to start the new uploaded application.

12. If the application integrity is not ensured, the application sectors are erased to reboot
on the FUOTA application.

Figure 33. FUOTA process with heart rate

BT-SIG and proprietary GATT-based BLE application AN5289

88/171 AN5289 Rev 18

8.5.5 Application example with smart phone

The reboot request characteristic is implemented in the projects BLE_HeartRate_ota and
BLE_P2pServer_ota. Both include the OTA reboot request bit mask in their advertising
element.

This is a way for the remote (scanner) to quickly acquire the information on the presence of
the reboot request characteristic. The ST BLE sensor mobile application supports the
detection of this reboot request characteristic.

For example, moving from a P2P server application to heart rate application.

• Compile and load the BLE_Ota project to address 0x0800 0000

• Compile and load the BLE_p2pServer_ota project to address 0x0800 7000

• Reboot the device

– At this stage, the P2P server advertises its presence.

• Discover and connect to the P2P server with ST BLE sensor mobile application

• Move to the reboot panel

• Select binary “BLE_HeartRate_ota” (copied before the demonstration to the smart
phone memory)

• Click on upload

– At this stage, the reboot request characteristic is used to provide information about
sectors to erase and the next reboot phase (FUOTA application).

Figure 34. P2P server - Application firmware selection

AN5289 Rev 18 89/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

Once rebooted, the address to upload the application binary file is selected. The default
address is 0x7000 (sector 7 - application). Changing the binary file to upload is still possible
at this stage, if needed.

Figure 35. P2P server - Application firmware update

Once the upload is finished, the reboot procedure is executed to start the new application.

Next, run a new scan procedure to discover the heart rate sensor advertising packets, and
connect to it.

After connecting to the device, the heart rate measurement values are notified by the
sensor.

Note: The smart phone application associates the GATT database with remote Bluetooth address.
To solve this issue the FUOTA application advertising address is increased by 1.

BT-SIG and proprietary GATT-based BLE application AN5289

90/171 AN5289 Rev 18

Figure 36. Heart rate sensor notification

8.5.6 How to use the reboot request characteristics

Whatever application is used, the reboot request characteristics can be integrated into a
service to reboot the application in FUOTA application mode.

The application must be loaded at the address 0x0800 0700 with “BLE_HeartRate_ota” and
“BLE_p2pServer_ota” examples, the configuration is done as follows:

• ble_conf.h to define the OTA Reboot characteristics

/***

 * Over The Air Feature (OTA) - STM Proprietary

**
****/

#define BLE_CFG_OTA_REBOOT_CHAR 1 /**< REBOOT OTA MODE
CHARACTERISTIC */

• app_ble.c

/**

 * Initialization of ADV - Ad Manufacturer Element - Support OTA Bit Mask

 */

#if(BLE_CFG_OTA_REBOOT_CHAR != 0)

AN5289 Rev 18 91/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

 manuf_data[sizeof(manuf_data)-8] = CFG_FEATURE_OTA_REBOOT;

#endif

• p2p_stm.c to add the characteristics (middleware)

#if(BLE_CFG_OTA_REBOOT_CHAR != 0)

 /**

 * Add Boot Request Characteristic

 */

 aci_gatt_add_char(aPeerToPeerContext.PeerToPeerSvcHdle,

 BM_UUID_LENGTH,

 (Char_UUID_t *)BM_REQ_CHAR_UUID,

 BM_REQ_CHAR_SIZE,

 CHAR_PROP_WRITE_WITHOUT_RESP,

 ATTR_PERMISSION_NONE,

 GATT_NOTIFY_ATTRIBUTE_WRITE,

 10,

 0,

 &(aPeerToPeerContext.RebootReqCharHdle));

#endif

• p2p_stm.c to receive the request at GATT level and inform the application (middleware)

else if(attribute_modified->Attr_Handle ==
(aPeerToPeerContext.RebootReqCharHdle + 1))

{

BLE_DBG_P2P_STM_MSG("-- GATT : REBOOT REQUEST RECEIVED\n");

Notification.P2P_Evt_Opcode = P2PS_STM_BOOT_REQUEST_EVT;

Notification.DataTransfered.Length=attribute_modified->Attr_Data_Length;

Notification.DataTransfered.pPayload=attribute_modified->Attr_Data;

P2PS_STM_App_Notification(&Notification);

• p2p_server_app.c to manage the reboot request (application)

void P2PS_STM_App_Notification(P2PS_STM_App_Notification_evt_t
*pNotification)

{

 switch(pNotification->P2P_Evt_Opcode)

 {

#if(BLE_CFG_OTA_REBOOT_CHAR != 0)

 case P2PS_STM_BOOT_REQUEST_EVT:

 APP_DBG_MSG("-- P2P APPLICATION SERVER : BOOT REQUESTED\n");

 APP_DBG_MSG(" \n\r");

 (uint32_t)SRAM1_BASE = *(uint32_t*)pNotification-
>DataTransfered.pPayload;

 NVIC_SystemReset();

 break;

#endif

BT-SIG and proprietary GATT-based BLE application AN5289

92/171 AN5289 Rev 18

8.5.7 Power failure recovery mechanism for CPU1 application

The BLE_ota application provides a power failure recovery mechanism while updating the
CPU1 application.

The two tags used to manage a power failure during CPU1 application firmware update are:

1. MagicKeywordAddress: must be mapped at 0x140 from start of the binary image to be
loaded

2. MagicKeywordvalue: checked by the BLE_ota application at MagicKeywordAddress.

While flashing the new application, if the link is dropped, the BLE_ota application detects the
failure and automatically erases the programmed sectors. This mechanism prevents a
reboot on a wrong application.

8.6 Application tips

8.6.1 How to set Bluetooth device address

All Bluetooth devices must have an address that uniquely identifies them.

STM32WB devices support public and random (static or private) addresses.

Device addresses can be public or random, both are 48-bits long, and denoted as
colon-delimited hex values (e.g. AA:BB:CC:DD:EE:FF).

The public device address must conform with the IEEE 802-2001 standard, using a valid
organization unique identifier (OUI) obtained from the IEEE registration authority. Public
device addresses are known as MAC addresses.

Customers willing to develop their own products (based on public device addresses) must
obtain from the IEEE Registration Authority their own IEEE-assigned 48-bit universal LAN
MAC address, and not use the one already assigned to ST Microelectronics.

For the details on how a BLE device can generate a random address refer to the Core
Specification v5.0.

AN5289 Rev 18 93/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

The STM32WB provides a 64-bit unique device identification

• 24-bit company ID (0x00 80 E1 for STMicroelectronics)

• 8-bit device ID (0x05 for STM32WB)

• 32-bit unique device number, to differentiate each individual device.

If the application needs to use a different public address, it must be obtained from the right
organization, and then stored in a persistent memory location of the final product (either
within the microcontroller flash memory/OTP, or in an external storage area).

During the STM32WB initialization phase, the application must configure this address.

The ACI command to set the public address is:

tBleStatus aci_hal_write_config_data(uint8_t offset, uint8_t len, const
uint8_t *val).

The parameters must be set as follows:

• Offset: 0x00

• Length: 0x06

• Value: pointer to the public address value, e.g. 0xaabbccddeeff (6-byte array).

The application microprocessor must send the command aci_hal_write_config_data to the
wireless microprocessor before starting any BLE operations and after every power-up or
reset, since the command aci_hal_write_config_data does not systematically save the data
in the flash memory.

The following pseudo-code example illustrates how to set a MAC address from the
application:

uint8_t bdaddr[] = {0xFF, 0xEE, 0xDD, 0xCC, 0xBB, 0xAA};

ret=aci_hal_write_config_data(0x00, 0x06, bdaddr);

if(ret) { PRINTF("Setting address failed.\n")}

BLE devices can also use random addresses. The address value can be read from the
application using the tBleStatus aci_hal_read_config_data(uint8_t offset, uint16_t data_len,
uint8_t *data_len_out_p, uint8_t *data); command with the parameter offset set to 0x80.

Alternatively, the application can set a random address from the external host processor
using the int hci_le_set_random_address(tBDAddr bdaddr) command after each reset. If
the random address is not set through the hci_le_set_random_address command, the
address generation is handled independently by the stack as described above.

The 64-bit UID of the STM32WB device can be used to derive the unique BLE 48-bit device
address. It is also possible to get the BLE-48-bit device address from the OTP register.

const uint8_t* BleGetBdAddress(void) {

 uint8_t *otp_addr;

 const uint8_t *bd_addr;

 uint32_t udn;

 uint32_t company_id;

 uint32_t device_id;

 udn = LL_FLASH_GetUDN();

 if(udn != 0xFFFFFFFF) {

 company_id = LL_FLASH_GetSTCompanyID();

 device_id = LL_FLASH_GetDeviceID();

BT-SIG and proprietary GATT-based BLE application AN5289

94/171 AN5289 Rev 18

 bd_addr_udn[0] = (uint8_t)(udn & 0x000000FF);

 bd_addr_udn[1] = (uint8_t)((udn & 0x0000FF00) >> 8);

 bd_addr_udn[2] = (uint8_t)((udn & 0x00FF0000) >> 16);

 bd_addr_udn[3] = (uint8_t)device_id;

 bd_addr_udn[4] = (uint8_t)(company_id & 0x000000FF);;

 bd_addr_udn[5] = (uint8_t)((company_id & 0x0000FF00) >> 8);

 bd_addr = (const uint8_t *)bd_addr_udn;

 }

 else {

 otp_addr = OTP_Read(0);

 if(otp_addr) {

 bd_addr = ((OTP_ID0_t*)otp_addr)->bd_address;

 }

 else {

 bd_addr = M_bd_addr;

 }

 }

 return bd_addr;

}

8.6.2 How to set IR (Identity Root) and ER (Encryption Root)

The Identity Root (IR) key is used to generate IRK and DHK(Legacy), the Encryption Root
(ER) key is used to generate LTK(Legacy) and CSRK. IRK and ERK must be generated as
a random key on each unit, and stored in flash memory during device production. At startup,
in the device application, the ER and IR values are read and transfered to the Cortex M0
side using aci_hal_write_config_data. The keys are different from device to device.

Note: The generation of LTK using ER is applicable only when doing LE Legacy Pairing. The
generation of CSRK using ER is applicable when doing LE Legacy Pairing and LE Secure
Connections Pairing. If ER is changed, any previously distributed LTK or CSRK keys is no
longer valid.
The generation of DHK using IR is applicable only when doing LE Legacy Pairing. The
generation of IRK using IR is applicable when doing LE Legacy Pairing and LE Secure
Connections Pairing. If IR is changed, any previously distributed IRK key is no longer valid.

In STM32CubeWB examples, IR and ER are fixed values, written as described below:

Define:

CFG_BLE_IR and CFG_BLE_ER

Declare:

static const uint8_t BLE_CFG_IR_VALUE[16] = CFG_BLE_IR;

static const uint8_t BLE_CFG_ER_VALUE[16] = CFG_BLE_ER;

Write IR:

aci_hal_write_config_data(CONFIG_DATA_IR_OFFSET, CONFIG_DATA_IR_LEN,
(uint8_t*)BLE_CFG_IR_VALUE);

AN5289 Rev 18 95/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

Write ER:

aci_hal_write_config_data(CONFIG_DATA_ER_OFFSET, CONFIG_DATA_ER_LEN,
(uint8_t*)BLE_CFG_ER_VALUE);

8.6.3 How to add a task to the sequencer

• Declare task ID - app_conf.h -

/**< Add in that list all tasks that may send a ACI/HCI command */

typedef enum

{

 CFG_TASK_ADV_CANCEL_ID,

 CFG_TASK_SW1_BUTTON_PUSHED_ID,

 CFG_TASK_HCI_ASYNCH_EVT_ID,

 CFG_LAST_TASK_ID_WITH_HCICMD, /**< Shall be LAST in the list */

} CFG_Task_Id_With_HCI_Cmd_t;

/**< Add in that list all tasks that never send a ACI/HCI command */

typedef enum

{

 CFG_FIRST_TASK_ID_WITH_NO_HCICMD = CFG_LAST_TASK_ID_WITH_HCICMD - 1,
/**< Shall be FIRST in the list */

 CFG_TASK_SYSTEM_HCI_ASYNCH_EVT_ID,

 CFG_LAST_TASK_ID_WITHO_NO_HCICMD
/**< Shall be LAST in the list */

} CFG_Task_Id_With_NO_HCI_Cmd_t;

#define UTIL_SEQ_CONF_TASK_NBR CFG_LAST_TASK_ID_WITHO_NO_HCICMD

• Register task with callback function- “Cancel Advertising” - app_ble.c

SCH_RegTask(CFG_TASK_ADV_CANCEL_ID, Adv_Cancel);

• Start the Task with priority - app_ble.c

SCH_SetTask(1 << CFG_TASK_ADV_CANCEL_ID, CFG_SCH_PRIO_0);

8.6.4 How to use the timer server

• Create the timer with callback function

/**

 * Create timer to handle the Led Switch OFF

 */

HW_TS_Create(CFG_TIM_PROC_ID_ISR,
&(BleApplicationContext.SwitchOffGPIO_timer_Id), hw_ts_SingleShot,
Switch_OFF_GPIO);

• Start the timer with timeout

HW_TS_Start(BleApplicationContext.SwitchOffGPIO_timer_Id,
(uint32_t)LED_ON_TIMEOUT);

• Stop the timer

HW_TS_Stop(BleApplicationContext.SwitchOffGPIO_timer_Id);

• Callback function example

BT-SIG and proprietary GATT-based BLE application AN5289

96/171 AN5289 Rev 18

static void Switch_OFF_GPIO(){

 BSP_LED_Off(LED_GREEN);

}

8.6.5 How to start the BLE stack - SHCI_C2_BLE_Init()

SHCI_C2_Ble_Init_Cmd_Packet_t ble_init_cmd_packet =

 {

 {{0,0,0}}, /**< Header unused */

 {0, /** pBleBufferAddress not used */

 0, /** BleBufferSize not used */

 CFG_BLE_NUM_GATT_ATTRIBUTES,

 CFG_BLE_NUM_GATT_SERVICES,

 CFG_BLE_ATT_VALUE_ARRAY_SIZE,

 CFG_BLE_NUM_LINK,

 CFG_BLE_DATA_LENGTH_EXTENSION,

 CFG_BLE_PREPARE_WRITE_LIST_SIZE,

 CFG_BLE_MBLOCK_COUNT,

 CFG_BLE_MAX_ATT_MTU,

 CFG_BLE_SLAVE_SCA,

 CFG_BLE_MASTER_SCA,

 CFG_BLE_LSE_SOURCE,

 CFG_BLE_MAX_CONN_EVENT_LENGTH,

 CFG_BLE_HSE_STARTUP_TIME,

 CFG_BLE_VITERBI_MODE,

 CFG_BLE_OPTIONS,

 0,

 CFG_BLE_MAX_COC_INITIATOR_NBR,

 CFG_BLE_MIN_TX_POWER,

 CFG_BLE_MAX_TX_POWER}

 };

CFG_BLE_NUM_GATT_ATTRIBUTES

Maximum number of attribute records related to all the required characteristics (excluding
the services) that can be stored in the GATT database, for the specific BLE user application.

For each characteristic, the number of attribute records goes from two to five depending on
the characteristic properties:

• minimum of two (one for declaration and one for the value)

• add one more record for each additional property: notify or indicate, broadcast,
extended property.

The total calculated value must be increased by 9, due to the records related to the standard
attribute profile and GAP service characteristics, and automatically added when initializing
GATT and GAP layers

• Min value: <number of user attributes> + 9

• Max value: depending on the GATT database defined by user application

AN5289 Rev 18 97/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

CFG_BLE_NUM_GATT_SERVICES

Defines the maximum number of services that can be stored in the GATT database. Note
that the GAP and GATT services are automatically added at initialization so this parameter
must be the number of user services increased by two.

• Min value: <number of user service> + 2

• Max value: depending GATT database defined by user application

CFG_BLE_ATT_VALUE_ARRAY_SIZE

Size of the storage area for the attribute values.

To calculate CFG_BLE_ATT_VALUE_ARRAY_SIZE, it is necessary to add characteristics
related to default GATT services.

By default, two services are present and must be included, with dedicated characteristics:

• Generic access service: service UUID 0x1800, with its three mandatory characteristics:

– Device name UUID 0x2A00

– Appearance UUID 0x2A01

– Peripheral preferred connection parameters. UUID 0x2A04

• Generic attribute service. UUID 0x1801, with one optional characteristic:

– Service changed UUID 0x2A05

Each characteristic contributes to the attrValueArrSize value as follows:

• Characteristic value length plus:

– 5 bytes if characteristic UUID is 16 bits

– 19 bytes if characteristic UUID is 128 bits

– 2 bytes if characteristic has a server configuration descriptor

– 2 bytes * CFG_BLE_NUM_LINK if the characteristic has a client configuration
descriptor

– 2 bytes if the characteristic has extended properties

Each descriptor contributes to the attrValueArrSize value as follows:

• Descriptor length

CFG_BLE_NUM_LINK

Maximum number of BLE links supported

• Min value: 1

• Max value: 8

CFG_BLE_DATA_LENGTH_EXTENSION

Disable/enable the extended packet length BLE 5.0 feature

• Disable: 0

• Enable: 1

CFG_BLE_PREPARE_WRITE_LIST_SIZE

Maximum number of supported “prepare write request”. The minimum required value can be
calculated using the following DEFAULT_PREP_WRITE_LIST_SIZE macro:

#define DIVC(x, y) (((x) + (y) - 1) / (y))

BT-SIG and proprietary GATT-based BLE application AN5289

98/171 AN5289 Rev 18

/**

 * DEFAULT_ATT_MTU: minimum mtu value that GATT must support.

 * 5.2.1 ATT_MTU, BLUETOOTH SPECIFICATION Version 4.2 [Vol 3, Part G]

 */

#define DEFAULT_ATT_MTU (23)

/**

 * DEFAULT_MAX_ATT_SIZE: maximum attribute size.

 */

#define DEFAULT_MAX_ATT_SIZE (512)

/**

 * PREP_WRITE_X_ATT(max_att): compute how many Prepare Write Request are
needed

 * to write a characteristic with size max_att when the used ATT_MTU value
is

 * equal to DEFAULT_ATT_MTU (23).

 */

#define PREP_WRITE_X_ATT(max_att) (DIV_CEIL(max_att, DEFAULT_ATT_MTU
- 5U) * 2)

/**

 * DEFAULT_PREP_WRITE_LIST_SIZE: default minimum Prepare Write List size.

 */

#define DEFAULT_PREP_WRITE_LIST_SIZE
PREP_WRITE_X_ATT(DEFAULT_MAX_ATT_SIZE)

• Min value: see macros above

• Max value: a value higher than the minimum required can be specified, but it is not
recommended

CFG_BLE_MBLOCK_COUNT

Number of allocated memory blocks for the BLE stack. The minimum required value can be
calculated using the following MBLOCKS_CALC macros:

#define MEM_BLOCK_SIZE (32)

/**

 * MEM_BLOCK_X_MTU (mtu): compute how many memory blocks are needed to
compose an ATT

 * Packet with ATT_MTU = mtu.

 * 7.2 FRAGMENTATION AND RECOMBINATION, BLUETOOTH SPECIFICATION Version 4.2

 * [Vol 3, Part A]

 */

#define MEM_BLOCK_X_TX (mtu) (DIV_CEIL((mtu) + 4U,
MEM_BLOCK_SIZE) + 1U)

#define MEM_BLOCK_X_RX (mtu, n_link) ((DIV_CEIL((mtu) + 4U,
MEM_BLOCK_SIZE) + 2U) * (n_link) + 1)

#define MEM_BLOCK_X_MTU (mtu, n_link) (MEM_BLOCK_X_TX(mtu) +
MEM_BLOCK_X_RX(mtu, (n_link)))

AN5289 Rev 18 99/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

/**

 * Minimum number of blocks required for secure connections

 */

#define MBLOCKS_SECURE_CONNECTIONS (4)

/**

 * MBLOCKS_CALC(pw, mtu, n_link): minimum number of buffers needed by the
stack.

 * This is the minimum racomanded value and depends on:

 * - pw: size of Prepare Write List

 * - mtu: ATT_MTU size

 * - n_link: maximum number of simultaneous connections

 */

#define MBLOCKS_CALC(pw, mtu, n_link) ((pw) + MAX(MEM_BLOCK_X_MTU(mtu,
n_link), (MBLOCKS_SECURE_CONNECTIONS)))

• Min value: see macro above

• Max value: a higher value can improve data throughput performance, but uses more
memory.

CFG_BLE_MAX_ATT_MTU

Maximum ATT MTU size supported.

• Min value: 23

• Max value: 512

CFG_BLE_SLAVE_SCA

The sleep clock accuracy (ppm value) used in BLE connected slave mode to calculate the
window widening (in combination with the sleep clock accuracy sent by master in
CONNECT_REQ PDU), refer to BLE 5.0 specifications - Vol 6 - Part B - chap 4.5.7 and
4.2.2.

• Min value: 0

• Max value: 500 (worst possible admitted by specification)

CFG_BLE_MASTER_SCA

The sleep clock accuracy handled in master mode. It is used to determine the connection
and advertising events timing. It is transmitted to the slave in CONNEC_REQ PDU used by
the slave to calculate the window widening, see CFG_BLE_SLAVE_SCA and [7], v5.0 Vol 6
- Part B - chap 4.5.7 and 4.2.2.

BT-SIG and proprietary GATT-based BLE application AN5289

100/171 AN5289 Rev 18

Possible values:

• 251 ppm to 500 ppm: 0

• 151 ppm to 250 ppm: 1

• 101 ppm to 150 ppm: 2

• 76 ppm to 100 ppm: 3

• 51 ppm to 75 ppm: 4

• 31 ppm to 50 ppm: 5

• 21 ppm to 30 ppm: 6

• 0 ppm to 20 ppm: 7

CFG_BLE_LSE_SOURCE

Source for the 32 kHz slow speed clock.

• External crystal LSE: 0 - No calibration

• Internal RO (LSI): 1 - The accuracy of this oscillator can vary depending upon external
conditions (temperature), hence it is calibrated every second to ensure correct
behavior of timing sensitive BLE operations.

CFG_BLE_MAX_CONN_EVENT_LENGTH

This parameter determines the maximum duration of a slave connection event. When this
duration is reached the slave closes the current connections event (whatever is the
CE_length parameter specified by the master in HCI_CREATE_CONNECTION HCI
command), expressed in units of 625 / 256 µs (~2.44 µs).

• Min value: 0 (if 0 is specified, the master and slave perform only a single TX-RX
exchange per connection event).

• Max value: 1638400 (4000 ms). A higher value can be specified (max 0xFFFFFFFF)
but results in a maximum connection time of 4000 ms as specified. In this case the
parameter is not applied, and the predicted CE length calculated on slave is not
shortened.

CFG_BLE_HSE_STARTUP_TIME

Startup time of the high speed (16 or 32 MHz) crystal oscillator, in units of 625/256 µs
(~2.44 µs).

• Minimum: 0x148 (328 * 2.44 µs = 800 µs), default value

• Maximum: 0x334 (820 * 2.44 µs = 2 ms)

Due to the design of the BLE radio, it is recommended to not modify the default value of this
parameter.

CFG_BLE_VITERBI_MODE

Viterbi implementation in BLE LL reception

• 0: Enabled

• 1: Disabled

AN5289 Rev 18 101/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

CFG_BLE_OPTIONS

This is an 8-bit parameter, each bit enables/disables an option:

• bit 0:

– 1: LL only

– 0: LL + host

• bit 1:

– 1: No service change description

– 0: With service change description

• bit 2:

– 1: Device name read-only

– 0: Device name R/W

• bit 3:

– 1: Extended advertising supported

– 0: Extended advertising not supported

• bit 4:

– 1: CS Algo #2 supported

– 0: CS Algo #2 not supported

• bits 5 and 6: Reserved (must be kept to 0)

• bit 7:

– 1: LE power class 1

– 0: LE power classes 2 and 3

8.6.6 BLE GATT DB and security record in NVM

The GATT record in NVM is composed:

• Per service:

– 2 bytes for handle

– 3 bytes if 16-bit UUID or 17 bytes if 128-bit UUID

• Per characteristic attribute:

– 2 bytes for handle

– 3 bytes if 16-bit UUID or 17 bytes if 128-bit UUID

– 2 bytes for CCCD value (only if the attribute is a CCCD)

The total corresponds to size_of_gatt record. The security record in NVM is fixed, equal to
80 bytes, corresponding to size_of_sec record.

8.6.7 How to calculate the maximum number of bonded devices
that can be stored in NVM

The computation of the number of bonded devices that can be stored in NVM is

N = (total_size_of_nvm – 1) / [(size_of_sec_record + 1) + (size_of_gatt_record + 1)]

with total_size_of_nvm = 507 words (of 4 bytes).

BT-SIG and proprietary GATT-based BLE application AN5289

102/171 AN5289 Rev 18

8.6.8 NVM write access

Refer to Section 4.7.3.

8.6.9 How to maximize data throughput

The maximum data throughput is achieved when GATT server notification is used with the
following link layer parameters:

• Connection interval: 400 ms

• Min_CE_Length = 0 and Max_CE_Length: x280 (400 ms)

Once the connection is established, the master device sends aci_gatt_exchange_config to
get the MAX_ATT_MTU value.

Data exchange is limited to (MAX_ATT_MTU – 3), which corresponds to the maximum
notification length.

• If supported, set the link at 2M

To avoid fragmenting the LE data have, at maximum PDU_length = 247 (251 - 4):

• Use hci_le_set_data_length command hci_le_set_data_length(conn_handle, 251,
2120)

To avoid fragmentation:

• If MAX_ATT_MTU = 250 and le_data_length = 251, max data to transfer = 244
(251 - 4 - 3)

• If MAX_ATT_MTU = 156 and le_data_length = 251, max data to transfer = 153
(156 - 3)

8.6.10 How to add a custom BLE service

In all BLE applications, it is possible to add a custom service in parallel to existing ones
provided either in source code or library. All GAP/GATT events received by the CPU1 are
going to the service controller (svc_ctl.c from \Middlewares\ST\STM32_WPAN\ble\svc\Src)
responsible to initialize all BLE services and to forward GATT events to registered BLE
services. An example of the flow is shown in Figure 24.

Each service must have a custom_xxx.c and custom_xxx.h.

There must be only three public interfaces to provide to the user:

void Custom_xxx_Init(void)

This is implemented in custom_xxx.c and does the following:

• creates the services and add characteristics

• registers the callback to the service controller with the API
SVCCTL_RegisterSvcHandler()

The function SVCCTL_InitCustomSvc() must be implemented in the application to call
Custom_xxx_Init().

The callback registered with SVCCTL_RegisterSvcHandler() is used to receive GATT
events from the service controller. The type of the callback must be
SVCCTL_EvtAckStatus_t (*SVC_CTL_p_EvtHandler_t)(void *p_evt).

Depending upon the BLE service definition, the received GATT event can be processed
only in the custom_xxx.c module or, most of the times, it must be forwarded to the

AN5289 Rev 18 103/171

AN5289 BT-SIG and proprietary GATT-based BLE application

170

application with the notification Custom_xxx_Notification(). Each GATT event is relevant for
only one BLE service. To avoid the service controller to call all registered BLE services to
report the received event, the callback informs the service controller if the GATT has been
processed or ignored.

Three values can be returned:

1. SVCCTL_EvtNotAck: means the GATT event was not relevant for that BLE service.
The service controller keeps reporting this GATT event to other registered BLE
services until it gets an ack. When a GATT event is not acknowledged by all registered
BLE services, it is reported to the application with the notification
SVCCTL_App_Notification().

2. SVCCTL_EvtAckFlowEnable: means the GATT event has been processed and the
service controller does not report it to either other registered BLE services or to the
application.

3. SVCCTL_EvtAckFlowDisable: means the GATT event has been acknowledged and
the service controller does not report it to either other registered BLE services or to the
application. However, the GATT event has not been processed. The service controller
notifies the transport layer that this event shall not be discarded. In that case, the
transport layer does not report any more event until the command hci_resume_flow()
has been called. As soon as the flow is resumed, the not acknowledged event is
reported one more time. These are all BLE user hci events not reported anymore, not
only those to the BLE service that did not acknowledge the GATT event.

tBleStatus Custom_xxx_UpdateChar(Custom_xxx_ChardId_t ChardId, uint8_t *
p_payload)

This API is used by the application to update the characteristic of the server. The mapping
between the ChardId of the interface and the UUID to be sent to the BLE stack must be
implemented in the BLE service.

void Custom_xxx_Notification(Custom_xxx_Notification_t *p_notification)

This API is used to report, when relevant, to the application a GATT event received by the
BLE service.

8.6.11 How to use BLE commands in blocking mode

The two hooks hci_cmd_resp_wait() and hci_cmd_resp_release() are implemented as weak
function in Middleware. With this implementation hci_cmd_resp_wait() polls on a flag set
from the IPCC interrupt context by hci_cmd_resp_release(). This ensures not to enter in idle
mode before receiving the command response. To use BLE commands in blocking mode,
do not redefine these two hooks in the application.

Building a BLE application on top of the HCI layer interface AN5289

104/171 AN5289 Rev 18

9 Building a BLE application on top of the HCI layer
interface

CPU2 can be used as a BLE HCI layer co-processor. In that case, the user must either
implement its own HCI application, or use an existing open source BLE host stack.

Most BLE host stacks use a UART interface to communicate with a BLE HCI co-processor.
The equivalent physical layer on the STM32WB device is the mailbox, as described in
Section 14.2: Mailbox interface.

The mailbox provides an interface for both the BLE and the System channel. The BLE host
stack builds the command buffer to be sent over the BLE channel on the mailbox and must
provide an interface to report the events received through the mailbox. In addition to the
mailbox BLE host stack adaptation, the user must notify the mailbox driver when an
asynchronous packet is be released.

The system channel is not handled by a BLE host stack. The user must implement its own
transport layer to build the System command buffer to be sent to the mailbox driver and to
manage the event received from the mailbox (including the notification to release an
asynchronous buffer to the mailbox driver), or use the mailbox extended driver (as
described in Section 14.3: Mailbox interface - Extended), which provides an interface on top
of the provided transport layer which builds the System command buffer and to manage the
system asynchronous event.

The BLE_TransparentMode project can be used as an example to build an application on
top of a BLE HCI layer co-processor using the mailbox as described in Section 14.2:
Mailbox interface.

AN5289 Rev 18 105/171

AN5289 Thread

170

10 Thread

10.1 Overview

The Thread stack embarked in CPU2 core is provided by OpenThread, an open-source
implementation of the Thread networking protocol, and is released by Nest.

OpenThread provides several APIs that address different services at different levels inside
the stack. All these APIs (documented in the STM32WB firmware package) are exported on
CPU1 core and can be used directly by the application.

The STM32WB firmware package is provided with several examples demonstrating how to
run simple Thread applications. To run these applications, the appropriate CPU2 firmware
binary need to be downloaded.

There are three major MO firmwares available, as detailed in Table 28.

10.2 How to start

The easiest way to start with Thread is to use the two following applications:

• Thread_Cli_Cmd: shows how to control the Thread stack via CLI commands. The CLI
(command line interface) commands are sent via an UART from a HyperTerminal (PC)
to the board and can be used to create simple use-cases. This is the application used
for running certification tests (Thread GRL test harness)

• Thread_Coap_Generic: requires two P-NUCLEO-WBxx boards. It shows a board
exchanging CoAP messages with the other one. In this application, one device is
acting as leader and the other one is acting as end device or router.

These two applications are provided in the STM32WB firmware package with an associated
readme.txt file.

Table 28. MO firmwares available for Thread

CPU2 firmware library Features Comment

stm32wb5x_Thread_FTD_fw.bin
FTD:
Full Thread device

The device can support all Thread roles
except border router (leader, router, end
device, sleepy end device). Thread roles
are described in Section 14.10.5.

stm32wb5x_Thread_MTD_fw.bin
MTD:
Minimal Thread device

The device can act only as ‘end device’ or
‘sleepy end device’.
The MTD configuration requires less
memory than the FTD configuration.

stm32wb5x_BLE_Thread_static_fw.bin Static concurrent mode
The device embeds the two stacks (BLE
and Thread) in a single binary for static
concurrent mode.

stm32wb5x_BLE_Thread_dynamic_fw.bin Dynamic concurrent mode
The device embeds the two stacks (BLE
and Thread) in a single binary for
dynamic concurrent mode.

Thread AN5289

106/171 AN5289 Rev 18

10.3 Thread configuration

Before starting any Thread application, the user must download the appropriate firmware
(Thread MTD, Thread FTD or Thread Static mode), and use the correct option bytes.

Figure 37. User option bytes setting

Caution: The OpenThread stack provides several compilation flags to set different configurations.
Nevertheless, since the stack inside the STM32WB is delivered as a binary, those flags are
fixed and cannot be modified by the user. The selected flags can be seen in the files listed in
Table 29.

When building a Thread application, the appropriate configuration file must be used
depending on the downloaded CPU2 firmware. The flags inside this configuration file are
used to define which APIs are exported and available for CPU1 application. As mentioned
before, these flags must not be modified by the user.

10.4 Architecture overview

Figure 38 shows the overall software architecture with the two BLE and Thread stacks. All
the code running on CPU2 is delivered as a binary library. The customer has only access to
CPU1 core and sees the firmware running on CPU2 as a black box. Both the ACI and the
Thread interfaces allow the user to access, respectively, the BLE and the Thread task.

Table 29. Files for Thread configuration

File name Configuration

openthread_api_config_ftd.h To be used with the Thread FTD CPU2 firmware

openthread_api_config_mtd.h To be used with the Thread MTD CPU2 firmware

openthread_api_config_concurrent.h To be used with Static concurrent mode CPU2 firmware

AN5289 Rev 18 107/171

AN5289 Thread

170

Figure 38. Software architecture

10.5 Inter core communication

All OpenThread APIs are exposed to CPU1 and can be used to control the stack running on
CPU2. The STM32WB middleware manages the communication between the two cores.

When the application calls an OpenThread function, a synchronous message is sent to
CPU2 via IPCC. The parameters associated with this function are stored in shared memory.

OpenThread functions calls are put on hold until the command is completed to ensure that
the overall system stays synchronized (see Figure 39). The application can register
callbacks to be notified on specific events. These notifications are also put on hold, as
shown in Figure 40.

MS52415V

CPU2

802.15.4 radio

M0 firmware

CPU1

ACI interface

Profiles Services

Application

OpenThread stack

UDP + TLS

CoAP

BLE radio

BLE stack

Link layer

L2CAP

802.15.4 MACOT 802.15.4 MACBT MAC

HostCtl interface

Routing

SMP

GATT, GAP

ATT

IPVS

6LowPan

Thread
interface

802.15.4 MAC
interface

Infrastructure

802.15.4

BLE IP

R
adio

IPx

UARTs

Timers

IPCC

AES
(802.15.4)

Zigbee
interface

Thread AN5289

108/171 AN5289 Rev 18

Figure 39. OpenThread functions calls

Figure 40. OpenThread callback

10.6 OpenThread API

OpenThread defines several APIs addressing different services at different level inside the
stack:

• Functions used to manage CoAP services: otCoapStart(), otCoapSendRequest()

• Functions used to manage UDP datagrams: otUdpOpen() otUdpConnect()

• Functions that manage the radio configuration: otLinkSetChannel()

• Functions that manage the IPV6 addresses: otIp6AddUnicastAddress()

In total, there are more than 300 functions available. These APIs are described in the
STM32WBxx_OpenThread_API_User_Manual.chm available in the STM32WB firmware
package.

MS52422V1

otXXX() call

otXXX() processingWaiting until the completion of the command

Waiting until the completion of the command otYYY() processing
otYYY() call

CPU1 (Cortex M4) CPU2 (Cortex M0+)

MS52423V1

ot callback

Waiting until the callback is acknowledged by CPU1

CPU2 (Cortex M0+)CPU1 (Cortex M4)

AN5289 Rev 18 109/171

AN5289 Thread

170

Figure 41. OpenThread stack API directory structure

10.7 Usage of the OpenThread APIs

The OpenThread APIs can be used as if the system is running on a single processor. The
Thread interface hides all the multicore mechanisms (IPCC, shared memory), allowing the
CPU1 to access to the OpenThread stack running on CPU2.

There are nevertheless two specificities linked to the way the STM32WB implements the
OpenThread interface, described in the next subsections.

10.7.1 OpenThread instance

A lot of OpenThread APIs use the parameter aInstance as input, which defines the
OpenThread instance, in bold in the example of the function otThreadSetEnabled() below:

otThreadSetEnabled(otInstance *aInstance, bool aEnabled)

In the STWM32WB Thread implementation, the OpenThread instance is directly allocated at
the start of CPU2 firmware. CPU1 does not need to take care of this parameter, is always
set to NULL (see the bold type in the code fragment below).

error = otThreadSetEnabled(NULL, true);

 if (error != OT_ERROR_NONE)

 {

 APP_THREAD_Error(ERR_THREAD_START,error);

 }

}

10.7.2 OpenThread call back management

In the STWM32WB thread implementation, the callbacks passed as parameters inside
OpenThread functions do not follow the exact prototype of the standard OpenThread

Thread AN5289

110/171 AN5289 Rev 18

function. This is due to the dual core architecture constraints. The application callback must
be passed in the context parameter, as shown in Figure 42.

Figure 42. OpenThread callback management

Note: The easiest way to see how OpenThread callbacks are managed is to refer to the different
applications provided in the STM32WB firmware delivery.

10.8 System commands for Thread applications

Some commands can be called from the Thread applications:

• SHCI_C2_THREAD_Init(): starts the Thread stack. Called at the end of initialization
phase.

• SHCI_C2_FLASH_StoreData(): stores the nonvolatile Thread data in the flash
memory. It is the application that decides when data must be stored (e.g. after the
commission phase, or after network configuration).

Note: This operation can take several seconds and must be called only when there is no Thread
activity.

• SHCI_C2_FLASH_EraseData(): Erases the nonvolatile Thread data from the flash
memory.

Note: This operation can take several seconds and must be called only when there is no Thread
activity.

• SHCI_C2_CONCURRENT_SetMode(): enables or disables Thread activity on CPU2
for Concurrent mode.

• SHCI_C2_RADIO_AllowLowPower(): allows or forbids the 802_15_4 radio IP from
entering in Low-power mode.

• SHCI_GetWirelessFwInfo(): reads the informations relative to the loaded wireless
binary.

MS52424V1

void APP_THREAD_DummyRespHandler(
void * p_context,

otCoapHeader * pHeader,
otMessage * pMessage,

const otMessageInfo * pMessageInfo,
otError Result)

{
UNUSED(p_context);
UNUSED(pHeader);
UNUSED(pMessage);
UNUSED(pMessageInfo);
UNUSED(Result);

}

error = otCoapSendRequest(NULL,
pOT_Message,

& OT_MessageInfo,
& APP_THREAD_DummyRespHandler,
(void*)&APP_THREAD_CoapRespHandler);

otError otCoapSendRequest(otInstance * aInstance,
otMessage * aMessage,
const otMessageInfo * aMessageInfo,

otCoapResponseHandler aHandler,
void * aContext);

void APP_THREAD_CoapRespHandler(otCoapHeader *pHeader,
otMessage * pMessage,

const otMessageInfo *pMessageInfo,
otError Result)

{
if (Result == OT_ERROR_NONE)

APP_DBG_MSG(" ********* The COAP has been well acknowledged “)
else

APP_THREAD_Error(ERR_THREAD_RESPONSE_HANDLER, Result)
}

Function CALL (example)

Function prototype

AN5289 Rev 18 111/171

AN5289 Thread

170

10.8.1 Non-volatile Thread data

According to the Thread specification, several values must be stored in the flash memory to
reuse them later on. These values concern the following entities:

1. Active operational dataset:

Written whenever a new active operational dataset is received. This only occurs when
the commissioner or other external entity updates the active operational dataset.

2. Pending operational dataset:

Written whenever a new pending operational dataset is received. This only occurs
when the commissioner or other external entity updates the pending operational
dataset.

3. Network info:

Written whenever the device role changes (i.e. detached, child, router, leader). Written
whenever the MAC and/or MLE frame counter increments beyond a specific threshold.

4. Parent info:

Written whenever a child attaches to a parent.

5. Child info:

Written whenever a child is added/removed from the child table.

After reset, the nonvolatile Thread dataset is automatically read from the flash memory.
During run time, OpenThread regularly stores and updates this nonvolatile data in an
internal SRAM buffer (see Figure 43). It is up to the application to force the copy of this
nonvolatile data to the flash memory, using the function SHCI_C2_FLASH_StoreData().
This operation blocks the access to the flash memory (and so to the CPU), hence it must be
done when there are no real time constraints (for instance after a Thread stop).

Note: The function SHCI_C2_FLASH_StoreData() is automatically triggered after a call to
otInstanceReset () or otInstanceFactoryReset.

Figure 43. Storage of non-volatile data

MS51872V1

Tmp SRAM buffer Flash storageSTM32WB SW

Reading the NV thread data

Call to SHCI_C2_FLASH_StoreData

Thread processing

Boot

Thread AN5289

112/171 AN5289 Rev 18

10.8.2 Low-power support

To reach the minimal power consumption, the device must be put in SED (sleepy end
device) mode, waking up to poll for messages from its parent or to send data. For most of
the time the device sleeps and enters automatically in Low-power mode. Low-power Thread
devices can sleep and operate on battery power for years.

When the system is in Low-power mode, as soon as the application sends an otCmd, the
systems wakes up, executes the command and goes back in Low-power mode. If an
application sends multiple otCmd sequentially, the system wakes up and goes back to sleep
at high frequency. To avoid the risk of having multiple unneeded short wake-up/sleep cycles,
the application allows or forbids the radio to enter Low-power mode via the function
SHCI_C2_RADIO_AllowLowPower(). An example of this function is provided in the
application named Thread_SED_Coap_Multicast.

AN5289 Rev 18 113/171

AN5289 Step by step design of an OpenThread application

170

11 Step by step design of an OpenThread application

This section provides information and code examples on how to design and implement an
OpenThread application on a STM32WB device.

11.1 Initialization phase

Several steps are mandatory to initialize the STM32WB Thread application:

• Initialize device (HAL, reset device, clock and power configuration)

• Configure platform (e.g. button, LED)

• Configure hardware (e.g. UART, debug)

• Start CPU2, then have it send System notification to the application (on CPU1 side)

• On receiving the notification, the application starts the Thread configuration.

11.2 Set-up the Thread network

In the Thread applications provided in the firmware package, the setup of the Thread
network is always done with the same function: APP_THREAD_DeviceConfig()

This function processes the following steps:

• Erase persistent Thread parameters to perform a clean start:
otInstanceErasePersistentInfo()

• Register application callbacks that are called by the OpenThread stack when the role of
the node is changed. (e.g. when the node becomes router). Operation performed using
otSetStateChangedCallback()

• Set the channel: otLinkSetChannel()

• Set the PANID: otLinkSetPanId()

• Enable IPv6 communication: otIp6SetEnabled()

• Start the CoAP server: otCoapStart()

• Add a CoAP resource to the CoAP Server: otCoapAddResource()

• Start the Thread protocol operation: otThreadSetEnabled()

After these steps

• If the board is first one on this Thread network, the node becomes a leader (green LED
on in Thread for example).

• If a leader is already present on the network, the node joins as a router or child (red
LED on in Thread for example).

11.3 CoAP request

The constrained application protocol (CoAP) is a specialized web transfer protocol for use
with constrained nodes and networks (such as low-power, lossy).

CoAP provides a request/response interaction model between application endpoints,
supports built-in discovery of services and resources, and includes key concepts of the web
such as URIs and Internet media types.

Step by step design of an OpenThread application AN5289

114/171 AN5289 Rev 18

Note: This section does not detail all the OpenThread APIs related to CoAP, but gives an overview
of the main functions and abstractions available as part of STM32WB Thread examples.

11.3.1 Creating an otCoapResource

The Coap resource has the following structure:

typedef struct otCoapResource

{

 const char * mUriPath; ///< The URI Path string

 otCoapRequestHandler mHandler; ///< The callback for handling a
received request

 void * mContext; ///< Application-specific context

 struct otCoapResource *mNext; ///< The next CoAP resource in the list

} otCoapResource;

This structure can be initialized as shown in the different Thread Coap application examples
provided inside the firmware package

#define C_RESSOURCE "light"

static otCoapResource OT_Ressource = {C_RESSOURCE,
APP_THREAD_CoapRequestHandler,"MyOwnContext", NULL};

Up to 100 different resources can be allocated in parallel per device.

11.3.2 Sending a CoAP request

The application Thread_Coap_Generic proposes an abstraction layer to facilitatesending
CoAP requests. This is done using the following function:

static void APP_THREAD_CoapSendRequest(otCoapResource* pCoapRessource,

 otCoapType CoapType,

 otCoapCode CoapCode,

 const char *Address,

 uint8_t* Payload,

 uint16_t Size)

11.3.3 Receiving a CoAP request

It is called when the server receives a CoAP request.

The prototype of a CoAP request handler is as follows:

static void APP_THREAD_CoapRequestHandler(otCoapHeader * pHeader,

 otMessage * pMessage,

 const otMessageInfo * pMessageInfo)

In this function, the user can read the received message by calling the following function:

otMessageRead()

If the type of the message is confirmable (using otCoapHeaderGetType()), a CoAP
response must be sent (see Section 12.3: Thread_Coap_Generic for examples).

AN5289 Rev 18 115/171

AN5289 Step by step design of an OpenThread application

170

11.4 Commissioning

Commissioning requires a device with the commissioner role, and another with the joiner
role. The commissioner is either a Thread device in an existing network, or a device external
to the Thread network (such as a mobile phone) that performs the role.

The joiner is the device wishing to join the Thread network.

A Thread commissioner is used to authenticate a device on the network. It does not transfer,
nor have possession of Thread network credentials such as the master key.

This document covers basic, on-mesh commissioning without an external commissioner or
border router.

Thread_Commissioning application demonstrates a simple commissioning example.

11.5 CLI

The OpenThread stack exposes configuration and management APIs via a command line
interface.

The certification environment (GRL test harness) uses the CLI to execute test cases.

Figure 44. Configurable CLI UART (LPUART or USART)

Step by step design of an OpenThread application AN5289

116/171 AN5289 Rev 18

11.6 Traces

Traces from CPU1 and CPU2 applications are routed to the UART (configured at
compilation time using app_conf.h file).

Figure 45. Traces for Thread applications

OpenThread stack trace levels are dynamically configurable via OpenThread APIs using
otSetDynamicLogLevel().

AN5289 Rev 18 117/171

AN5289 STM32WB OpenThread application

170

12 STM32WB OpenThread application

12.1 Thread_Cli_Cmd

This application shows how to control the OpenThread stack via Command lines.

CLI commands are sent via a UART from an HyperTerminal (PC) to the
STM32WBxx_NUCLEO board.

This is the application used for certification process.

12.2 Thread_Coap_DataTransfer

This application demonstrates how to transfer large blocks of data using CoAP messaging
protocol.

In this application the mesh-local scope and multicast addressing types are used to probe
the mesh-local IP addresses of the child devices to which the file is transferred.

Nodes are split into two forwarding roles: router or end device.

In this application, which uses two devices, one acting as a leader (router) and the other one
as an end device (child mode).

After the reset of the two boards, one of them is in leader mode (green LED2 on) and the
other one in child mode (red LED3 on).

Once the child mode is established for one of the devices, it starts the provisioning
procedure in multicast mode to probe the IP address of the leader device.

Then this is used to start the file transfer procedure in unicast mode, the successful
operation is signaled by the lightening of the blue LED.

12.3 Thread_Coap_Generic

This application demonstrates the use of CoAP messages. It provides the abstraction level
to send CoAP multicast request.

This application requires two STM32WB boards. The objective is to demonstrate both
boards exchanging CoAP messages with each other. In this application, one board is acting
as leader and the other one is acting as end device or router.

12.4 Thread_Coap_Multiboard

This application shows how to use CoAP to send messages to multiple boards in a unicast
way. It is designed to use from two to five STM32WBxx_NUCLEO boards.

The purpose of this application is to create a small Thread mesh network.

When the setup is correctly configured, a CoAP request is automatically and continuously
transferred from one board to next in the following order:

• Board 1 → Board 2 → (...) → Board n → Board 1 → …

STM32WB OpenThread application AN5289

118/171 AN5289 Rev 18

To each board is associated a specific IPv6 address:

• fdde:ad00:beef:0:442f:ade1:3fc:1f3a for board number 1

• fdde:ad00:beef:0:442f:ade1:3fc:1f3b for board number 2

• fdde:ad00:beef:0:442f:ade1:3fc:1f3c for board number 3 if present

• fdde:ad00:beef:0:442f:ade1:3fc:1f3d for board number 4 if present

• fdde:ad00:beef:0:442f:ade1:3fc:1f3e for board number 5 if present

12.5 Thread_Commissioning

This application demonstrates the commissioning process between a commissioner and a
joiner.

It shows a device distributing its Thread parameters (channel, panid, masterkey) to another
device using to the commissioning process.

This application requires two STM32WBxx_NUCLEO boards.

One device acts as commissioner and the other one as joiner.

In this application, the commissioner accepts a newcomer in its Thread network.

12.6 Thread_FTD_Coap_Multicast

This application demonstrates the use of CoAP multicast message for Full Thread devices.

Note: To be used with Thread FTD CPU2 binary.

This application uses two devices, one device acts as a leader (router) and the other one as
end device (child mode).

After the reset of the two boards (named respectively A and B), one board is in leader mode
(green LED2 on), the other one in child mode (red LED3 on).

To send a CoAP command from board A to board B, press the SW1 pushbutton on board A.
Board B receives the CoAP command to turn on its blue LED1. Pressing again the same
push-button turns the blue LED1 off.

Same CoAP commands can be sent from board B to board A.

12.7 Thread_SED_Coap_Multicast

This application demonstrates the use of CoAP multicast message sent from a sleepy end
device.

Note: To be used with Thread MTD CPU2 binary.

Two boards are needed for the proposed use case:

• One board acts as a leader (router) in FTD mode (board A)

• The other one acts as a SED in MTD mode (board B).

The board acting as a leader must be flashed with the FTD application: use the application
“Thread_FTD_Coap_Multicast” + Thread FTD binary on CPU2.

AN5289 Rev 18 119/171

AN5289 STM32WB OpenThread application

170

The board acting as a SED must be flashed with the MTD application
“Thread_SED_Coap_Multicast” + Thread MTD binary on CPU2.

After the two boards are reset, one board (A) automatically reaches the leader mode (green
LED2 on) and the other one (B) the SED mode (red LED3 on) a few seconds later.

At this stage, these two boards belong to the same Thread network and device 2 sends a
CoAP multicast request every second to device 1 to turn on/off its blue LED.

12.8 Thread FUOTA

12.8.1 Principle

The goal is to use Thread protocol to update CPU1 application binary or CPU2 wireless
coprocessor binary on a remote device.

Figure 46. Thread FUOTA network topology

This thread requires at least two STM32WBxx boards (see Figure 46) running Thread
protocol with specific applications:

• one board running Thread_Ota_Server application

• one or more boards running Thread_Ota application

FUOTA process can take place only on one device at a time.

The server initiates a FUOTA provisioning process and one client must respond to it.
Multiple clients are updated one at the time.

12.8.2 Memory mapping

Server side

The binary file to be installed (either for CPU1 or for CPU2 update) on remote device has to
be flashed first on the “FREE” memory region on the Server side (see Figure 47).

Maximum size of the binary to be transferred is equal to:

FREE region size = SFSA Address - (FLASH_BASE - 0x8010000)

MS52679V1

. . .

CPU1: Thread_Ota_Server + binary to be sent
CPU2: Thread_FTD

CPU1: Thread_Ota
CPU2: Thread_FTD or Thread_MTD

STM32WB OpenThread application AN5289

120/171 AN5289 Rev 18

Figure 47. OTA server (Thread_Ota_Server) flash memory mapping

Client side

On the client side, before receiving the binary from the server, the flash memory is as shown
in Figure 48.

Figure 48. FUOTA client flash memory mapping initial state

MS52680V1

FUS

Wireless FW

Free

Thread_Ota_Server

Se
cu

re
d

N
on

 s
ec

ur
ed

FLASH_BASE + FLASH_SIZE

SFSA (security boundary set by OB)

FLASH_BASE

FLASH_BASE + 0x10000

Binary to send to remote
Thread device must be located
in this memory region.
Flash it (using ST-Link) at
address 0x08010000

MS52681V1

FUS

Wireless FW

Free

Thread_Ota

Se
cu

re
d

N
on

 s
ec

ur
ed

FLASH_BASE + FLASH_SIZE

SFSA (security boundary set by OB)

FLASH_BASE

FLASH_BASE + 0x10000

Binary for firmware update is
flashed here, starting from
FLASH_BASE + 0x10000

AN5289 Rev 18 121/171

AN5289 STM32WB OpenThread application

170

After it has received the binary data from server side, the flash memory is updated as shown
in Figure 49 and Figure 50, respectively, for CPU1 binary transfer and CPU2 binary transfer.

Figure 49. FUOTA server flash memory mapping after CPU1 binary transfer

Figure 50. FUOTA server flash memory mapping after CPU2 binary transfer

MS52682V1

FUS

Wireless FW

Free

Thread_Ota

Se
cu

re
d

N
on

 s
ec

ur
ed

FLASH_BASE + FLASH_SIZE

SFSA (security boundary set by OB)

FLASH_BASE

FLASH_BASE + 0x10000

Encrypted coprocessor
wireless binary has been
transferred and flashed.
Reboot on FUS, which will
install it in a secure Flash
memory region.

stm32wb5x_Thread
_FTD_fw.bin

MS52682V1

FUS

Wireless FW

Free

Thread_Ota

S
ec

ur
ed

N
on

 s
ec

ur
ed

FLASH_BASE + FLASH_SIZE

SFSA (security boundary set by OB)

FLASH_BASE

FLASH_BASE + 0x10000

Encrypted coprocessor
wireless binary has been
transferred and flashed.
Reboot on FUS, which will
install it in a secure Flash
memory region.

stm32wb5x_Thread
_FTD_fw.bin

STM32WB OpenThread application AN5289

122/171 AN5289 Rev 18

12.8.3 Thread FUOTA protocol

This is a STMicroelectronics proprietary protocol to update CPU2 wireless coprocessor
binary or CPU1 FW application using Thread, based on CoAP request.

Figure 51 details the steps to perform the firmware update transfer.

Figure 51. Thread FUOTA protocol

1. Server sends a message to record the address of the remote device on which FUOTA
is processed.
Server sends a multicast, Non-Confirmable, Get CoAP request on resource:
“FUOTA_PROVISIONING”
The remote device answers with the Mesh Local Eid (Endpoint IDentifier), which
identifies a Thread interface, independent from the network topology.

2. OtaContext data structure is sent to the remote device. It contains:

– File type: FW_APP update or FW_COPRO_WIRELESS update

– Binary size: size in bytes of the binary to be transferred

– Base address: start address in flash memory for remote device to copy binary data
to

– Magic keyword: keyword specifying end of the binary

3. Transfer binary to remote device.
The transfer is performed by buffers of FUOTA_PAYLOAD_SIZE (default 400 bytes).
This is configurable on Server side.

MS52685V1

End of transfer?

Yes

No

FUOTA_PROVISIONING

Address of the device (MeshLocalEid)

FUOTA_PARAMETERS

ACK

FUOTA_SEND

ACK

First step: Provisioning
(get address of the

device to be updated)

Second step: Send FUOTA
parameters to remote device

(OtaContext)

Third step: Send FUOTA binary data
FUOTA_PAYLOAD_SIZE

(typically 400 bytes on each transfer)

Thread_Ota_Server (server) Thread_Ota (client)

Client must check FUOTA
parameters and decide if
transfer can be done,
depending on its
capabilities (e.g. free
memory vs. binary size)

Write received data in Flash
memory starting at
FLASH_BASE + 0x10000,
incremented each time a
new buffer is received

At the end of binary transfer
(magic keyword found in
received data) start
boot/startup procedureTransfer completed

AN5289 Rev 18 123/171

AN5289 STM32WB OpenThread application

170

For each transfer, Thread_Ota_Server waits for acknowledgment from the remote
device before continuing the next buffer transfer.

On the remote side, each data buffer received is written to flash memory.

When magic keyword is found, it means that this is the last buffer to transmit.

12.8.4 FUOTA application startup procedure

Once binary data has been transferred to the remote device (Thread FUOTA client), the
startup procedure is different for the update of a CPU1 application or of CPU2 coprocessor
wireless binary.

FUOTA for CPU1

On the client side after the binary transfer is completed, the process shown in Figure 52
takes place to jump on OTA specific application (example: Thread_Coap_Generic_Ota):

Figure 52. FUOTA startup procedure

FUOTA for CPU2

CPU2 update involves FUS (firmware upgrade service) software component, which is
responsible to decrypt and install secure binary.

MS52683V1

Boot

SW reset source

Boot mode
from SRAM1

Update CPUVTOR register to set new vector table address
Set MSP to the value from the application
Jump to reset handler for application

Update SRM1 to delete all
sectors part of the FW application

FW
application
available

Start OTA application:
• Delete sectors according to info from SRAM1
• Start CoAP resources related to OTA

YesYes

No

Application

OTA

No

STM32WB OpenThread application AN5289

124/171 AN5289 Rev 18

Figure 53. Update procedure

12.8.5 Applications

Thread_Ota_Server

This application must be loaded on STM32WB 1Nucleo board acting as FUOTA server.

Thread_Ota

This application must be loaded on STM32WB Nucleo board acting as FUOTA client.

MS52684V1

FUS running
on CPU2?

Reboot on FW
application

SRAM1_BASE =
CFG_REBOOT_ON_CPU2

_UPGRADE

FUS FW update completed. Ask to reboot on FW application.

Yes
Yes

No

No

No

Boot

Start CPU2

Download complete on Flash memory.
For CPU2 update request it to reboot on FUS.

APPE_SysEvtReadyProcessing

SRAM1_BASE =
CFG_REBOOT_ON_CPU2

_UPGRADE

Run FUS FW upgrade
SRAM1_BASE = CFG_REBOOT_
ON_CPU2_UPGRADE

Run OTA
application

CPU2

Events from CPU2: FUS running

AN5289 Rev 18 125/171

AN5289 STM32WB OpenThread application

170

Thread_Coap_Generic_Ota

This application is almost identical to Thread_Coap_Generic, the differences are:

• Use special tags (to manage end data transfer and data consistency):

– TAG_OTA_END: the Magic keyword value is checked in the thread_ota
application

– TAG_OTA_START: the Magic keyword address shall be mapped at 0x140 from
start of the binary image

Therefore, by reading memory content at 0x140 it must be equal to the Magic keyword
value.

• Scatter file must be updated to place the sections above

Example for IAR:
Vector table and ROM start @ moved to 0x08010000:

define symbol __ICFEDIT_intvec_start__ = 0x08010000;

define symbol __ICFEDIT_region_ROM_start__ = 0x08010000;

define region OTA_TAG_region = mem:[from
(__ICFEDIT_region_ROM_start__ + 0x140) to
(__ICFEDIT_region_ROM_start__ + 0x140 + 4)];

keep { section TAG_OTA_START};

keep { section TAG_OTA_END };

place in OTA_TAG_region { section TAG_OTA_START };

place in ROM_region { readonly, last section TAG_OTA_END };

MAC IEEE Std 802.15.4-2011 AN5289

126/171 AN5289 Rev 18

13 MAC IEEE Std 802.15.4-2011

13.1 Overview

MAC IEEE Std 802.15.4-2011 layer is embedded by the MAC dedicated firmware running
on CPU2 core (Radio protocol processor). The MAC layer relies on the PHY layer, which
addresses the RF subsystem component.

As this implementation is provided in binary format and running on CPU2, the MAC API is
exposed to CPU1 core to let user address MAC service access points. The user can then
set up its STM32WB device as an FFD (full feature device, or coordinator), or as an RFD
(reduced feature devices, or nodes) as described in IEEE Std 802.15.4-2011 specification
document.

13.2 Architecture

Figure 54 shows the MAC software architecture used when the customer expects to
implement an in house 802.15.4 network by integrating a custom solution or a third party
solution on the application processor.

Figure 54. MAC 802.15.4 software architecture

13.3 API

The MAC IEEE Std 802.15.4-2011 specification document defines an interface between
802.15.4 network layers and the medium access control layer. This API allows the user to
address the MAC management entity service called MLME (MAC sub - Layer management
entity) as the MAC data service called MCPS (MAC common part sub layer entity).

AN5289 Rev 18 127/171

AN5289 MAC IEEE Std 802.15.4-2011

170

A MAC API dedicated to the application core with its associated implementation is available
from the middleware provided under \Middlewares\ST\STM32_WPAN\mac_802_15_4 (see
Figure 55).

Figure 55. MAC API dedicated to application core

This implementation is documented in STM32WBxx_MAC_802_15_4_User_Manual.chm
available under Firmware\Middlewares\ST\STM32_WPAN\mac_802_15_4 directory of the
STM32WB FW package. Detailed primitive descriptions are accessible through the IEEE
Std 802.15.4-2011 document.

13.4 How to start

13.4.1 Board configuration

Ensure that the option bytes are set as in Figure 56.

Figure 56. Option bytes configuration for MAC 802.15.4

MAC IEEE Std 802.15.4-2011 AN5289

128/171 AN5289 Rev 18

13.4.2 MAC radio protocol processor CPU2 firmware

The user first needs to download the appropriate dedicated MAC firmware binary for CPU2
radio protocol core, see Release_Notes.html located in
Firmware\Projects\STM32WB_Copro_Wireless_Binaries directory of the STM32WB FW
package.

13.4.3 MAC application processor firmware

Before implementing a custom stack solution or integrating a third party stack provided for
CPU1 application core MAC API, the user can ramp-up with the MAC application example
referring to the two following applications that have to run simultaneously on two STM32WB
boards:

• Mac_802_15_4_FFD: shows how to implement a simple 802.15.4 coordinator. This
device manages the network as association request and gets or provides data on node
demand.

• Mac_802_15_4_RFD: shows how to implement a simple 802.15.4 node. This device
emits an association request to the coordinator. Once the addressed coordinator
positively responds to the request, the node receives its new short address and then
emits data to the coordinator.

Figure 57. MAC 802.15.4 simple application

Both applications, dedicated to Nucleo STM32WB boards, are available from
NUCLEO-WBxx.Nucleo application Mac_802_15_4 directories (see Figure 58).

AN5289 Rev 18 129/171

AN5289 MAC IEEE Std 802.15.4-2011

170

Figure 58. MAC 802.15.4 applications - Directory structure

A readme.txt file describes the MAC sequence handled by each 802.15.4 devices. The files
are available from each root projects.

13.4.4 Output

The user can use an OTA sniffer, on the right channel, to listen to the negotiation between
the two boards during the association phase and to watch the data exchange once the node
is registered in network managed by the coordinator.

Application traces are routes to the UART. User can then start a HyperTerminal session,
using a preferred terminal emulator, on each of the implemented Virtual COM port to check
every MAC step.

The TTY Session configuration to connect console:

• Baud: 115200

• Data bits: 8

• Stop bits: 1

• Parity: None

• Flow control: XON/XOFF.

Running the two applications leads to the Hyper terminal shown in figures 59 to 61.

MAC IEEE Std 802.15.4-2011 AN5289

130/171 AN5289 Rev 18

Figure 59. Coordinator start

Figure 60. Node start, requesting association, and data send

Figure 61. Coordinator receiving association request and data

13.4.5 MAC IEEE Std 802.15.4-2011 system

This is currently the implemented MAC system command.

SHCI_C2_MAC_802_15_4_Init() starts the MAC layer and RF subsystem on radio
processor (CPU2).

Non-volatile data are not guaranteed by the MAC layer. It is up to the application upper layer
to ensure that these data are kept in the flash memory, and to restore those to be used later
on.

Low power feature is not supported.

13.4.6 Integration recommendations

The MAC layer offers service primitives by implementing an abstraction layer. This
abstraction layer, described in MAC IEEE Std 802.15.4-2011 specification documentation, is
illustrated in Figure 62.

AN5289 Rev 18 131/171

AN5289 MAC IEEE Std 802.15.4-2011

170

Figure 62. MAC 802.15.4 layer abstraction

The proposed API lets the user call REQ and RES primitives with associated defined
structure initialized from the upper layer. To get notification from the MAC layer, custom call
function have to be implemented called MAC indication (IND) or MAC confirmation (CNF).

Request and Response examples

• Set the short address of the current device

• Call MAC_MLMESetReq with initialized SetReq structure storing the short address to
set.

 // Set Device Short Address

 uint16_t shortAddr = 0x1122;

 SetReq.PIB_attribute = g_MAC_SHORT_ADDRESS_c;

 SetReq.PIB_attribute_valuePtr =(uint8_t*) &shortAddr;

 MacStatus = MAC_MLMESetReq(&SetReq);

• Respond to an association indication

When an assocation is requested, a coordinator can respond by providing the response with
a short address to the requester:

• Call MAC_MLMEAssociateRes with initialized AssociateRes structure storing the
attributed short address.

APP_DBG("Srv task : Response to Association Indication");

 MAC_associateRes_t AssociateRes;

uint16_t shortAssociationAddr = 0x3344;

memcpy(AssociateRes.a_device_address,g_MAC_associateInd.a_device_address,0
x08);

memcpy(AssociateRes.a_assoc_short_address,&shortAssociationAddr,0x08);

AssociateRes.security_level = 0x00;

AssociateRes.status = MAC_SUCCESS;

MacStatus = MAC_MLMEAssociateRes(&AssociateRes);

MS52425V1

Service user

Service provider

Service user

Request (REQ) Indication (IND)

Response (RES)Confirm (CNF)

MAC IEEE Std 802.15.4-2011 AN5289

132/171 AN5289 Rev 18

• Confirmation and indication examples

To be notified of confirmation or indication messages from lower MAC Layer, the user must
register custom callbacks in MAC_callbacks_t macCbConfig (example provided in
app_ffd_mac_802_15_4.c):

 /* Mac Call Back Initialization */

 macCbConfig.mlmeResetCnfCb = APP_MAC_mlmeResetCnfCb;

 macCbConfig.mlmeScanCnfCb = APP_MAC_mlmeScanCnfCb;

 macCbConfig.mlmeAssociateCnfCb = APP_MAC_mlmeAssociateCnfCb;

 macCbConfig.mlmeAssociateIndCb = APP_MAC_mlmeAssociateIndCb;

 ….

• Action on data indication

The user must implement custom callbacks to retrieve data from MAC services:

On data indication message from MAC layer, the macCbConfig.mcpsDataIndCb is used to
call APP_MAC_mcpsDataIndCb callback, which can be implemented as follows to retrieve
the indication data carried by MAC_dataInd_t structure (app_mac_802-15-4_process.c):

MAC_Status_t APP_MAC_mcpsDataIndCb(const MAC_dataInd_t * pDataInd)

{

 memcpy(&g_DataInd,pDataInd,sizeof(MAC_dataInd_t));

 return MAC_SUCCESS;

}

Figure 63. Traces on MAC 802.15.4 application

AN5289 Rev 18 133/171

AN5289 Annexes

170

14 Annexes

14.1 Detailed flow of the device initialization

At startup, the device is first initialized and then the system channel to CPU2 is initialized.
After this sequence is over, CPU1 returns to the background while loop and waits for the
notification from CPU2 that it is ready to receive system command. CPU1 can run other
application initializations that are not RF (CPU2) related. This startup is the same whether
CPU2 is running a Full BLE host stack, HCI only interface or an OpenThread Stack.

Figure 64. System initialization

When CPU2 is ready to receive system commands, it sends a notification to CPU1. Upon
the recieving the notification shci_notify_asynch_evt(), the user must call
shci_user_evt_proc() to allow the system transport layer to process the event. The user
application is notified with APPE_SysUserEvtRx() that a system event is received. As the

MS51885V1

main.c

Device setup suitable for
any application (mainly

HW configuration

app_entry.c

APPE_Init()

Initialization of the system
and memory channel

to the CPU2

tl_mbox.c

Initialization of the
reference table shared

with the CPU2 in SRAM2

TL_Init()

shci_tl.c

Initialization of the system
channel to the CPU2

shci_init()

TL_SYS_Init()

TL_MM_Init()

Initialization of the memory
channel to the CPU2

TL_Enable()

Starts CPU2

While loop

Initialization of the
system transport layer

Annexes AN5289

134/171 AN5289 Rev 18

shci_notify_asynch_evt() is received in the IPCC interrupt handler context, the information is
passed to the background so that the shci_user_evt_proc() is called from the background
while loop (out of any interrupt context).This mechanism is the same whether CPU2 is
running a Full BLE host stack, HCI only interface or an OpenThread Stack.

Figure 65. System ready event notification

MS51886V1

IPCC interrupt context

main.c app_entry.c

shci_user_evt_proc()

Request the while loop to
run the function associated

to the signal

shci_tl.c tl_mbox.c

IoBusCallBackUserEvt

shci_notify_asynch_evt()

APPE_SysUserEvtRx()

CPU2 ready to receive a
request to enable a

wireless stack

AN5289 Rev 18 135/171

AN5289 Annexes

170

Figure 66. BLE initialization

On receiving a system event, the BLE transport layer is initialized and a system command is
sent to CPU2 to start the BLE stack. As soon as the SHCI_C2_BLE_Init() system command
has been sent to CPU2, CPUit is ready to receive BLE commands.

When CPU2 runs an HCI only interface, the BLE transport layer starts running in the Host
BLE stack on CPU1. Therefore, the BLE transport layer provided must not be used and
initialized.

14.2 Mailbox interface

This interface is the lowest level that must be used to send a command to the BLE
controller. It is used in the transparent mode application and must be used when a BLE
stack open source is used on top of the BT SIG HCI interface. All commands must be
answered from CPU2 within 1 s.

MS52621V1

C
P

U
2

ru
ns

 H
C

I
B

LE
 h

os
t s

ta
ck

C
P

U
2

ru
ns

 H
C

I
on

ly
 in

te
rfa

ce

TL_BLE_Init()

hci_init()

Initialization of the BLE
transport layer

app_ble.c hci_tl.c shci_tl.c tl_mbox.cshci.c

APP_BLE_Init()

TL_BLE_Init()

Initialization of the BLE
channel to the CPU2

Initialization of the BLE
channel to the CPU2

SHCI_C2_BLE_Init()
shci_send()

TL_SYS_SendCMd()

Command sent over the
system channel to start

the BLE stack

CPU2 ready to receive
BLE commands over the

BLE channel

OR

Annexes AN5289

136/171 AN5289 Rev 18

14.2.1 Interface API

Table 30. Interface APIs

Function Description

void TL_Init(void) Initializes the shared memory

void TL_Enable(void) Enables the transport layer

int32_t TL_SYS_Init(void* pConf) Initializes the system channel

int32_t TL_SYS_SendCmd(uint8_t* buffer,
uint16_t size)

Send a system command

int32_t TL_BLE_Init(void* pConf) Initializes the BLE channel

int32_t TL_BLE_SendCmduint8_t* buffer,
uint16_t size)

Sends a BLE command

int32_t TL_BLE_SendAclData(uint8_t*
buffer, uint16_t size)

Sends ACL data packet

void TL_MM_Init(TL_MM_Config_t
*p_Config)

Initializes the Memory channel

void TL_MM_EvtDone(TL_EvtPacket_t *
hcievt)

Releases a buffer to the Memory channel

AN5289 Rev 18 137/171

AN5289 Annexes

170

14.2.2 Detailed interface behavior

Figure 67. Transport layer initialization

void TL_Init(void):

This is the first command to be sent. It initializes the mailbox driver and shared memory.

int32_t TL_SYS_Init(void* pConf):

The user must first allocate the buffer to be used by the mailbox driver to send system
command (p_cmdbuffer), the two callbacks to be used to receive the system command

MS51881V1

• Allocation of p_cmdbuffer to send system command
• Declaration of IoBusCallBackCmdEvt to receive response to

command
• Declaration of IoBusCallBackCmdEvt to receive asynchronous

system event

User tl_mbox.c

TL_Init()

TL_MM_Init()

Initialization of the reference table
shared with CPU2 in SRAM2

TL_SYS_Init()

Initialization of the system
channel to the CPU2

• Allocation of p_BleSpareEvtBuffer reserved to BLE activity to
receive asynchronous event

• Allocation of p_SystemSpareEvtBuffer reserved to system
activity to receive asynchronous event

• Allocation of p_AsynchEvtPool to receive either BLE or system
asynchronous event

• Allocation of p_TracesEvtPool to receive traces

Initialization of the memory
channel to the CPU2

TL_Enable()

Starts CPU2

Annexes AN5289

138/171 AN5289 Rev 18

response (IoBusCallBackCmdEvt) and the system asynchronous event
(IoBusCallBackUserEvt).

The IoBusCallBackCmdEvt implements the new requirement where a new system
command is only sent when the response of the previous one has been received.

This commands initializes the System channel in the mailbox driver.

void TL_MM_Init(TL_MM_Config_t *p_Config):

The user must first allocate the buffer to be used by the mailbox driver to only report a BLE
Asynchronous event (p_BleSpareEvtBuffer), the buffer to be used by the mailbox driver to
only report a System Asynchronous event (p_SystemSpareEvtBuffer), the pool of memory
(p_AsynchEvtPool) to be used by the BLE Controller to report either a BLE or System
Asynchronous event and the pool of memory (p_TracesEvtPool) to be used by CPU2 for
report traces.

The p_BleSpareEvtBuffer and p_SystemSpareEvtBuffer buffers are used to guarantee that
even if the memory pool p_AsynchEvtPool is empty, CPU2 is always able to report either
BLE or System events.

This commands initializes the Memory channel in the mailbox driver.

void TL_Enable(void):

When the mailbox driver is fully initialized, this command is sent to start CPU2.

Figure 68. BLE channel initialization

int32_t TL_BLE_Init(void* pConf):

The user must first allocate the buffer to be used by the mailbox driver to send a BLE
command (p_cmdbuffer), the buffer to be used by the mailbox driver to send ACL data
packet (p_AclDataBuffer), and the two callbacks to be used to receive a BLE event
(IoBusEvtCallBack) and the acknowledge of the ACL Data packet (IoBusAclDataTxAck).

The IoBusEvtCallBack must be used to comply to the requirement that a new BLE
command can be sent only when the command flow (as specified by the BT SIG) allows it.

When not in HCI only mode, both p_AclDataBuffer and IoBusAclDataTxAck are not used
and must be set to 0.

MS51889V1

• Allocation of the p_cmdbuffer to send BLE command
• Allocation of the p_AclDataBuffer to send ACL data packet

(hci-only mode)
• Declaration of the IoBusEvtCallBack to receive response to

command
• Declaration of the IoBusAclDataTxAck to receive indication

that the ACL data packet has been sent

User tl_mbox.c

TL_BLE_Init()

AN5289 Rev 18 139/171

AN5289 Annexes

170

This commands initializes the BLE controller.

Figure 69. BLE command sent by the mailbox

int32_t TL_BLE_SendCmd(uint8_t* buffer, uint16_t size):

The user must first fill the buffer p_cmdbuffer with the command to be sent. The parameter
buffer and size are not used.

The user must wait for the command response received with IoBusEvtCallBack to check the
flow command control in the response packet to understand if a new command can be sent
or not. The IoBusEvtCallBack is generated asynchronously in the IPCC interrupt context. It
is recommended, depending on the processing load, to implement abackground mechanism
to decode the received packet (out of the IPCC interrupt context).

Figure 70. ACL data sent by the mailbox

int32_t TL_BLE_SendAclData(uint8_t* buffer, uint16_t size):

The user must first fill the p_AclDataBuffer buffer with the ACL data packet to be sent. The
parameter buffer and size are not used.

MS51890V1

IPCC interrupt context

• Fill p_cmdbuffer with the command to send

User tl_mbox.c

TL_BLE_SendCmd()

Wait for the command response

IoBusEvtCallBack

MS51891V1

IPCC interrupt context

• Fill p_cmdbuffer with the ACL data packet to send

User tl_mbox.c

TL_BLE_SendAclData()

Wait for the acknowledgment

IoBusAclDataTxAck

Annexes AN5289

140/171 AN5289 Rev 18

The user must wait for the acknowledge received with IoBusAclDataTxAck before sending a
new ACL data packet. The IoBusAclDataTxAck is generated asynchronously in the IPCC
interrupt context. It is recommended, depending on the processing load, to implement a
background mechanism to handle the acknowledgment (out of the IPCC interrupt context).

The ACL data packet interface is supported only in HCI Mode. When supported, it is
possible to send ACL data packets while a BLE command is pending. The BLE command
and ACL data packets do not share resources.

Figure 71. System command sent by the mailbox

int32_t TL_SYS_SendCmd(uint8_t* buffer, uint16_t size)

The user must first fill the p_cmdbuffer buffer with the command to be sent. The parameter
buffer and size are not used.

The user must wait for the command response received with IoBusCallBackCmdEvt before
sending a new command. The IoBusCallBackCmdEvt is generated asynchronously in the
IPCC interrupt context. It is recommended, depending on the processing load, to implement
a background mechanism to decode the received packet (out of the IPCC interrupt context).

Figure 72. BLE and system user event received by the mailbox

MS51892V1

IPCC interrupt context

• Fill p_cmdbuffer with the command to send

User tl_mbox.c

TL_SYS_SendCmd()

Wait for the command response

IoBusCallBackCmdEvt

MS51893V1

IPCC interrupt context

User tl_mbox.c

TL_MM_EvtDone()

Packet decoding

IoBusEvtCallBack

IPCC interrupt context

User tl_mbox.c

TL_MM_EvtDone()

Packet decoding

IoBusCallBackUserEvt

AN5289 Rev 18 141/171

AN5289 Annexes

170

void TL_MM_EvtDone(TL_EvtPacket_t * hcievt):

This API must be called to return the packet to the Memory manager running on CPU2 in
the following cases

• For each packet received with IoBusEvtCallBack (User BLE event callback) that is not
a BLE command response

• For each packet received with IoBusCallBackUserEvt (User System event callback).

14.3 Mailbox interface - Extended

The mailbox interface is suitable when the command to be sent is built by the user into a
buffer to be sent by the mailbox. In the same way, the user must decode the event packet
received and manage the command flow control to check if a new command can be sent.

This is the case when using a BLE host stack running on CPU1 on top of the HCI interface.
In this case, CPU2 is used in HCI only mode.

However, the BLE host stack does not support the system channel required to initialize
CPU2. Therefore, when using only the mailbox interface, the user must build the system
command packet to be sent to CPU2 and must manage the event received from CPU2.

It is possible to mix a simple BLE mailbox interface with a higher level shci interface to
encode/decode the system packet when connecting to the system mailbox interface. This is
the purpose of the “Mailbox interface - Extended”

14.3.1 Interface API

The BLE and memory interface is identical to the simple mailbox interface.

To use the higher shci interface (from shci.h), the shci transport layer must be initialized and
connected to the Maibox driver.

The two API TL_SYS_Init() and TL_SYS_SendCmd() along with the two callbacks
IoBusCallBackCmdEvt and IoBusCallBackUserEvt are used and implemented in the
transport layer and cannot be used individually any longer.

Table 31. Interface APIs

Function Description

void shci_init(void(* UserEvtRx)(void*
pData), void* pConf)

Initializes the system transport layer.

void shci_register_io_bus(tSHciIO* fops) Registers the mailbox interface to the
system transport layer.

void shci_notify_asynch_evt(void* pdata) Requests the user to call
shci_user_evt_proc

void shci_resume_flow(void) Resumes the asynchronous user event
reporting when stopped by the user.

void shci_cmd_resp_wait(uint32_t timeout) Waits for a command response.

void shci_cmd_resp_release(uint32_t flag) Notifies that a command response has
been received.

void shci_user_evt_proc(void) Processes the received asynchronous
user event and calls UserEvtRx.

Annexes AN5289

142/171 AN5289 Rev 18

14.3.2 Detailed interface and behavior

Figure 73. System transport layer initialization

void shci_init(void(* UserEvtRx)(void* pData), void* pConf):

The user must first allocate the buffer to be used by the mailbox driver to send a system
command (p_cmdbuffer), the two callbacks that will receive a user asynchronous system
event (UserEvtRx) and the transport layer availability notification (StatusNotCallBack).

This commands initializes the System channel in the Transport layer and the mailbox driver.

void shci_register_io_bus(tSHciIO* fops);:

This commands registers the Maibox driver to the system transport layer.

MS52619V1

User shci_tl.c

shci_init()

Register the Mailbox interface
• TL_SYS_Init
• TL_SYS_SendCmd

tl_mbox.c

Initialization of the system
channel to the CPU2

Allocation of the p_cmdbuffer to send
system command
Declaration of the StatusNotCallBack to
get status on the availability of the
system transport layer
Declaration of the UserEvtRx to receive
asynchronous system event

Initialization of the
system transport layer

shci_register_io_bus()

TL_SYS_Init()

AN5289 Rev 18 143/171

AN5289 Annexes

170

Figure 74. System command sent by the system transport layer

MS52622V1

IP
C

C

in
te

rr
up

t
co

nt
ex

t

SHCI_C2_xxx()

Inform the user it is not
allowed to send a new

system command
SCHI_C2_xxx()

user shci_tl.c tl_mbox.cshci.c

Fill the system command buffer

Command sent over
the system channel

to the CPU2

shci_send()

StatusNotCallBack(SHCI_TL_CmdBusy)

TL_SYS_SendCmd()

shci_cmd_resp_wait()

User must wait for the
command response

before moving forward

Wait for
the command response

IoBusCallBackCmdEvt
shci_cmd_resp_release()

User notified that system
command response has

been received

Copy response into local buffer

StatusNotCallBack(SHCI_TLCmdAvailable)

Inform the user it is
allowed to send a new

system command
SCHI_C2_xxx()

Annexes AN5289

144/171 AN5289 Rev 18

SHCI_C2_xxx()

The list of supported system commands that can be used by the application is in the file
shci.h.

void StatusNotCallBack(SHCI_TL_CmdStatus_t status):

This is the registered callback in shci_init() to acknowledge if a system command can be
sent. It must be used in a multi-thread application where system commands can be sent
from different threads.

When status = SHCI_TL_CmdBusy, the system transport layer is busy and no new system
command are be sent.

void shci_cmd_resp_wait(uint32_t timeout):

The application must not return from this command until the shci_cmd_resp_wait() is called
to notify the response has been received.

The parameter is meaningless.

void shci_cmd_resp_release(uint32_t flag):

This function informs the user that the response of the pending system command has been
received.

It is called in the IPCC interrupt context. When moving out from this API, the application can
return from the API shci_cmd_resp_wait().

The parameter is meaningless.

AN5289 Rev 18 145/171

AN5289 Annexes

170

Figure 75. System user event reception flow

void shci_notify_asynch_evt(void* pdata):

This API notifies the user that a system user event has been received. The user must call
the shci_user_evt_proc() to process the notification in the system transport layer. As the
shci_notify_asynch_evt() notification is called from the IPCC interrupt context, it is strongly
recommended to implement a background mechanism to call shci_user_evt_proc() (out of
IPP Interrupt context).

pdata holds the address of the SHciAsynchEventQueue.

void shci_user_evt_proc(void):

This function reports the received event to the user with UserEvtRx(). As the received event
queue SHciAsynchEventQueue is filled within the IPCC interrupt context, new events can
be stored in the queue while the user is processing an event. UserEvtRx() is called for each
event retrieved from the queue. The shci_user_evt_proc() process frees the buffer to CPU2
memory manager for each return of UserEvtRx().

MS52623V1

IP
C

C
 in

te
rru

pt

co
nt

ex
t

Chain the received packet in the
SHciAsynchEventQueue

user shci_tl.c tl_mbox.c

IoBusCallBackUserEvt

shci_user_evt_proc()

shci_notify_asynch_evt()

Handle the received
user event

Read from the received packet
from the SHciAsynchEventQueue

UserEvtRx()

TL_MM_EvtDone()

D
o

th
is

 u
nt

il
S

H
ci

A
sy

nc
hE

ve
nt

Q
ue

ue
 is

 e
m

pt
y

Annexes AN5289

146/171 AN5289 Rev 18

void UserEvtRx (void * pData):

This reports to the user the received system event. The buffer holding the received event is
freed on return of this function.

pData is the address of a structure holding the following parameters:

typedef struct

{

SHCI_TL_UserEventFlowStatus_t status;

TL_EvtPacket_t *pckt;

} tSHCI_UserEvtRxParam;

pckt: holds the address of the received event.

status: provides a way for user to notify the system transport layer that the received packet
has not been processed and must not be thrown away. When not filled in by the user on
return of UserEvtRx(), this parameter is set to SHCI_TL_UserEventFlow_Enable, which
means the user has processed the received event.

Figure 76. shci_resume_flow() usage example

void shci_resume_flow(void):

When the user is not able to process incoming event, it must set the status parameter to
SHCI_TL_UserEventFlow_Disable before returning from UserEvtRx(). In that case, the

MS52620V1

User shci_tl.c

shci_user_evt_proc()

Read from the SHciAsynchEventQueue
the received packet

Incoming and pending events
no longer reported to the user

UserEvtRx()

Status = SHCI_TL_UserEventFlow_Disable
Reject the event (impossible to handle it now)

Put back in the SHciAsynchEventQueue
the received packet

User ready to process incoming event

shci_resume_flow()

shci_notify_asynch_evt()

AN5289 Rev 18 147/171

AN5289 Annexes

170

system transport layer does not release the system event and does not report any new
incoming events.

When the user is ready to process a system event, it must send the shci_resume_flow() that
informs the system transport layer to restart reporting of system event.

14.4 ACI interface

This is the interface to the BLE stack running on CPU2. It provides a full set of APIs to use
all features in the BLE layers (GATT, GAP, HCI LE).

The ACI commands are sent over the HCI transport.

The interfaces to access all BLE layers (GATT, GAP) are located in the folder
\Middlewares\ST\STM32_WPAN\ble\core\Inc\core.

When using the ACI interface, the BLE controller must be set in Full stack mode. The HCI
transport layer must be implemented in the application to send and receive command from
the ACI interface to the mailbox.

The new interface is basically the Mailbox interface - Extended where the HCI transport
layer is implemented. When the ACI interface is used, the application no longer uses the low
level mailbox interface.

Table 32. BLE transport layer interfaces

Function Description

void hci_init(void(*
UserEvtRx)(void* pData),
void* pConf);

Initializes the BLE transport layer

void
hci_register_io_bus(tHciIO*
fops);

Registers the mailbox interface to the BLE transport layer

void
hci_notify_asynch_evt(void*
pdata);

Requests the user to call hci_user_evt_proc

void hci_resume_flow (void)
Resumes the asynchronous user event reporting when
stopped by the user

void
hci_cmd_resp_wait(uint32_t
timeout)

Waits for a command response

void
hci_cmd_resp_release(uint32_t
flag)

Notifies that a command response has been received

void hci_user_evt_proc(void
Process the received asynchronous user event and call
UserEvtRx

Annexes AN5289

148/171 AN5289 Rev 18

14.4.1 Detailed interface and behavior

Figure 77. BLE transport layer initialization

void hci_init(void(* UserEvtRx)(void* pData), void* pConf);:

The user must first allocate the buffer to be used by the mailbox driver to send a BLE
command (p_cmdbuffer), the two callbacks to be used to receive a user asynchronous
system event (UserEvtRx) and the transport layer availability notification
(StatusNotCallBack).

This commands initializes the BLE Channel in the HCI Transport layer and the mailbox
driver.

void hci_register_io_bus(tSHciIO* fops);:

This commands registers the mailbox driver to the HCI transport layer.

MS52625V1

Initialization of the reference table
shared with the CPU2 in SRAM2

user tl_mbox.c

TL_Init()

TL_MM_Init()

Allocation of the p_cmdbuffer to send system command
Declaration of the IoBusCallBackCmdEvt to receive
response to command
Declaration of the IoBusCallBackUserEvt to receive
asynchronous system event

TL_Enable()

TL_SYS_Init()

Initialization of the system
channel to the CPU2

Allocation of the p_BleSpareEvtBuffer reserved to BLE
activity to receive asynchronous event
Allocation of the p_SystemSpareEvtBuffer reserved to
system activity to receive asynchronous system event
Allocation of the p_AsynchEvtPool to receive either BLE or
system asynchronous event
Allocation of the p_TracesEvtPool to receive traces

Initialization of the memory
channel to the CPU2

Start CPU2

AN5289 Rev 18 149/171

AN5289 Annexes

170

Figure 78. ACI command flow

ACI_xxx() / HCI_LE_xxx()

The list of supported system commands that can be used by the application is in the folder
\Middlewares\ST\STM32_WPAN\ble\core\Inc\core.

MS52633V1

IP
C

C

in
te

rr
up

t
co

nt
ex

t

ACI_xxx() / HCI_LE_xxx

Inform the user it is not
allowed to send a new

BLE command over the
BLE channel

user hci_tl.c tl_mbox.caci_xxx.c

Fill the BLE command buffer

Command sent over
the BLE channel to

the BLE stack

hci_send_req()

StatusNotCallBack(HCI_TL_CmdBusy)

TL_BLE_SendCmd()

hci_cmd_resp_wait()

User must wait for the
command response before

moving forward

Wait for
the command response

IoBusEvtCallBack
hci_cmd_resp_release()

User notified that system
command response has

been received

Copy response into local buffer

StatusNotCallBack(HCI_TLCmdAvailable)

Inform the user it is
allowed to send a new

BLE command
ACI_xxx() / HCI_LE_xxx()

Annexes AN5289

150/171 AN5289 Rev 18

void StatusNotCallBack(HCI_TL_CmdStatus_t status):

This is the registered callback in hci_init() to acknowledge if a BLE command can be sent.
To be used in a multi-thread application where the BLE commands can be sent from
different threads.

When status = HCI_TL_CmdBusy, the HCI transport layer is busy and no new BLE
command can be sent.

void hci_cmd_resp_wait(uint32_t timeout):

The application must not return from this command until the hci_cmd_resp_wait() is called
to notify the response has been received

The parameter is meaningless.

void hci_cmd_resp_release(uint32_t flag):

This function informs the user that the response of the BLE command pending has been
received.

It is called in the IPCC interrupt context. When moving out from this API, the application can
return from the API hci_cmd_resp_wait().

The parameter is meaningless.

AN5289 Rev 18 151/171

AN5289 Annexes

170

Figure 79. BLE user event receive flow

void hci_notify_asynch_evt(void* pdata):

This API notifies the user a BLE user event has been received. The user must then call the
hci_user_evt_proc() to process the notification in the HCI transport layer. As the
hci_notify_asynch_evt() notification is called from the IPCC interrupt context, it is strongly
recommended to implement a background mechanism to call hci_user_evt_proc() (out of
IPP Interrupt context)

pdata holds the address of the HciCmdEventQueue.

void hci_user_evt_proc(void):

This function reports the received event to the user throughUserEvtRx(). As the received
event queue HciCmdEventQueue is filled within the IPCC interrupt context, new events can
be stored in the queue while the user is processing an event. UserEvtRx() is called for each
event retrieved from the queue. The hci_user_evt_proc() process is responsible for freeing
the buffer to the CPU2 memory manager on each UserEvtRx() return.

MS52623V2

IP
C

C
 in

te
rr

up
t

co
nt

ex
t

Chain the received packet in the
HciAsynchEventQueue

user hci_tl.c tl_mbox.c

IoBusCallBackUserEvt

hci_user_evt_proc()

hci_notify_asynch_evt()

Handle the received
user event

Read from the received packet
from the HciAsynchEventQueue

UserEvtRx()

TL_MM_EvtDone()

D
o

th
is

 u
nt

il
H

ci
A

sy
nc

hE
ve

nt
Q

ue
ue

 is
 e

m
pt

y

Annexes AN5289

152/171 AN5289 Rev 18

void UserEvtRx (void * pData):

This reports the received BLE user event. The buffer holding the received event is freed on
return of this function.

pData is the address of a structure holding the following parameters:

typedef struct

{

HCI_TL_UserEventFlowStatus_t status;

TL_EvtPacket_t *pckt;

} tHCI_UserEvtRxParam;

pckt: holds the address of the received event

status: provides a way for the user to notify the HCI transport layer that the received packet
has not been processed and must not be thrown away. When not filled by the user on return
of UserEvtRx(), this parameter is set to HCI_TL_UserEventFlow_Enable which means the
user has processed the received event.

Figure 80. hci_resume_flow() usage example

void hci_resume_flow(void):

When the user is not able to process an incoming event, it must set the status parameter to
HCI_TL_UserEventFlow_Disable before returning from UserEvtRx(). In that case, the HCI
transport layer does not release the BLE user event and does not report any new incoming
events.

MS52626V1

Read the received packet from the
HciAsynchEventQueue

user shci_tl.c

hci_user_evt_proc()

hci_resume_flow()

Status = SHCI_TL_UserEventFlow_Disable
Reject the event (impossible to handle it now)

Put back the received packet in the
HciAsynchEventQueue

UserEvtRx()

Incoming and pending events no
longer reported to the user

User now ready to process incoming event

hci_notify_asynch_evt()

AN5289 Rev 18 153/171

AN5289 Annexes

170

When the user is ready to process BLE user event, it must send the hci_resume_flow() that
informs the HCI transport layer to resume BLE user event reporting.

14.5 Vendor specific HCI commands for controller

These are local commands for an external device (like STM32CubeMonitor-RF tool) to
CPU1.

The result of these commands is a Command_complete event with 0xFDOE code, and
according to the command, the following result bytes for:

LHCI_C1_Write_Register:

Byte[0]: Status

LHCI_C1_Read_Register:

Byte[0]: Status

Byte[1:4]: Value

LHCI_C1_Read_Device_Information:

Byte[0]: Status

Byte[1:2]: Revision ID (from DBGMCU_ICODE register)

Bytes[3:4]: Device code ID (from DBGMCU_ICODE register)

Byte[5]: Package type (from package data register)

Byte[6]: Device type ID (from FLASH UID64)

Bytes[7:10]: ST company ID (from FLASH UID64)

Table 33. Vendor specific HCI commands

Command Code Description Parameters

LHCI_C1_Write_Register() 0xFD60
Requests CPU1 to write
a register (atomic write)

Byte[0]: Bus size access

– 1: 8 bits

– 2: 16 bits

– 4: 32 bits

Bytes[1:4]: Mask for bit selection

Bytes[5:8]: Address

Bytes[9:12]: Value

LHCI_C1_Read_Register() 0xFD61
Requests CPU1 to read
a register (atomic read)

Byte[0]: Bus size access

– 1: 8 bits

– 2: 16 bits

– 4: 32 bits

Bytes[1:4]: Address

LHCI_C1_Read_Device_Information() 0xFD62
Returns device
information

None

Annexes AN5289

154/171 AN5289 Rev 18

Bytes[11:14]: UID64 (from FLASH UID64)

Bytes[15:18]: UID96_0 (from Unique Device ID register)

Bytes[19:22]: UID96_1 (from Unique Device ID register)

Bytes[23:26]: UID96_2 (from Unique Device ID register)

Bytes[27:30]: Safe boot information (from CPU2 in SRAM2)

Bytes[31:42]: RSS information (from CPU2 in SRAM2)

Bytes[31:34]: Version

Bytes[35:38]: Memory size

Bytes[39:42]: RSS

Bytes[43:58]: CPU2 wireless FW information (from CPU2 in SRAM2)

Bytes[43:46]: Version

Bytes[47:50]: Memory size

Bytes[51:54]: Stack information

Bytes[55:58]: Reserved

Bytes[59:62]: CPU1 FW information (hard coded in CPU1 user flash)

Version bytes details:

• bits[0:3] = Build: 0: untracked, x: tracked version

• bits[4:7] = Branch: 0: cut 2.1, 1: cut 2.0

• bits[8:15] = Subversion

• bits[16:23] = Version (minor)

• bits[24:31] = Version (major)

Memory size bytes details:

• bits[0:7] = Flash (number of 4K sector)

• bits[8:15] = Reserved (set to 0, can be used as flash extension)

• bits[16:23] = SRAM2b (number of 1K sector)

• bits[24:31] = SRAM2a (number of 1K sector)

AN5289 Rev 18 155/171

AN5289 Annexes

170

Stack information byte[51] detail:

• INFO_STACK_TYPE_BLE_STANDARD = 0x01

• INFO_STACK_TYPE_BLE_HCI = 0x02

• INFO_STACK_TYPE_BLE_LIGHT = 0x03

• INFO_STACK_TYPE_THREAD_FTD = 0x10

• INFO_STACK_TYPE_THREAD_MTD = 0x11

• INFO_STACK_TYPE_ZIGBEE_FFD = 0x30

• INFO_STACK_TYPE_ZIGBEE_RFD = 0x31

• INFO_STACK_TYPE_MAC = 0x40

• INFO_STACK_TYPE_BLE_THREAD_FTD_STATIC = 0x50

• INFO_STACK_TYPE_802154_LLD_TESTS = 0x60

• INFO_STACK_TYPE_802154_PHY_VALID = 0x61

• INFO_STACK_TYPE_BLE_PHY_VALID = 0x62

• INFO_STACK_TYPE_BLE_LLD_TESTS = 0x63

• INFO_STACK_TYPE_BLE_RLV = 0x64

• INFO_STACK_TYPE_802154_RLV = 0x65

• INFO_STACK_TYPE_BLE_ZIGBEE_FFD_STATIC = 0x70

14.6 STM32WB system commands and events

14.6.1 Commands

Table 34. System interface commands(1)

Command Code Description

SHCI_C2_FUS_GetState() 0xFC52

Refer to [6].

The following commands are supported by both the
FUS and the wireless firmware:

– SHCI_C2_FUS_StoreUsrKey

– SHCI_C2_FUS_LoadUsrKey

– SHCI_C2_FUS_LockUsrKey

– SHCI_C2_FUS_UnloadUsrKey

SHCI_C2_FUS_FwUpgrade() 0xFC54

SHCI_C2_FUS_FwDelete() 0xFC55

SHCI_C2_FUS_UpdateAuthKey() 0xFC56

SHCI_C2_FUS_LockAuthKey() 0xFC57

SHCI_C2_FUS_StoreUsrKey()(2) 0xFC58

SHCI_C2_FUS_LoadUsrKey() 0xFC59

SHCI_C2_FUS_StartWs() 0xFC5A

SHCI_C2_FUS_LockUsrKey() 0xFC5D

SHCI_C2_FUS_UnloadUsrKey() 0xFC5E

SHCI_C2_FUS_ActivateAntiRollback() 0xFC5F

SHCI_C2_BLE_Init() 0xFC66
Sends the BLE Init parameters. Must be sent before
any ACI command. Refer to Section 8.6.9: How to
maximize data throughput for more details.

SHCI_C2_THREAD_Init() 0xFC67
Refer to Section 10.8: System commands for Thread
applications.

Annexes AN5289

156/171 AN5289 Rev 18

SHCI_C2_Reinit()

On reset, the CPU2 is started with the TL_Enable() command and when it has finalized its
initialization, it reports the SHCI_SUB_EVT_CODE_READY system event. Once it has
started, it cannot be reset to restart its startup sequence.

SHCI_C2_DEBUG_Init 0xFC68
Enables the traces on both CPU1 and CPU2 and the
GPIO debug configuration on CPU2.

SHCI_C2_FLASH_EraseActivity 0xFC69
Notifies CPU2 that flash memory erase operation can
be requested by CPU1. This allows CPU2 to enable
timing protection versus the erase operation.

SHCI_C2_CONCURRENT_SetMode() 0xFC6A

Refer to Section 10.8: System commands for Thread
applications.

SHCI_C2_FLASH_StoreData() 0xFC6B

SHCI_C2_FLASH_EraseData() 0xFC6C

SHCI_C2_RADIO_AllowLowPower() 0xFC6D

SHCI_C2_MAC_802_15_4_Init () 0xFC6E
Refer to Section 13.4.5: MAC IEEE Std 802.15.4-2011
system.

SHCI_C2_Reinit()(2) 0xFC6F

Requests CPU2 to restart its initialization phase on
receiving an event generated by an SEV instruction
on CPU1. This is expected to be used by the SBSFU
when no RF activity has been started.

SHCI_GetWirelessFwInfo() -
Returns the version and memory footprint of the
wireless stack and FUS running on CPU2.

SHCI_C2_ZIGBEE_Init() 0xFC70 Initializes the ZigBee® protocol stack on CPU2.

SHCI_C2_ExtpaConfig() 0xFC72
Sends to CPU2 the GPIO to be used and its
configuration to drive the enable/disable pin of an
external PA.

SHCI_C2_SetFlashActivityControl() 0xFC73

Requests CPU2 to use either the PESD bit or
Semaphore 7 to protects its timing versus flash
memory operation. When the command is not sent,
CPU2 uses PESD.

SHCI_C2_BLE_LLD_Init 0xFC74 Initializes the BLE LLD interface on CPU2.

SHCI_C2_Config 0xFC75
Sends the system configuration to the CPU2. Not
mandatory.

SHCI_C2_CONCURRENT_GetNextBleEvtTime 0xFC76 Get the next BLE event date (relative time).

SHCI_C2_CONCURRENT_EnableNext_802154
_EvtNotification

0xFC77
Activate the next 802.15.4 event notification (one
shot).

SHCI_C2_802_15_4_DeInit 0xFC78
Deinitialize 802.15.4 layer (to be used before entering
Standby mode).

SHCI_C2_SetSystemClock 0xFC79 Request CPU2 to change system clock.

1. More details on the system command description can be found in the header file shci.h in the STM32WB firmware
package.

2. The detailed description is provided in the following part of this section.

Table 34. System interface commands(1) (continued)

Command Code Description

AN5289 Rev 18 157/171

AN5289 Annexes

170

As result, when an application is started from a primary boot application that has already
started the CPU2, the application never receives the SHCI_SUB_EVT_CODE_READY
system event because it has already been reported to the primary boot application.

The SHCI_C2_Reinit() must be sent by the primary boot application (if it has started the
CPU2) just before jumping to the main application that is expected to receive the
SHCI_SUB_EVT_CODE_READY system event.

When the CPU2 receives the SHCI_C2_Reinit() command, the following steps are executed

• Execute both __SEV() and __WFE() instructions to set and clear the event register

• Enable the EXTI rising edge for the line41 (C1SEV interrupt to CPU2)

• Send response of the command to the CPU1

• Execute WFE and wait for the CPU1 event

• On wake-up from WFE, restart startup code

This command does not reset the hardware, but requires the CPU2 to restart from its reset
vector.

SHCI_C2_FUS_StoreUsrKey()

To store user keys in flash memory, one or more SHCI_C2_FUS_StoreUsrKey commands
need to be called. Since the request comes from CPU1, the Sem2 shall be taken to take the
ownership of flash IP before calling the command and release once all commands have
been sent.

How to use the system command in polling mode

CPU1 must set CH2S in IPCC_C1SCR when the transmit buffer has been filled with the
command to send to CPU2. Then, it must poll on CH2F in IPCC_C1TOC2SR until it is
cleared. Once cleared, the transmit buffer has been filled with the command response from
CPU2.

For the system asynchronous event, CPU1 must poll on CH2F in IPCC_C2TO1CSR until it
is set. Once set, a buffer can be read from the list. The CPU1 must set CH2C in
IPCC_C1SCR to release the list to CPU2 once reading is completed.

Note: All asynchronous buffers must be given back to the CPU2. To do so, CPU1 must poll on
CH4F in IPCC_C1TOC2SR until it is cleared. Once cleared, the buffer must be pushed in
the free list, and CPU1 must set CH4S in IPCC_C1SCR to notify CPU2 this.

Annexes AN5289

158/171 AN5289 Rev 18

14.6.2 Events

The events listed in Table 35 can be enabled/disabled with the SHCI_C2_Config() system
command

14.7 BLE - Set 2 Mbps link

During the device initialization phase, the preferred TX_PHYS, RX_PHYS values can be
initialized.

After the connection at 1 Mbps, it is possible to change the PHY to 2 Mbps for this link, as
detailed in Figure 81.

Table 35. User system events

Event Code Description

SHCI_SUB_EVT_CODE_READY 0x9200
Returned as soon as the CPU2 has been started and is
ready to receive commands.

SHCI_SUB_EVT_ERROR_NOTIF 0x9201 Reports error(s) from CPU2.

SHCI_SUB_EVT_BLE_NVM_RAM_UPDATE 0x9202
Returned when the CPU2 has written the BLE NVM data
into the SRAM when requested with the
SHCI_C2_Config() command.

SHCI_SUB_EVT_THREAD_NVM_RAM_UPDATE 0x9203
Returned when the CPU2 has written the THREAD NVM
data into the SRAM when requested with the
SHCI_C2_Config() command.

SHCI_SUB_EVT_NVM_START_WRITE 0x9204
Returned when the CPU2 starts a flash memory write
procedure on CPU2.

SHCI_SUB_EVT_NVM_END_WRITE 0x9205
Returned when the CPU2 has successfully written data
in flash memory on CPU2.

SHCI_SUB_EVT_NVM_START_ERASE 0x9206
Returned when the CPU2 starts a flash memory erase
procedure on CPU2.

SHCI_SUB_EVT_NVM_END_ERASE 0x9207
Returned when the CPU2 has successfully erased data
in flash memory on CPU2.

AN5289 Rev 18 159/171

AN5289 Annexes

170

Figure 81. 2 Mbps set-up flow

14.8 BLE - Connection update procedure

Once a connection is established, it is possible for the master to update the connection
parameters with the aci_gap_start_connection_update command.

Central (master) Peripheral (slave)

Preferred PHY is 2M
By default 1M link is established

hci_le_set_default_phy
(0x00, 0x02, 0x02)

aci_gap_IO_capacity (display yes / no)

aci_gap_proc
_complete_event

aci_gap_set_auth_requirement (MITM,
no fixed pin,bounding, SC_Support =
SC only mode, keypress notification

not supported)

aci_gap_pro_complete_event

CONNECT_REQ

ADV_IND

MS63269V2

hci_le_phy
(conn_handle, 0x00, 0x02, 0x02, 0)

EVT_LE_PHY_UPDATE_COMPLETE

EVT_LE_PHY_UPDATE
_COMPLETE

Link 2M is established

LL_PHY_REQ

LL_PHY_RESP

aci_gap_pro_create_connection
(peripheral address)

aci_gap_set_discoverable

aci_gap_set_auth
_requirement (MITM, no

fixed pin, bonding,
SC_Support = SC only

mode, keypress notification
not supported)

aci_gap_IO_capability
(display yes / no)

hci_le_set_default_phy
(0x00,0x02,0x02)

Communication instructions Master services Slave services

Annexes AN5289

160/171 AN5289 Rev 18

Figure 82. Master initiates the connection update with HCI command

Once a connection is established, it is possible for the slave to update the connection
parameters with aci_l2cap_connection_parameter_update_req command.

Figure 83. Slave initiates the connection update with L2CAP command

14.9 BLE - Link layer data packet

The BLE has a single packet format used for both the advertising and data channel packets.

Connection established

hci_le_connection_update
_complete_event

LL_CONNECTION_UPDATE_IND

PREPARE_WRITE_RESP

MS63270V1

Communication instructions Master services Slave services

aci_gap_start_connection_
update

hci_le_connection_update
_complete_event

Central (master) Peripheral (slave)

Connection established

hci_le_connection_update
_complete_event

Connection _parameter_update_request

Connection _parameter_update_response

MS63271V1

Communication instructions Master services Slave services

aci_gap_start_connection_
update

hci_le_connection_update
_complete_event

Central (master)

hci_le_connection_update
_complete_event

Peripheral (slave)

AN5289 Rev 18 161/171

AN5289 Annexes

170

Figure 84. Data packet breakdown

Figure 85. Application GATT data format

14.10 Thread overview

14.10.1 Introduction

The Thread stack is an open standard for reliable, cost-effective, low-power, wireless D2D
communication. It is designed specifically for connected home applications where IP-based
networking is desired and a variety of application layers can be used on the stack.

The full specification ([9]) is available on http://threadgroup.org/.

This standard is based on the IEEE 802.15.4 [IEEE802154] PHY (physical) and MAC
(media access control) layers operating at 250 kbps in the 2.4 GHz band.

MS52631V1

Preamble
1 or 2 bytes

Access address
4 bytes

PDU (protocol data unit)
2 to 257 bytes

CRC
3 bytes

PDU (protocol data unit)
2 to 257 bytes

Data channel PDU
(defined by Access address)

ADV address
6 bytes

ADV data
0 to 31 bytes

PDU (protocol data unit)
8 to 39 bytes

Advertising channel PDU
(defined by Access address)

Header
2 bytes

Payload
0 to 255 bytes

Data payload
increased in v4.2

from 31 to 255 bytes

Header
2 bytes

MS52632V1

Preamble
1 or 2 bytes

Access address
4 bytes

PDU (protocol data unit)
2 to 257 bytes

CRC
3 bytes

hci_le_set_data_length
command to negotiate
with peer device the

number of bytes of the
Link layer data payload

L2CAP header
4 bytes

GATT packet (Max = ATT_MTU)
23 to 512 bytes (configured by SW)

Data fragmented if
ATT_MTU + L2CAP header >
Link layer data payload length

Header
2 bytes

Payload
0 to 251 bytes

MIC
4 bytes

GATT data format

Link layer packet

Link layer data payload

Annexes AN5289

162/171 AN5289 Rev 18

14.10.2 Main characteristics

Thread targets smart home applications like environment control, thermostat, alarms,
energy management, smart lockers and smart lighting devices. One of the main advantages
of this standard is that it is based on IPv6, hence any Thread network can easily be
connected to any other IPV6 application. Another big advantage is that it is based on a real
mesh network. Once deployed, this network is supposed to be very robust and reliable. For
instance, when a route fails, the system is able to auto-reconfigure itself by finding a new
route to the destination. Through a mesh network, devices can communicate with each
other across much longer distances.

Thread does not really define any application layer. Nevertheless, most of the Thread
applications use CoAP to transfer data. CoAP is widely deployed and is already used
natively inside Thread in address resolution management, for instance. On STM32WB
devices the CoAP layer is exposed to the customer.

14.10.3 Layers

Thread is based on mature and well proven standards, as shown in Figure 86.

Figure 86. Thread protocol letters

Starting from the lower layer:

• MAC layer, based only on a subset of IEEE 802.15.4 specification from 2006. It
supports a rate of 250 kbps in the 2.4 GHz band. There are 16 channels available,
ranging from channel 11 to channel 26. Inside a Thread network, only one single
channel is used in real time. The MAC radio layer uses the CSMA mechanism to send
frames. If the transmission medium is busy it is delayed by a random value. This
mechanism reduces the probability of transmission collision between two nodes. On
the STM32WB, transmission delay by a random value is managed directly by the
hardware.

• 6LoWPAN layer: 6LoWPAN stands for “IPV6 over low power wireless personal area
networks”. On Ethernet, an IPV6 packet of 1280 bytes is easily sent as a single
“monolithic” frame. On the MAC layer, this not possible because the maximum packet

MS52426V1

Thread Standard
Application layer

UDP + DTLS

Distance vector routing

IPv6

6LowPAN

IEEE 802.15.4 MAC (including MAC
security

Physical radio (PHY)

RFC 768, RFC 6347, RFC 4279,
RFC 4492, RFC 3315, RFC 5007

RFC 1058, RFC 2080

RFC 4944, RFC 4862,
RFC 6282, RFC 6775

IEEE 802.15.4 (2006)

AN5289 Rev 18 163/171

AN5289 Annexes

170

size is limited to 127 bytes. For this, Thread uses the 6LowPan layer. This layer
implements two techniques:

– Fragmentation (splitting the packets in small TX pieces, and reassembling them in
RX)

– Header compression (in some cases, a header of 48 bytes can be compressed
into a header of only 6 bytes).

Figure 87. 6LoWPAN packet fragmentation

• IPv6 (Internet Protocol version 6), intended to replace IPv4.

IPv4 uses 32-bit addressing, IPV6 uses 128-bit addressing, which gives billions of
possibilities. In addition to a larger addressing space, IPv6 provides other technical
benefits, in particular it facilitates the routing procedure.

In Thread there are several addresses defined:

– MeshLocal64: the address is “topology independent”, it means that it is stable and
will never change, even if a device becomes router or end device.The
MeshLocal64 address is usually the address used when pinging from one device
to another.

– MeshLocal16: even if the application uses the mMeshLocal64, at low level, the
stack will use the mMeshLocal16 address to perform the routing. The Mesh local
contains the RLOC field (routing locator). This address is topology dependent
(depending upon the network and the link quality). A child can decide to select a
new parent, hence a new router, and gets a new address. A child can also become
a router, depending on the use case.

– MeshLinkLocal64: the address starts with 0xFE80, and ends with the MAC
extended address with the universal/local bit inverted. It is used for direct point to
point link and for the MLE messages.

• Routing: All the mesh network management is based on MLE (mesh link
establishment) messages. These messages are used to detect neighboring devices, to
configure the system and to maintain routing cost all over the network. Thread claims to

MS52020V1

Frag1FragN Frag2

6LoWPAN

Frag1

IPv6

IEEE 802.15.4 MAC/PHY

IPv6 packet

...Frag2 FragN

Sender

6LoWPAN

Frag1

IPv6

IEEE 802.15.4 MAC/PHY

IPv6 packet

...Frag2 FragN

Receiver

Annexes AN5289

164/171 AN5289 Rev 18

be very robust and is able to manage dynamic routing adaptation. Routers periodically
send advertisement messages, which contain the following parameters:

– Link quality between the sender and its neighbors

– Route cost to access to all routers in the Thread network partition.

All routers contain a table with the link quality in UL and DL with all its neighboring
routers and the routing cost for all the routers present inside the mesh network.

In this table, there are also the “next hops” defining how to travel all over the network
and the so called “age” value, which represents the elapsed time since the latest
advertisement reception.

The quality link is a value comprised between 0 and 3, 3 being the best quality (when
the signal strength recorded is above 20 dB). Having only four possible link quality
values minimizes the overhead of communicating the link quality with neighbors.
Routers acting as leaders maintain an additional database for tracking router ID
assignments and the extended address associated with each router.

• Application layer: Thread supports CoAP, and this protocol acts as the application layer
in our design. CoAP can be considered as a very light version of http protocol. It
requires far less resources than http and has a very low overhead. Like http, CoAP is
based on the REST model: servers make resources available under a URL, and clients
access these resources using requests such as Get, Put, Post, and Delete. The URL
(uniform resource locator) specifies the resources and the way to access them. There
are four types of messages:

– Non confirmable message

– Confirmable message

– Acknowledgment message

– Reset message.

14.10.4 Mesh topology

Thread supports Mesh network. As shown in Figure 88, devices inside a Thread network
can have two main roles:

• Router

– Forwards packets for network devices

– Provides secure commissioning services for devices trying to join the network

– Keeps its transceiver enabled at all times

• End device

– Communicates primarily with a single router

– Does not forward packets for other network devices

– Can disable its transceiver to reduce power

Amongst all routers, one is always promoted as ‘leader’. The Thread leader is a router
manages a the set of routers in a Thread network.

Among all end devices, there can be sleepy end devices, REEDs or standard end devices’.

• REED (router eligible end device) is an end device that can be promoted router if
needed

• Sleepy end device is normally disabled, it wakes up occasionally to poll for messages
from its parent or to send data.

AN5289 Rev 18 165/171

AN5289 Annexes

170

The size of the Mesh network is configurable. There is a maximum of 32 active routers.
Each router can be connected to different child devices. Each child ID is coded on 9 bits,
resulting in a theoretical maximum number of 511 children per router. Because of memory
constraints on STM32WB the number of child per router is limited to 10.

Figure 88. Thread network topology

Figure 89. Link with the external world

14.10.5 Thread configuration

When compiling OpenThread, several options can be set depending on the targeted use
case. For STM32WB two cases are considered:

1. Full Thread device (FTD): the device can act as a simple sleepy end device but also as
router and leader inside the Thread network.

2. Minimal Thread device (MTD): the device acts only as end device or sleepy end device

The MTD configuration needs less memory (both RAM and flash) vs. the FTD configuration.
On the other hand, an MTD only acts as end device or sleepy end device.

MS52439V1

Leader

Router

End device

MS52022V1

Border router

STM32WB

STM32WB

STM32WB

WiFi® or Ethernet

Thread network

Annexes AN5289

166/171 AN5289 Rev 18

Figure 90. Thread device roles

MS52429V1

FTD

Router

Router
Router

Leader

MTD

REED

EndDevice

SleepyEndDevice

AN5289 Rev 18 167/171

AN5289 Conclusion

170

15 Conclusion

Bluetooth Low Energy (BLE) or 802.15.4 applications based on for STM32WB series
microcontrollers require the understanding of dedicated software protocols and
architectures.

This document details how the developer must create the embedded application software, a
key element is to follow the correct procedure for the system initialization.

Revision history AN5289

168/171 AN5289 Rev 18

16 Revision history

Table 36. Document revision history

Date Revision Changes

18-Jun-2019 1 Initial release.

26-Sep-2019 2

Updated Introduction, Section 4.2: Memory mapping, Section 4.3: Shared
peripherals, Section 10.2: How to start, Section 10.6: OpenThread API,
Section 12.1: Thread_Cli_Cmd, Section 12.4: Thread_Coap_Multiboard,
Section 12.5: Thread_Commissioning, Section 13.3: API and
Section 13.4.3: MAC application processor firmware.

Added Section 12.8: Thread FUOTA and its subsections.

Updated Figure 4: Memory mapping.

Updated Table 2: Semaphores.

23-Mar-2020 3

Updated Section 4.3: Shared peripherals and Section 8.6.1: How to set
Bluetooth device address.

Added Section 4.7: Flash memory management, Section 4.8: Debug
information from CPU, Section 4.9: FreeRTOS low power and their
subsections.

Updated Table 2: Semaphores, Table 34: System interface commands
and Table 35: User system events.

Updated Figure 10: Algorithm to write/erase data in the flash memory,
Figure 24: Heart rate project - Interaction between middleware and user
application and Figure 29: P2P server software communication.

Minor text edits across the whole document.

20-Oct-2020 4

Updated Section 4.3: Shared peripherals, Section 5: System initialization,
Section 8.6.5: How to start the BLE stack - SHCI_C2_BLE_Init(),
Section 11.3.1: Creating an otCoapResource and Section 14.6.1:
Commands.

Updated Figure 10: Algorithm to write/erase data in the flash memory.

Updated Table 34: System interface commands and Table 35: User
system events.

Added Section 4.10: Device information table and Section 5.2: CPU2
startup.

20-Apr-2021 5

Updated Introduction, Section 1: References, Section 4.3: Shared
peripherals, Section 8.6.5: How to start the BLE stack -
SHCI_C2_BLE_Init(), Section 8.6.9: How to maximize data throughput
and Section 14.2: Mailbox interface.

Updated Figure 1: Protocols supported by STM32WB series
microcontrollers, Figure 38: Software architecture and Figure 79: BLE
user event receive flow.

Updated Table 1: Stacks supported by STM32WB series microcontrollers,
Table 2: Semaphores, Table 9: Security commands and Table 28: MO
firmwares available for Thread.

Added Section 4.11: ECCD error management.

Removed former Section 6.10: Write or read long local or distant values,
Section 13.8: BLE - Security procedure and their subsections.

AN5289 Rev 18 169/171

AN5289 Revision history

170

14-Dec-2021 6

Added Section 7.6.2: How to set IRK (identity root key) and ERK
(encryption root key), Section 8.6.6: BLE GATT DB and security record in
NVM and Section 8.6.7: How to calculate the maximum number of
bonded devices that can be stored in NVM.

Updated Section 8.6.1: How to set Bluetooth device address,
CFG_BLE_ATT_VALUE_ARRAY_SIZE, Section 14.2: Mailbox interface,
SHCI_C2_xxx(), and ACI_xxx() / HCI_LE_xxx().

Updated Table 31: Interface APIs.

15-Jul-2022 7

Updated Section 4.3: Shared peripherals, Section 4.6: Low power
manager, and Section 8.2.2: STM32WB heart rate sensor application -
Middleware application.

Added Section 8.6.8: NVM write access.

Updated Figure 24: Heart rate project - Interaction between middleware
and user application.

Minor text edits across the whole document.

24-Nov-2022 8

Updated CFG_BLE_OPTIONS.

Added Section 7.6.11: How to switch from 32 to 64 MHz and
Section 7.6.12: How to re-enable the PLL when exiting low power mode.

Minor text edits across the whole document.

11-Apr-2023 9
Added Section 14.5: Vendor specific HCI commands for controller.

Minor text edits across the whole document.

18-Jul-2023 10

Updated document title.

Updated Security attack, CFG_BLE_HSE_STARTUP_TIME, and
SHCI_C2_xxx().

Updated Table 34: System interface commands.

Minor text edits across the whole document.

18-Aug-2023 11

Updated Table 2: Semaphores.

Updated Section 4.3: Shared peripherals.

Minor text edits across the whole document.

25-Sep-2023 12
Updated Section 8.6.2: How to set IR (Identity Root) and ER (Encryption
Root).

24-Oct-2023 13

Updated Section 4.7.3: Conflict between RF activity and flash memory
management and Section 8.6.8: NVM write access.

Updated Table 34: System interface commands.

Added note in Section 5.2: CPU2 startup, Section 6: PLL management
and its subsections, Section 8.6.11: How to use BLE commands in
blocking mode, and How to use the system command in polling mode.

Removed former Section 7.6.11: How to switch from 32 to 64 MHz and
Section 7.6.12: How to re-enable the PLL when exiting low power mode.

27-Nov-2023 14
Updated Section 14.6.1: Commands.

Updated Table 34: System interface commands.

04-Dec-2023 15
Updated Table 23: FUOTA service and characteristics UUID and
Table 24: Base address characteristics specification.

07-Feb-2024 16 Updated Section 6.1.2: Case 2: CPU2 is started.

Table 36. Document revision history (continued)

Date Revision Changes

Revision history AN5289

170/171 AN5289 Rev 18

25-Jun-2024 17 Updated Section 4.3: Shared peripherals.

28-Aug-2024 18 Updated Section 4.7.1: CPU2 timing protection.

Table 36. Document revision history (continued)

Date Revision Changes

AN5289 Rev 18 171/171

AN5289

171

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

	1 References
	2 List of acronyms and abbreviations
	3 Software overview
	3.1 Supported stacks
	Table 1. Stacks supported by STM32WB series microcontrollers
	Figure 1. Protocols supported by STM32WB series microcontrollers
	Figure 2. STM32WB series microcontrollers BLE HCI layer model

	3.2 BLE application
	Figure 3. BLE application and wireless firmware architecture

	3.3 Building a BLE application on top of the HCI layer interface
	3.4 Thread application
	3.5 MAC 802_15_4 application
	3.6 BLE and Thread application in concurrency

	4 STM32WB software architecture
	4.1 Main principles
	4.2 Memory mapping
	Figure 4. Memory mapping

	4.3 Shared peripherals
	Table 2. Semaphores
	Figure 5. Timing for entering/exiting Stop mode on CPU1
	Figure 6. Algorithm to enter Stop mode on CPU1
	Figure 7. Algorithm to exit Stop mode on CPU1
	Figure 8. Algorithm to use RNG on CPU1
	Figure 9. Algorithm to use USB on CPU1

	4.4 Sequencer
	4.4.1 Implementation
	4.4.2 Interface
	Table 3. Interface functions

	4.4.3 Detailed interface and behavior

	4.5 Timer server
	4.5.1 Implementation
	4.5.2 Interface
	Table 4. Interface functions

	4.5.3 Detailed interface and behavior

	4.6 Low power manager
	4.6.1 Implementation
	4.6.2 Interface
	Table 5. Interface functions

	4.7 Flash memory management
	4.7.1 CPU2 timing protection
	Figure 10. Algorithm to write/erase data in the flash memory
	Figure 11. CPU1 and flash memory operation versus PESD bit

	4.7.2 CPU1 timing protection
	4.7.3 Conflict between RF activity and flash memory management

	4.8 Debug information from CPU
	4.8.1 GPIO
	4.8.2 SRAM2

	4.9 FreeRTOS low power
	4.10 Device information table
	Figure 12. Format of version and memory information

	4.11 ECCD error management
	Figure 13. ECC management in NMI interrupt handler

	5 System initialization
	5.1 General concepts
	Figure 14. System initialization

	5.2 CPU2 startup

	6 PLL management
	6.1 How to switch the system clock between HSE and PLL
	6.1.1 Case 1: Before CPU2 is started
	Figure 15. Algorithm to switch the system clock from PLL to HSE
	Figure 16. Algorithm to switch the system clock from HSE to PLL

	6.1.2 Case 2: CPU2 is started

	7 Step by step design of a BLE application
	7.1 Initialization phase
	7.2 Advertising phase (GAP peripheral)
	Table 6. Advertising phase API description

	7.3 Discoverable and connectible phase (GAP central)
	Table 7. GAP central APIs

	7.4 Services and characteristic configuration (GATT server)
	7.5 Service and characteristic discovery (GATT client)
	Table 8. GATT client APIs

	7.6 Security (pairing and bonding)
	7.6.1 Security modes and level
	7.6.2 Security commands
	Table 9. Security commands

	7.6.3 Security information commands
	Table 10. Security information commands

	7.7 Privacy feature
	7.8 How to use the 2 Mbps feature
	Table 11. 2 Mbps feature commands

	7.9 How to update connection parameters
	Table 12. Proprietary connection data

	7.10 Event and error code description

	8 BT-SIG and proprietary GATT-based BLE application
	Figure 17. GATT-based BLE application
	8.1 Transparent mode - Direct test mode (DTM)
	8.1.1 Purpose and scope
	Table 13. Direct test mode functions

	8.1.2 Transparent mode application principle
	8.1.3 Configuration
	Figure 18. Transparent mode with P-NUCLEO-WB55 board and ST-LINK VCP
	Figure 19. Transparent mode with P-NUCLEO-WB55 board and level shifter

	8.1.4 RF certification - Application implementation
	Figure 20. Simple setup with BLE RF tester and P-NUCLEO board

	8.2 Heart rate sensor application
	Figure 21. Heart rate profile structure
	Figure 22. Simple setup with BLE RF tester and P-NUCLEO board
	8.2.1 How to use STM32WB heart rate sensor application
	Figure 23. Smart phone - ST BLE sensor with heart rate application

	8.2.2 STM32WB heart rate sensor application - Middleware application
	Table 14. Heart rate service functionalities
	Table 15. HR sensor application control
	Figure 24. Heart rate project - Interaction between middleware and user application

	8.3 STMicroelectronics proprietary advertising
	Table 16. AD structure according to the Bluetooth 5 Core specification Vol. 3 part C
	Table 17. STM32WB manufacturer specific data
	Table 18. Group B features - Bit mask
	Table 19. Device ID Enum

	8.4 Proprietary P2P application
	Figure 25. P2P server to client demonstration
	Figure 26. P2P server to ST BLE sensor smart phone application
	8.4.1 P2P server specification
	Table 20. P2P service and characteristic UUIDs
	Table 21. P2P specification
	Figure 27. P2P server/client communication sequence

	8.4.2 How to use the P2P server application
	Figure 28. P2P server connected to ST BLE sensor smart phone application

	8.4.3 P2P server application - Middleware application
	Table 22. P2P service functionalities

	8.4.4 P2P client application - Middleware application
	Figure 29. P2P server software communication
	Figure 30. P2P client software communication

	8.5 FUOTA application
	8.5.1 CPU1 user flash memory mapping
	Figure 31. FUOTA memory mapping

	8.5.2 BLE FUOTA application startup
	Figure 32. FUOTA startup procedure

	8.5.3 BLE FUOTA services and characteristics specification
	Table 23. FUOTA service and characteristics UUID
	Table 24. Base address characteristics specification
	Table 25. File upload confirmation reboot request characteristics specification
	Table 26. Raw data characteristics specification

	8.5.4 Flow description example to upload new CPU1 application binary
	Table 27. Reboot request characteristics specification
	Figure 33. FUOTA process with heart rate

	8.5.5 Application example with smart phone
	Figure 34. P2P server - Application firmware selection
	Figure 35. P2P server - Application firmware update
	Figure 36. Heart rate sensor notification

	8.5.6 How to use the reboot request characteristics
	8.5.7 Power failure recovery mechanism for CPU1 application

	8.6 Application tips
	8.6.1 How to set Bluetooth device address
	8.6.2 How to set IR (Identity Root) and ER (Encryption Root)
	8.6.3 How to add a task to the sequencer
	8.6.4 How to use the timer server
	8.6.5 How to start the BLE stack - SHCI_C2_BLE_Init()
	8.6.6 BLE GATT DB and security record in NVM
	8.6.7 How to calculate the maximum number of bonded devices that can be stored in NVM
	8.6.8 NVM write access
	8.6.9 How to maximize data throughput
	8.6.10 How to add a custom BLE service
	8.6.11 How to use BLE commands in blocking mode

	9 Building a BLE application on top of the HCI layer interface
	10 Thread
	10.1 Overview
	Table 28. MO firmwares available for Thread

	10.2 How to start
	10.3 Thread configuration
	Figure 37. User option bytes setting
	Table 29. Files for Thread configuration

	10.4 Architecture overview
	Figure 38. Software architecture

	10.5 Inter core communication
	Figure 39. OpenThread functions calls
	Figure 40. OpenThread callback

	10.6 OpenThread API
	Figure 41. OpenThread stack API directory structure

	10.7 Usage of the OpenThread APIs
	10.7.1 OpenThread instance
	10.7.2 OpenThread call back management
	Figure 42. OpenThread callback management

	10.8 System commands for Thread applications
	10.8.1 Non-volatile Thread data
	Figure 43. Storage of non-volatile data

	10.8.2 Low-power support

	11 Step by step design of an OpenThread application
	11.1 Initialization phase
	11.2 Set-up the Thread network
	11.3 CoAP request
	11.3.1 Creating an otCoapResource
	11.3.2 Sending a CoAP request
	11.3.3 Receiving a CoAP request

	11.4 Commissioning
	11.5 CLI
	Figure 44. Configurable CLI UART (LPUART or USART)

	11.6 Traces
	Figure 45. Traces for Thread applications

	12 STM32WB OpenThread application
	12.1 Thread_Cli_Cmd
	12.2 Thread_Coap_DataTransfer
	12.3 Thread_Coap_Generic
	12.4 Thread_Coap_Multiboard
	12.5 Thread_Commissioning
	12.6 Thread_FTD_Coap_Multicast
	12.7 Thread_SED_Coap_Multicast
	12.8 Thread FUOTA
	12.8.1 Principle
	Figure 46. Thread FUOTA network topology

	12.8.2 Memory mapping
	Figure 47. OTA server (Thread_Ota_Server) flash memory mapping
	Figure 48. FUOTA client flash memory mapping initial state
	Figure 49. FUOTA server flash memory mapping after CPU1 binary transfer
	Figure 50. FUOTA server flash memory mapping after CPU2 binary transfer

	12.8.3 Thread FUOTA protocol
	Figure 51. Thread FUOTA protocol

	12.8.4 FUOTA application startup procedure
	Figure 52. FUOTA startup procedure
	Figure 53. Update procedure

	12.8.5 Applications

	13 MAC IEEE Std 802.15.4-2011
	13.1 Overview
	13.2 Architecture
	Figure 54. MAC 802.15.4 software architecture

	13.3 API
	Figure 55. MAC API dedicated to application core

	13.4 How to start
	13.4.1 Board configuration
	Figure 56. Option bytes configuration for MAC 802.15.4

	13.4.2 MAC radio protocol processor CPU2 firmware
	13.4.3 MAC application processor firmware
	Figure 57. MAC 802.15.4 simple application
	Figure 58. MAC 802.15.4 applications - Directory structure

	13.4.4 Output
	Figure 59. Coordinator start
	Figure 60. Node start, requesting association, and data send
	Figure 61. Coordinator receiving association request and data

	13.4.5 MAC IEEE Std 802.15.4-2011 system
	13.4.6 Integration recommendations
	Figure 62. MAC 802.15.4 layer abstraction
	Figure 63. Traces on MAC 802.15.4 application

	14 Annexes
	14.1 Detailed flow of the device initialization
	Figure 64. System initialization
	Figure 65. System ready event notification
	Figure 66. BLE initialization

	14.2 Mailbox interface
	14.2.1 Interface API
	Table 30. Interface APIs

	14.2.2 Detailed interface behavior
	Figure 67. Transport layer initialization
	Figure 68. BLE channel initialization
	Figure 69. BLE command sent by the mailbox
	Figure 70. ACL data sent by the mailbox
	Figure 71. System command sent by the mailbox
	Figure 72. BLE and system user event received by the mailbox

	14.3 Mailbox interface - Extended
	14.3.1 Interface API
	Table 31. Interface APIs

	14.3.2 Detailed interface and behavior
	Figure 73. System transport layer initialization
	Figure 74. System command sent by the system transport layer
	Figure 75. System user event reception flow
	Figure 76. shci_resume_flow() usage example

	14.4 ACI interface
	Table 32. BLE transport layer interfaces
	14.4.1 Detailed interface and behavior
	Figure 77. BLE transport layer initialization
	Figure 78. ACI command flow
	Figure 79. BLE user event receive flow
	Figure 80. hci_resume_flow() usage example

	14.5 Vendor specific HCI commands for controller
	Table 33. Vendor specific HCI commands

	14.6 STM32WB system commands and events
	14.6.1 Commands
	Table 34. System interface commands

	14.6.2 Events
	Table 35. User system events

	14.7 BLE - Set 2 Mbps link
	Figure 81. 2 Mbps set-up flow

	14.8 BLE - Connection update procedure
	Figure 82. Master initiates the connection update with HCI command
	Figure 83. Slave initiates the connection update with L2CAP command

	14.9 BLE - Link layer data packet
	Figure 84. Data packet breakdown
	Figure 85. Application GATT data format

	14.10 Thread overview
	14.10.1 Introduction
	14.10.2 Main characteristics
	14.10.3 Layers
	Figure 86. Thread protocol letters
	Figure 87. 6LoWPAN packet fragmentation

	14.10.4 Mesh topology
	Figure 88. Thread network topology
	Figure 89. Link with the external world

	14.10.5 Thread configuration
	Figure 90. Thread device roles

	15 Conclusion
	16 Revision history
	Table 36. Document revision history (continued)

