Introduction

The microcontrollers (MCUs) from the STM32WB Series can support an external power amplifier (PA) to provide higher output power.

This document details the modifications to implement in the Cortex®-M4 firmware, to allow the external PA to be driven by the MCU.

This application note is based on the SKY66118-11 PA from Skyworks Solutions (max output power = 20 dBm).
This document applies to the STM32WB Series Arm® Cortex® core-based microcontrollers.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

The following SKY66118-11 pins must be managed (see the figure and the table below):
- CTX pin to switch the PA in transmission or reception
- CSD pin to enable or disable the PA
- VCTRL pin to control the output power (1.6 V < V_{CTRL} < 3.6 V, not represented in the figure below)

Figure 1. SKY66118-11 block diagram

Refer to the SKY66118-11 datasheet available on Skyworks web site for more details.

Table 1. SKY66118-11 CSD and CTX pins

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>CSD</th>
<th>CTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All off (Sleep mode)</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>1</td>
<td>Transmit mode</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Bypass mode</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The CTX pin must be connected to GPIO PB0 (Port B, pin 0) of the STM32WB Series MCU. The CSD pin is connected to another GPIO.
2 Firmware

CTX pin

For the CTX pin, the code below must be added in the Cortex-M4 firmware, in the initialization section of the GPIOs:

```c
GPIO_InitTypeDef  GPIO_InitStruct;

// Enable GPIOB clock for CTX pin
__HAL_RCC_GPIOB_CLK_ENABLE();

// configure the GPIO PB0 in AF6 to be used as RF_TX_MOD_EXT_PA
GPIO_InitStruct.Pull      = GPIO_NOPULL;
GPIO_InitStruct.Mode      = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed     = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF6_RF_DTB0;
GPIO_InitStruct.Pin       = GPIO_PIN_0;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
```

The CTX signal is managed by the BLE stack (transmission/reception), so there is nothing to add for this functionality.

Check that, in the Cortex-M4 firmware, PB0 is not used by another resource (for example, on the Nucleo board in the P-NUCLEO-WB55 pack, PB0 is used by LED2). If this occurs, this resource must be disabled.

CSD pin

The GPIO chosen to be connected to the CSD pin must be configured in the Cortex-M4 firmware, in the initialization section of the GPIOs (PA0 example):

```c
// Enable GPIOA clock for CSD pin */
__HAL_RCC_C2GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();

// configure the GPIO which will be managed by M0 stack to enable Ext PA
GPIO_InitStruct.Pull  = GPIO_NOPULL;
GPIO_InitStruct.Mode  = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Pin   = GPIO_PIN_0;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
```

The Cortex-M4 firmware has also to inform the Cortex-M0+ firmware on which GPIO must be managed with the function:

- `SHCI_C2_ExtpaConfig((uint32_t)GPIOA, GPIO_PIN_0, EXT_PA_ENABLED_HIGH, EXT_PA_ENABLED);`

 when the PA is used.

- `SHCI_C2_ExtpaConfig((uint32_t)GPIOA, GPIO_PIN_0, EXT_PA, EXT_PA_ENABLED_HIGH, EXT_PA_DISABLED);`

 when the PA is not used.

Note: The selected PA must have a turn-on time lower than 300 μs.
Revision history

Table 2. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-Sep-2019</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>16-Apr-2020</td>
<td>2</td>
<td>Updated:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section 1 Hardware</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Section 2 Firmware</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Classification of the document</td>
</tr>
</tbody>
</table>
Contents

1 Hardware ... 2
2 Firmware ... 3
Revision history ... 4
Contents .. 5