‘— AN5411
’l life.augmented

Application note

[I-CUBE-LRWAN embedding FUOTA, application implementation

Introduction

This application note describes the FUOTA application embedded in the expansion software (I-CUBE-LRWAN) implementation
on STM32L4 Series devices, and explains how to make use of the overall FUOTA process in order to provide the components
needed for a FUOTA campaign.

This document applies within the framework of a FUOTA project, and is intended for teams or individuals, either internal or
external to ST. It particularly targets FUOTA project integrators, or those integrating FUOTA modules in a wider system
implementing end-device functions.

LoRa® is a type of wireless telecommunication network designed to allow long range communication at a very low bit rate,
enabling long-life battery operated sensors. LoRaWAN® defines the communication and security protocol to ensure
interoperability with LoRa networks.

AN5411 - Rev 1 - November 2019 www.st.com

For further information contact your local STMicroelectronics sales office.

http://www.st.com

m AN5411

General information

1 General information

This document applies to STM32L476xx Series Arm®-based microcontrollers.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

AN5411 - Rev 1 page 2/32

AN5411

Overview

3

2 Overview

The FUOTA application in I-CUBE-LRWAN is compliant with the LoRa Alliance® specification protocol (LoRaWAN
version V1.0.3) [1].

The FUOTA feature is implemented in the application layer, and is based on and compliant with the specific
functionalities defined by the LoRA Alliance. These functionalities allow a multicast group (Remote Multicast
Setup Spec V1.0.0 [4]) to be set up, to fragment and to send data packets (Fragmented Data Block Transport
Specification v1.0.0 [3]) and finally to synchronize clocks (LoRaWAN Application Layer Clock Synchronization
Specification v1.0.0 [5]) so that all devices can agree on the start of a FUOTA session.

Note: Throughout this application note, the IAR™ EWARM IDE is used as an example to provide guidelines for project
configuration.
2.1 Application supports

The firmware update over-the-air (FUTOA) application supports:

. full firmware upgrade image (the entire firmware image is sent to the end-device)

. only applicable in Class-C mode

. only runs on STM32L476xx targets

. third-party middleware, mdedTLS (open source code) for the cryptographic services.

2.2 Terms and acronyms

Table 1. Acronyms used in this document

ABP Activation by personalization

APDU Application protocol data unit

FUOTA Firmware update over the air

FW Firmware

HAL Hardware abstraction layer

LoRa Long-range radio technology
LoRaWAN LoRa, wide-area network

MAC Media access control

MCPS MAC common part sublayer

MLME MAC sublayer management entity
MPDU Mac protocol data unit

MSC Message sequence chart

OTA Over-the-air

PLME Physical sublayer management Entity
PPDU Physical protocol data unit

SBSFU Secure boot and secure firmware update
SFU Secure firmware update

TPDU Transport protocol data unit

SAP Service access point

AN5411 - Rev 1 page 3/32

AN5411

References

3

Table 2. Terms used in this document

Firmware image A binary image (executable0 run by end-device as user application

Firmware header = Meta-data describing the firmware image to be installed.

mbedTLS mbedTLS implementation of the TLS and SSL protocols and the associated cryptographic algorithm.
“.sfb” file Binary file packing the firmware header and the firmware image.
23 References

Table 3. Document references

wmaw[Remwmt]

[1] LoRa Alliance Specification Protocol (LoRaWAN version V1.0.3), March 2018

[2] IEEE Std 802.15.4TM - 2011. Low-Rate Wireless Personal Area Networks (LR-WPANSs)

3] LoRa Alliance Fragmented Data Block Transport over LoRaWAN Specification v1.0.0, September 2018 —
[TS-004]

[4] LoRa Alliance Remote Multicast Setup over LoRaWAN Specification v1.0.0, September 2018 — [TS-005]

[5] LoRa Alliance Application layer clock synchronization over LoRaWAN Specification v1.0.0, September 2018
— [TS-003]

[6] AN5056 Integration Guide for the X-CUBE-SBSFU STM32Cube Expansion Package — application note

[7] UM2262 - Getting started with the X-CUBE-SBSFU STM32Cube Expansion Package — user manual

[8] UM2073 — STM32 LoRa Expansion Package for STM32 - user manual

AN5411 - Rev 1 page 4/32

‘_’ T AN5411
LoRa standard and FUOTA application feature

3 LoRa standard and FUOTA application feature

This section provides a general overview of the LoRa and LoRaWAN recommendations. It deals in particular with
the LoRa end-device and the FUOTA feature, which are the core subjects of this application note.

The LoRa software expansion is compliant with the LoRa Alliance LoRaWAN specification protocol [1].
3.1 Network architecture

Figure 1 shows the components and their protocol relationships, allowing the implementation of the firmware-
over-the-air feature.

Figure 1. Network diagram

APDU
Update agent - » Device management |« Device management » Update server

APDU) Clock

Clock Mcast | Frag
Meast | Frag | gonc < Sync
File distribution server
o APDU
LoRa user application < User application
MPDU gackend |, OV E&Z’EZL"”
LORAWAN . > Lorawan | Sl Back-end transport

pre——

Note: In the I-CUBE-LRWAN FUOTA package, the device management block is not implemented. The LoRa Alliance
technical FUOTA working group is working on a LoRaWAN Firmware Management Protocol Specification, which
documents and defines this block.

3.1.1 Client/server architecture

The end-device where the software or firmware is to be updated is referred to as the end node or client. The other
part of the system is referred to as the cloud or server, and provides the new software or firmware (Figure 2).

Figure 2. Client/server architecture example

Client (end node) Server

Radio Application and network
Gateway server

Sensor > Microcontroller |¢+—| Radio

AN5411 - Rev 1 page 5/32

m AN5411

End-device classes

3.1.2 End-device architecture

An end-device consists of a host MCU that reads sensor data in order to transmit the sensor reading over the
LoRa network by means of the LoRa radio module.

Data is encrypted by the host MCU and the radio packet is received by the gateway, which forwards it to the
network server. The network server then sends data to the application server, which has the right key to decrypt
the application data.

3.2 End-device classes

LoRaWAN [1] has several end-device classes to address the various needs of a wide range of applications.
The FUOTA application described in this application note is only 'Class-C enable'. In other words the FUOTA
application is validated for network infrastructure supporting only Class-C mode.

Note: The end-device supports Class-B mode. Nevertheless it is only 'Class B capable’. To be ‘Class B enable' it is
mandatory to proceed to a new integration and validation phase on a network infrastructure supporting Class-B
mode for the FUOTA campaign.

3.21 Class definition
. Bi-directional end devices - Class A - (all devices) see [1]

. Bi-directional end-devices with scheduled receive slots - Class B — (Beacon) see [1]
. Bi-directional end-devices with maximal receive slots - Class C — (Continuous)

Class-C mode is implemented to support FUOTA. Class-C end devices have almost continuously-open receive
windows (RxC where the data blocks are received), and are only closed when transmitting (Tx) and receiving
(Rx1, Rx2) in Class-A mode (Figure 3).

Figure 3. Tx/Rx timing diagram (Class C)

Rxc Rxc Rxc

™ ~
[Tx Rx1 Rx2

RxDelayl

'y

|
Transmit time on air RxDeIa‘yZ
i

U
h
y

Extends Rxc until next Tx

AN5411 - Rev 1 page 6/32

AN5411

FUOTA - firmware update over the air

3

3.3 FUOTA - firmware update over the air

The FUOTA update process transfers a new software image (data file) from the server to the client, and updates
the current software image (version N) running on the client with the new received software image (version N+1).
Obstacles to successful completion of the FUOTA update process are:

. Communication. The new firmware image must be sent from the server to the client. This challenge is
performed through the application-layer protocols running over LoRaWAN, which provide remote-multicast
setup, fragmented data-block transport, and application-layer clock-synchronization services. The
LoRaWAM Mac layer provides Class-C mode to transmit the data file in unicast or multicast mode.

. Firmware update. The client must migrate from the current to the new firmware image. This task is
performed by the Update_Agent module. To succed, the Update_Agent module relies on the services
provided by the SBSFU middleware

. Memory. The software architecture must be organized so that it can be executed when the update process
completes. The solution must ensure the recovery of the new software version if there are installation issues.
This task is handled by the SBSFU middleware.

. Security. When a new FW image is sent wirelessly from server to client, several security services must be
assured, such as: authentication, confidentiality and integrity. This must be done either through the
LoRaWAN protocol or by means of the SBSFU middleware security services.

34 Network protocol architectures

This section describes the end-to-end network protocol architecture (see Figure 4). The following protocol
exchanges are used:

. MAC protocol data unit exchanges (MPDU)
. application protocol of an application data unit exchanges (APDU)

. LoRa protocol physical protocol data unit layer (PPDU).

Figure 4. LoRa network protocols

—)
Application server

—)

LoRa application |, _________ f\f'P_L{ __ ,| LoRa application

layer Network server Layer
MPDU
LoRa MAC layer #----=-=--=-=-=--=---- d ------------------------- * LoRa MAC layer
LoRa gateway
i PPDU i
LoRa physical |, ZT2. » LoRaphysical IP connectivity IP connectivity |« » |P connectivity
layer layer
- MAC layer communication secured by network session key
- Application layer communication secured by application session key .
3.4.1 Network layer

The LoRaWAN architecture is defined in terms of blocks called layers. As shown in Figure 5, each layer is
responsible for one part of the standard and offers services to higher layers. An end-device is made up of :

. a PHY, which embeds the radio frequency transceiver
. the MAC sublayer that provides access to the physical channel
. application layers that provide access to the LoRaWAN services protocol.

AN5411 - Rev 1 page 7/32

m AN5411

Network protocol architectures

Figure 5. LoRaWAN layers

Upper layers (apps)

! !

MAC

! !

Phy

!

Physical medium (air interface)

3.4.2 Physical layer (PHY)
The physical layer provides two services:
. the PHY data service enables the Tx/Rx of physical protocol data units (PPDUs)
. the PHY management service enables the personal-area network-information base (PIB) management.

343 MAC layer
The MAC layer provides two services:
. The MAC data service enables transmission and reception of MAC protocol data units across the physical
layer (MPDU)

. The MAC sublayer management enables the PIB management.

344 Application layer

The application layer provides several messaging packages running over the LoRaWAN protocol. Here, FUOTA
scopes the following:

A clock synchronization package (port Number 202)
. Synchronizes the end-device real-time clock to the network’s GPS
. Makes all end devices of a multicast group to switch to Class C temporarily and synchronously.

A fragmented-data-block transport package (port Number201)

. Sets up / reports / deletes fragmentation transport sessions

. Several fragmentation sessions may be supported simultaneously by an end-device
. Fragmentation can be used either over multicast or unicast

. Authenticates a data block once reconstructed (only supported on V2 of the TS-004 — not supported on V1 —
TS004))

. Reports the status of a fragmentation session.

A remote multicast setup package (port Number 200)

. Remotely creates a multicast group security context inside a group of end devices
. Reports the list of multicast contexts existing in the end-device

. Remotely deletes a multicast security context.

. Programs a Class-C multicast session

. Programs a Class-B multicast session.

Firmware management package (port Number 203) -- (not supported in the current version)

AN5411 - Rev 1 page 8/32

AN5411

Network/end-device interworking

3

. Queries/manages the firmware version running on an end-device (including availability of the firmware-
update version)

. Queries/manages the end-device hardware version
. Manages the end-device reboot at a given time.

Update agent module

Firmware module that interfaces a LoRaWAN stack block to an SBSFU block

. Get and transmit the complete file (after recombination) to the secure firmware update (SFU) process of the
SBSFU.

User application

. Sensor/actuator processing — application use cases.

3.5 Network/end-device interworking

This section only shows the information flow between end-device and AS at the application-layer level during a
FUOTA campaign. For a complete view and description of the end-device and network interactions, refer to the
STM32 LoRa expansion package user manual [8].

3.51 Multicast and fragmentation set-up
Time synchronization

Before seting up a FUOTA session, the end-device must have synchronized its timing with the network using
either AppTimeReq or Device TimeReq as shown in Figure 6.

Figure 6. Message sequence chart for device timing

End device

. End device Network Network
application MAC layer MAC layer application
layer layer
[
MCPS.req(AppTimeReq) > AppTimeReq (202)
————————————————————————— P MCPS.ind{AppTimeReq) =
AppTimeAns _MCPS.resp(AppTimeAns) Device time sync at application layer
MCPS.cnf(AppTimeAns) g Sy g S D
MLME.req(DeviceTimeReq) }
» DeviceTimeReq (0)
,,,,,,,,,,,,,,,,,,,,,,,,, »
DeviceTimeAns Device time sync at MAC layer
MLME.cnf(DeviceTimeAns) [= == === === === - ———————————+
| |
\ / | |
Y Y
End-device Application server
Note: For the purposes of this presentation, the TimeReq sent by the MSC is divided into DeviceTimeReq and

AppTimeReq parts. The LoRaWAN specification allows a MAC command to be piggybacked in an application
payload. In the current implementation Device TimeReq is piggybacked in the AppTimeReq payload.

Multicast, fragmentation setup and session creation (Class C only)

In order to receive a data block at the application level, it is necessary to have some exchanges between the
network application layer and the end-device application layer. These exchanges are mainly to define: a Multicast

Group ID, the fragmentation parameters (frag number and frag size), and to define and create the Class C
session.

AN5411 - Rev 1 page 9/32

m AN5411

Network/end-device interworking

Figure 7. Message sequence chart for Class-C creation

Endt diendce Erd devics Metwork hAC Netwark
application A
layer M AC [ayver layer application layer

MZP S RegiMoGroupSetupReq)
MeGroupSetupRes (2000 - 7

MCP S I ndiMeGroup SetupRed)

-

MCPS Respi oG oupSetupans) MEGroUpSEtupAns — Mutticast session setup

MCPS CnfitcGroups etupdns)

A

MCP S Reg(FragSessionSetupRed)
o

FragSessionSetupR ey -
(203
P R
MCPSIndF rag=essions etupR eq)
-+
MCPS Resp(FragSessionSetuplng = i i
PP e [. FragSessionSetupans Fragmentation session setup
""""""""""""""""""""""""""""""""" ¥ ticp 5 CnfiFragSessionSetuping)
MCPS RegiMcClaszCsessionReq)
MoClassCsessionR e (2000 .
MCPSInd(McClassCsessionRee) | T
-
MCP S ResplMeClassCaessionsns = ClassC i ati
=t ; Mol sseC sassionans aszsC segsion creation
"""""""""""""""""""""""""""""""""""" * | MCP 3.CnfiM cClassC sessionAns)

I |

End-device Application serer

Fragment broadcasting and secure FW update process

As soon as the end-device is synchronized (Class C), it opens its Rx window in order to receive the data
fragments [3]. It stays in this state until all the data fragments are recieved.

When the complete data block (see the note below) is received, the end-device closes its Rx windows, and if
everything is OK from the 'data-block transfer' point-of-view, the end-device calls the UpdateAgent to start the
secure firmware update (SFU) process.

AN5411 - Rev 1 page 10/32

AN5411

Network/end-device interworking

Figure 8. Message sequence chart for data block broadcasting

—

End device . Network
application End device Network application
layer MAC layer MAC layer layer
Device waiting for Class C session]
[Device Sync / Rx Wind ON]
MCPS.Req(Frag #1)
Frag #1 (201 TP —————
MCPS.Ind(Frag #1) q___________g__(___J _________ MCPS.Req(Frag #2)
» Frag 2 (201} | —
MCPS Ind(Frag #2) M- mmcmmmeecsema e ————— le —
D e m—m e T e] MCPS Req(Frag #n-1) Data fragments broadcasted
Frag #n-1 (201) —
MCPS.Ind(Frag #n-1) PR il MCPS Req(Frag #n)
-+ Frag #n (201) —
MCPS_Ind(Frag #n) M= mm e e e
MCPS.Req(FragDataBlockReceivedReq)
R S —— FragDataBlockReceivedReq (201) [~ T[T 1| Not supported in TS-004 V1 — could be
MCP3S.Ind(FragDataBlockRepeivedReq) | replaced by a ‘proprietary - Tx data with
+ 1
! b 1 the data payload being the CRC of the
MCPS Req(FragDataBlockReceivedAns) FragDataBlockReceivedANs (201) MCPS.Resp(FragDataBIockLecelvedAnsJ: received file
e m m m e e e e e mmmmmmmem e <
1
[Data block transferred / Rx wind OFF]
UpdateAgent to copy the data block in
the SBSFU workspace
) Application
End-device server

Note:

Note:

AN5411 - Rev 1

A protocol enhancement is to be proposed in the next Fragmented Data Block Transport specification [TS-004]
version. In this, after the complete data block is received, the end-device sends a FragDataBlockReceived.Req
message to indicate the current status of the data transfer.

Additional user ‘proprietary’ protocol statement:

The V1.0 package, and particularly Fragmented Data Transport TS-004, does not provide a way to inform the
server that all data blocks have been properly received in order to rebuild the current download file. This is the
case in the currently proposed implementation. The server always sends all the fragments (uncoded and coded),
even if the current download file has been rebuilt before the end of the complete broadcast fragmentation
transaction.

If needed, the user is responsible for implementing a ‘proprietary’ protocol to avoid such behavior.

For instance, when all the required fragments have been received and the current download file rebuilt, a simple
crc32 can be computed and sent back to the server. The server should decide to stop broadcasting the
remaining fragments.

This approach requires cooperation between the device maker and the network operator in order to define the
'proprietary’ part of the protocol.

page 11/32

m AN5411

SBSFU/end-device manager relationship

4 SBSFU/end-device manager relationship

4.1 Secure boot (SB)

The secure boot loader (SB) is software that permanently resides in the microcontroller's read-only memory.
Secure boot checks the integrity and authenticity of the user application that is executed.

Secure boot executes every time a reset occurs and checks if there is a new OTA process to complete.

AN5411 - Rev 1 page 12/32

m AN5411

Secure firmware update (SFU)

4.2 Secure firmware update (SFU)

Secure firmware update provides a secure implementation of in-field firmware updates, enabling secure download
of a new firmware image either through UART or OTA to the end-device.

421 Device update scenario
When there is no new firmware to install

There is no OTA process to complete, and Secure Boot (SB) does some signature verifications and branches to
the current active firmware - the (Slot#0) user application.

When there is a new FW to install

The OTA process has to be completed. Secure boot (SB) transfers control to secure firmware update (SFU),
which contains the OTA update-related software. SFU does the firmware update in Slot#1 and does a firmware
swap processing from Slot#1 to Slot#0, and transfers control to Secure Boot. Secure Boot checks if there is an
OTA to complete, and branches to the new Firmware in SlotO#

Figure 9. Boot flow with SBSFU and SBSFU memory map

SBSFU WorkSpace User WorkSpace
Secure boot Secure Secure engine Slot#0 Slot#1
(sB) Firmware + table of (active (new Swap area
Update (SFU) content application) application)

Active application
Branch

Secure
boot

Secure Firmware Update (SFU)

v

Update process > Signature checking

AN5411 - Rev 1 page 13/32

AN5411

Security

3

4.3 Security

Security is ensured either through the LoRaWAN protocol, or by means of SBSFU middleware security services.

During a Multicast session, all the end-devices share the same session keys. There is a potential risk when one of
the devices becomes compromised, as an attacker can initiate a multicast session with rogue firmware. To
counter this, the SBSFU can add a layer of security by using an asymmetric cryptography scheme. When a
firmware update is generated, the update is signed (TAG) with a private key by means of the Preparelmage
SBSFU tool [7]. When the end-device receives the firmware update, it verifies the signatures against the file
received and the public key held in the 'secure core' part of the end-device.

Figure 10. Signed firmware image

Update
Server

F Y

Signed firmware + Prepareimage

SBSFU verifies signature
applies firmware update
Flashes and reboots

. Original
End-Device E NS firmware

FUOTA

Public key Private key

The next version of the Fragmented Data Block Transport TS-004 (V2) [3] introduces an end-device specific key
(DataBlockintKey) that removes the risk when the McAppSKey or McNwkSKey is compromised.

4.4 end-device

The firmware update over the air feature has a direct impact on the memory size (FLASH/RAM) of the end-
device. The amount of memory needed depends on the maximum size of the firmware image, the technology
used to manage the new firmware-update image, and also of the bootloader requirements. The current version
proposes a full firmware-update feature.

4.5 Update agent

During the first step of the FUOTA update process - the transfer of the data block (firmware image) from the
server to end-device, every time the end-device receives a fragment [3] coming from the server, it is stored in
SRAM. When the entire data block (new firmware image) is received from the server (recombination is done and
all fragments received), it is transferred (written to Flash memory) by the UpdateAgent in the user workspace
(Slot#1). After this, the UpdateAgent generates an NVICReset in order to transfer the control of the MCU to the
secure boot loader.

Note: The full-caching mechanism approach allows the number of writes to Flash memory to be reduced. However,
this places a limit on the size of the new firmware image being downloaded. Both the caching method and the
firmware image size to update depend on the end-device SRAM size.

AN5411 - Rev 1 page 14/32

m AN5411

Design overview

5 Design overview

This package offers a FUOTA LoRa project for STM32L476 microcontrollers. The FUOTA LoRa project is split into
three sub-projects : SecoreBin, SBSFU and UserApps.

The middleware is provided in source-code format, and is compliant with the STM32Cube HAL driver.

Figure 11. Project file structure

4 STM32L053R8-Nucleo
-1 STM32L073RZ-Nucleo
. STM32L152RE-Nucleo
= || Applications

, STM32L476RG-Nucleo

|
|| LoRaWAN_Fuotal

&~). 2_lmages_SBSFU
- |, 2_Images_SECoreBin
=

- Ju Fucta

- L. Binary
-}y Core
- |, EWARM
- i LoRaWAN
._. readme td

&
3
g
3
5

5.1 Features
511 SBSFU features
5.1.1.1 Secure boot (root of trust)

. Activation and checking of the necessary security mechanisms on the STM32L476 platform, to protect
critical operations and secret data from attack.

. Checking the authentication and integrity of the user application before execution.

5.1.1.2 Secure firmware update (SFU)
. Detection of the new (encrypted) firmware version to install:
— from a local download service (via the Ymodem)
— pre-downloaded OTA via the user application (LoRaWAN)
. Firmware version management (check for unauthorized updates or unauthorized installation)
. Secure firmware update:
— firmware authentication and integrity check
— firmware decryption (if encryption is activated)
— firmware installation

. On error occurrence during the new image installation, recovery of the new firmware image (rollback to the
previous valid firmware version not supported)

AN5411 - Rev 1 page 15/32

AN5411

Features

3

. Execution of new installed firmware (once authenticated and integrity checked).

5.1.1.3 Cryptography

The official X-CUBE-SBSFU Expansion Package for STM32Cube [7] is delivered with two different cryptographic
middleware libraries, either X-CUBE-CRYPTOLIB, which requires an export control agreement, or mbedTLS
cryptographic services delivered as open-source code. The I-CUBE-LRWAN FUOTA application package only
provides the mbedTLS option.

To use X-CUBE-CRYPTOLIB, the user must download the official X-CUBE-SBSFU Expansion Package for
STM32Cube, and replace mbedTLS with X-CUBE-CRYPTOLIB in the project. These two libraries are equivalent
in terms of cryptographic services.

The I-CUBE-LRWAN FUOTA package is by default configured as: Asymmetric without encryption .

m Asymmetric with AES encryption Asymmetric without encryption | Symmetric (AES GCM)

AES CBC encryption

Confidentiality AES CBC encryption (firmware binary) - (firmware binary)
Integrity SHA256 (firmware header + firmware binary) -
SHA256 of the firmware header is ECDSA signed AES GCM tag (firmware
Authentication header and firmware
SHA256 of the firmware binary stored in the firmware header binary)

Private AES GCM key
(secret)

Cryptographic keys ' Private AES CBS key (secret) public

in end-device ECDSA Public ECDSA key

5.1.1.4 SBSFU configuration
Cryptographic libraries
As specified in Section 5.1.1.3 Cryptography, the I-Cube-LRWAN FUOTA project project integrates the third-
party middleware mbedTLS (open-source code).

Figure 12. Cryptographic library file location

El Middlewares

i [E- g ST

. Third_Party

- J. LoRaWAN

-y mbedTLS —— mbedTLS libraries

&

E'

Cryptographic default scheme

By default, the project is configured without cryptography. In this case there is no firmware encryption, only
authentication and integrity are ensured.

AN5411 - Rev 1 page 16/32

‘ﬁ AN5411

Features

Figure 13. Default cryptographic file structure
. 2_lmages_SECoreBin
- |, Binary
- EWAHM
1

EEH"

| se_crypto_bootioaderh #define SECBOOT_ECCDSA_WITHOUT_ENCRYPT_SHA256
] se_crypto_corfigh — 5 #define SECBOOT_ECCDSA_WITH_AES128_CBC_SHA256
" se_def_metadatah #define SECBOOT_AES128_GCM_AES128_GCM_AES128_GCM

- se_low_levelh

| se_mbedtls_config.h
- stm32doc_hal_confh

SBSFU application features

Configuration possibilities are offered through option compilation switches. By default the project supports local
loader, and all the security IPS are turned off to make debug easier.

Figure 14. File structure for SBFU application features

EI b Images SBSFU
i
l

=

2
Y

- E‘WAHM
| MDK-ARM
k
EI

!

SBSFU #define SFU_DEBUG_MODE
) App #define SFU_VERBOSE_DEBUG_MODE
-] app_siuh ——— y4efine SECBOOT_USE_LOCAL_LOADER

| sfu_boot.c #define SECBOOT_DISABLE_SECURITY_IPS
-] sfu_booth

5.1.2 LoRaWAN features
. LoRaWAN L2 V1.0.3
— Class A (baseline) / Class C (continuous) and Class B (beacon)

. Application Layer V1
— Clock synchronization, fragmentation data block, and remote multicast setup

AN5411 - Rev 1 page 17/32

m AN5411

Firmware architecture

5.2 Firmware architecture

Figure 15 summarizes the firmware design and the components involved in an end -device supporting the FUOTA
features.

Figure 15. Top-level firmware design

Secure Boot Root of TRust
User application

A
Update
Secure firmware loader agent
Mcast Frag Clock
sync
F Y h
Y I 1!’
: | LmHandler
Safe firmware programming
LoRaWAN
Note: As stated in Section 3.1 Network architecture, the firmware management block is not implemented.

AN5411 - Rev 1 page 18/32

AN5411

FUOTA middleware programming guidelines

3

6 FUOTA middleware programming guidelines

This section describes the LoRaMac handler APIs.
6.1 Middleware initialization
This function initializes the LoRaMac layer. It initializes the callback primitives of the MCPS and MLME services

(see [8]) and the run-time initialization of the LoRaMac layers (active region, Tx parameters, and so on).

Table 4. LmHandlerlInit description

T i i

LmHandlerErrorStatus_t LmHandlerinit
(LmHandlerCallbacks_t *callbacks, LmHandlerParams_t LoRaMac handler initialization.
*handlerParams);

6.2 LoRaMac process

This function processes the LoRaMac events and radio events.

Table 5. LmHandlerProcess description

LoRaMac process — this function has to be called in the main loop. When no operation is

void LmHandlerProcess(void); pending this function requests to enter Low-power mode.

6.3 Package registering

This function registers the required packages (PACKAGE_ID_COMPLIANCE, PACKAGE_ID_CLOCK_SYNC,
PACKAGE_ID_REMOTE_MCAST_SETUP, PACKAGE_ID_FRAGMENTATION).

Table 6. LmHandlerPackageRegister description

LmHandlerErrorStatus_t Perform registration of all the packages needed by the application. These
LmHandlerPackageRegister (uint8_t id, void packages are dedicated for: synchronization, fragmentation, multicast setup,
*params); and compliant test.

6.4 Join a LoRa network

This function sends a Join request to a LoRa network in Class A.

Table 7. LmHandlerJoin description

N

void LmHandlerJoin(void); Perfom a Join request. For ABP devices, this is a pass-through function.

AN5411 - Rev 1 page 19/32

AN5411

Check the join status

3

6.5 Check the join status

This function checks whether the device is joined to the network.

Table 8. LmHandlerJoinStatus description

N

LmHandlerFlagStatus_t Check the Join device status. LORAMAC_HANDLER_SET if joined, otherwise
LmHandlerJoinStatus(void); LORAMAC_HANDLER_RESET.
6.6 LoRaWAN class change

This function requests the MAC layer to change the LoRaWAN class of the device.

Table 9. LmHandlerRequestClass description

LmHandlerErrorStatus_t
LmHandlerRequestClass(DeviceClass_t
newClass);

Switch Class Request. Only switching from class A to class B/C or from
class B/C to class A is allowed

6.7 Check the LoRaMac handler state

This function checks the state of the LoRaMac handler.

Table 10. LmHandlerlsBusy description

bool LmHandlerlsBusy(void); Indicates if the LoRaMac Handler is busy. Returns true or false.

6.8 Send an uplink frame

This function requests the MAC layer to send a Class A uplink frame.

Table 11. LmHandlerSend description

T i T i

LmHandlerErrorStatus_t
LmHandlerSend(LmHandlerAppData_t *appData,
LmHandlerMsgTypes_t isTxConfirmed);

Request a data appData to be sent with an indication of whether the
Tx is TxConfirmed or TxUnConfirmed.

AN5411 - Rev 1 page 20/32

m AN5411

Getting started

7 Getting started

71 FUOTA programing guide

This section describes how to generate a FUOTA application (referred to as a UserApp in the SBSFU literature).
The developer must follow this flow description step-by-step.

7.2 Folder structure

A top-level view of the file structure is shown in Figure 16.

Figure 16. Project file structure

STM3Z_LoRa

" |, _htmresc
B Drivers
B~ . Middlewares
= . Projects
- |, B-LO72Z-LRWAN1
. STM32L053R8-Nucleo
. STM32L073RZ-Nucleo
. STM32L152RE-Nucleo
“ STM32L476RG-Nucleo
Bl | Applications Open the three projects
-y LoRa under IAR in order to generate:
El- J LoRaWAN_Fuotal . SBSFU.bin
- | 2_lmages_SBSFU ¥ -
&). 2_lmages_SECoreBin » SECore.bin
- Ju Fuota » SBSFU _UserApp.bin
[| Linker_Common UserApp.sfb
7.21 How to generate a FUOTA application

The following steps must be followed to generate a FUOTA application.
1. SECore binaries

This step is needed to create the SECoreBin engine binary including all the required 'trusted' code and keys.
The binary is linked to the SBSFU code in step 2.

2. Secure boot and secure firmware update (SBSFU)

This step compiles the SBSFSU source code implementing the state machine and protection configurations.
It links the code with the SECoreBin engine binary, including the 'trusted' code. It also generates a file that
includes symbols used by the user application to call the SE interface functions.

3. User Application (FUOTA)

This step generates the user application binary file (FUOTA) that is is uploaded to the device by the SFU
process (UserApp.sfb).

It generates a binary file concatening the SBSFU binary, the user application (FUOTA) in clear format with
the corresponding FW header added (SBSFU_UserApp.bin).

Note: For each step (1, 2 and 3), open the respective sub-project: 2_images_SECoreBin (step 1), 2_images_SBSFU
(step 2), and end node (step 3) in the dedicated IDE folder. Then regenerate (make) the respective binary file.
Each sub-project is configured (in the project options) in order to call the ‘postbuild.bat’ file when needed.

See [7] for details on how to configure a complete SBSFU project.

AN5411 - Rev 1 page 21/32

AN5411

Folder structure

3

Figure 17. Application generations steps

Step 1 Step 2 Step 3
SeCoreBin generation SBSFU generation UserApp generation
A 4
SeCore bin SBSFU.bin UserApp.bin

iy
Postbuild_bat
‘;'_rl_‘%

SBSFU vector table

SECore |

SBSFU - —_

y L4 Active image header
Download image SBSFU_UserApp.bin UserApp.sfb ~
Active image
Active image header| - -
Active image
7.2.2 How to generate a data block (new firmware update)

To generate a new piece of firmware (N+1) to be downloaded over-the-air to allow the old current firmware (N) to
be updated, the I-CUBE-LRWAN package is delivered with the 'prepareimage' firmware image tool.

This tool comes from the original X-CUBE-SBSFU STM32Cube Expansion Package. For a complete and detailed
description of this tool, see [7] (Appendix E).
'Prepareimage’ flow:

Even if only the full-firmware update feature is supported, the diff option of the prepareimage tool should
nevertheless be systematically applied. In the best case, code modification is located in adjacent sections, and
the diff may generate a useful UserApp_To_Download.bin file. In the worst case, the diff result is not relevant and
the UserApp_To_Download.bin file is the same as User_app.bin.

1. Generate the 'To_Download' image

python prepareimage.py diff -1 UserApp vl.bin -2 UserApp v2.bin
UserApp To Download.bin -a 16 --poffset UserApp To Download.offset

2. Generate the clear complete firmware tag (SHA256 of the clear FW)

python prepareimage.py sha256 UserApp v2.bin UserApp v2.sign
3. Generate the clear "To_Download' firmware tag (SHA256 of the clear FW)

python prepareimage.py sha256 UserApp To Download.bin UserApp Download.sign
4. Generate the .sfb fimware metadata (header) and the "To_Download' binary

python prepareimage.py pack -k ECCKEY.txt -r 44 -p 1 -v 2 -f UserApp v2.bin -t
UserApp v2.sign --pfw UserApp To Download.bin --ptag UserApp To Download.sign --
poffset UserApp To Download.offset UserApp To Download.sfb

Note: X-CUBE-SBSFU firmware image tool preparation readme.txt is in <project>Middlewares\ST
\STM32_Secure_Engine\Utilities\KeysAndimages folder.

AN5411 - Rev 1 page 22/32

AN5411

Folder structure

3

Figure 18. File generation flow

‘To_Download’ image | Generate Clear ‘To_Download’
generation fimware tag

A

v

Generate the “.sfb” firmware:
metadata (header) +
encrypted ‘To_Download’ binary

v

Generate ‘Clear complete’ firmware tag

Ymodem download LoRaWAN download

7.2.3 How to download the data block (full firmware) to the end-device
There are two ways to download the firmware:
. a local download via UART virtual COM using Ymodem protocol
. remote download via over-the-air mechanisms proposed by the LoRaWAN protocol.
The Ymodem protocol should be used during the development phase, whereas the LoRaWAn protocol is a main
feature of the product. It is up to the user to choose the right approach.
For a complete description of Ymodem usage see [7].

7.24 How to create and manage a FUOTA campaign

This section does not aim to define, or show how to create, a FUOTA campaign on an application server. These
aspects of a FUOTA campaign depend on the services provided by the network operator. Hence, here only the
salient points relating to FUOTA campaign support are outlined.

The application server must:
. support the following packages:
— the synchro package (TS-003) [5]
— the fragmentation package (TS-004) [3]
— the MulticastSetup package (TS-005) [4]
. support Class-C mode, as defined in the LoRaWAN specification V1.0.3 [1]
. be compliant with the 'interop test' proposed by the FUOTA working group of the LoRa Alliance
. have the capability to manage the data block (firmware image) to be downloaded.

'Interop test' is the minimum test proving that the end-device is able to receive a data block file from the server.
This minimum test is shown in Section 3.5 Network/end-device interworking.

7.2.5 How to debug the end-node application

The complete system consists of a secure boot and an end-node application. When the target resets, the secure
boot starts first. After some secure-boot checking the system jumps to the entry point of the end-node application.
Since the end-node application is linked to the secure boot, the end-node application (UserApp.bin) cannot be
downloaded directly with the debugger. In order to debug the end-node application, the following flow must be
respected:

1. Flash the target with the complete system (SBSBF_UserApp.bin) using the ST Link tools.

2. Once the target is Flashed, the sub-project can be attached to the running target. Debug (with breakpoints,
watch variables, and so on).

AN5411 - Rev 1 page 23/32

m AN5411

Software description

3. Modifications can now only be done on the end-node application. There are two ways to reload the target
with the new binary:

a. Reload the complete system (SBSFU_UserApp.bin) as described in (step 1), and attach to the target
(step 2)

b. Load the end-node application only (UserApp.sfb) via the YModem. When the target is running, attach
as described in Step 2.

For further details on how to debug an application running on SBSFU, see [8].
7.3 Software description

When the I-CUBE-LRWAN delivery is unzipped, the package has the following structure.

Figure 19. I-CUBE-LRWAN project structure

OB

-0-E-8-B

STM3Z_loRa

_htmresc

Drivers

Middlewares

Projects
» Ju B-LO72Z-L RWAN1
- by STM32L053R8-Nucleo

< STM32L073RZ-Nucleo
- Ju STM32L152RE-Nucleo

B |, Applications

by STM32L476RG-Nucleo

B- L. Applications

& LoRa
B | LoRaWAN_Fucta
=~ J 2_lmages_SBSFU

. 2_Images_SECoreBin
Fuota
-). Binary
- ji Core
- Ju EWARM
-~ 4. LoRaWAN

&~ |, Linker_Common

The I-CUBE-LRWAN package contains a FUOTA project. The FUOTA project is made up of three sub-projects:
SECoreBin, SBSFU and End-node. Each sub-project has a dedicated IDE folder (IAR IDE environment)
containing the Lora.eww file to activate in order to start the IAR IDE debugger.

AN5411 - Rev 1 page 24/32

AN5411

Software description

3

7.31 Compilation switches

7.3.1.1 Crypto switches
SE_CoreBin instantiates the crypto scheme selected with SECBOOT_CRYPTO_SCHEME.

Table 12. Crypto switch descriptions

No FW encryption, only authentication and

SECBOOT_ECCDSA_WITHOUT ENCRYPT SHA256 .o ' Enabled
- - - - integrity are ensured.

SECBOOT ECCDSA_WITH_AES128 CBC_SHA25 :;;’;f:gcam”’ integrity, and confidentiality are | iy g

SECBOOT AES128 GCM_AES128 GCM AES128 Gem Authentication, integrity, and confidentiality are — rye oy g

ensured.

7.3.1.2 Security switch

SBSFU instantiates the security item selected through SECBOOT_DISABLE_SECURITY_IPS. When this symbol
is defined, all IP security protections are disabled (WRP, RDP, IWDG, DAP, and so on). See [8]

Table 13. Security switch description

SECBOOT_DISABLE_SECURITY_IPS Disables all security IPs simultaneously when activated. Enabled.

7.3.1.3 Debug switch
In \Projects\NUCLEO-L476RG\Applications\2_Images_OSC\End_Node\LoRaWAN\App\inc\hw_conf.h
. Debug mode can be enabled by commenting out the #define DEBUG line
. Low-power mode can be enbled by uncommenting the #define LOW_POWER_DISABLE line.

7.3.1.4 Sensor switches

When no sensor expansion board is plugged into the setup, the #define SENSOR_ENABLED line must be
commented out in \Projects\NUCLEO-L476RG\Applications\2_Images_OSC\End_Node\LoRaWAN\App\inc
\hw_conf.h

7.3.1.5 Switch options
Table 14 summarizes the main application configuration options.

Table 14. Switch options

OVER_THE_AIR_ACTIVATION | Application uses over-the-air activation procedure Commissioning
STATIC_DEVICE_EUI Static or dynamic end-device identifying Commissioning
LoRa stack | STATIC_DEVICE_ADDRESS Static or dynamic end-device address Commissioning
REGION_868 Enable the EU band selection Compiler option setting
REGION_915 Enable the US band selection Compiler option setting
Debug DEBUG Enable MCU debug mode in Sleep, Stop and Standby hw_confh
modes
Sensor SENSOR_ENABLED Enable the call to the sensor board. It is up to the user hw_confh

to implement the function call to the relevant sensor.

AN5411 - Rev 1 page 25/32

AN5411

Memory footprint

3

8 Memory footprint

8.1 End-node application

Values given in Table 15 are measured for the following IAR (ARM Compiler 5.05) configuration
. optimization: optimized for size level 3

. debug option: off

. trace option: off

. expansion board: / SX1276 MB1MAS

Table 15. Memory footprint figures

TBD

Application (user)

+LoRaWAN ClassA/C 14953
+App Layer ClockSync 636
+App Layer Fragmentation 780 Memory footprint for the overall application
(App_user + LoRa ClassA + LoRa stack)
+App Layer RemoteMCast 1704 76908
The RAM caching memory to receive the
+ LmHandler 1836 data block is 67 Kbytes
+ FragDecoder 1377
+ Remainder 8620
Total 61257
Total:
61257 + 7981 (Lib) = 69238 bytes
8.2 SBSFU

Code 22536 SE_Core.bin
SBSFU Data 27405 6709 Part of SFU
Data 5776 MbedTLS imposes a 4 Kbyte stack

Total:
22 536 + 33 268 = 55804 bytes

AN5411 - Rev 1 page 26/32

m AN5411

Revision history
Table 16. Document revision history

04-Nov-2019 1 Initial version.

AN5411 - Rev 1 page 27/32

m AN5411

Contents

Contents
1 General information s 2
N © 1 - 1 3
2.1 Application SUPPOIS e 3
2.2 Terms and @CrONYMISttt e e 3
2.3 ReferenCes. . . . 4
3 LoRa standard and FUOTA applicationfeatureciiiiiiiina.. 5
3.1 Network architecture. e 5
3.141 Client/server architecture 5
3.1.2 End-device architecture 6
3.2 End-device Classes 6
3.21 Class definition 6
3.3 FUOTA - firmware update overthe air 7
34 Network protocol architectures 7
3.41 Network layer 7
3.4.2 Physical layer (PHY)o 8
3.4.3 MAC aYer . . o 8
3.4.4 Application layer 8
3.5 Network/end-device interworking i 9
3.51 Multicast and fragmentation set-up L 9
4 SBSFU/end-device manager relationship...............coiiiiiiiiiii e 12
4.1 Secure boOt (SB). oot 12
4.2 Secure firmware update (SFU) 13
421 Device update scenario. 13
4.3 S Uy . ot 14
A4 eNd-UeVICE . . .ot 14
4.5 Update agent.o 14
5 DeSigN OVeIVIEWttt i st s s s s a s 15
5.1 Features 15
5.1.1 SBSFU features 15

AN5411 - Rev 1 page 28/32

m AN5411

Contents

51.2 LoRaWAN features 17

5.2 Firmware architecture. 18

6 FUOTA middleware programming guidelines.............ccciiiiiiiiiiinnnrnnnnnnnn 19
6.1 Middleware initialization 19

6.2 LORAMaAC PrOCESS . . ottt e e 19

6.3 Package registering 19

6.4 Joina LoRanetwork. 19

6.5 Checkthejoin status 20

6.6 LoRaWAN class change. o e e e e e 20

6.7 Check the LoRaMac handlerstate 20

6.8 Send an uplink frame 20

7 Getting started ... i i it i i i e 21
7.1 FUOTA programing QuUIdeot e e 21

7.2 Folder structure 21

7.21 How to generate a FUOTA application 21

7.2.2 How to generate a data block (new firmwareupdate) 22

7.23 How to download the data block (full firmware) to the end-device. 23

7.24 How to create and manage a FUOTA campaign. 23

7.2.5 How to debug the end-node application 23

7.3 Software description e 24

7.31 Compilation switches 25

8 Memory footprint i 26
8.1 End-node application e 26

8.2 OBSFU ..o 26
ReVISiON RiStOry ettt eii i 27
CONEENtS ... s 28
Listof tableso e 30
= o e U] =Y 31

AN5411 - Rev 1 page 29/32

m AN5411

List of tables

List of tables

Table 1. Acronyms used inthisdocument 3
Table 2. Termsused inthisdocument. e 4
Table 3. Document referenCes 4
Table 4. LmHandlerinit desCription 19
Table 5. LmHandlerProcess desCription 19
Table 6. LmHandlerPackageRegister descCription e 19
Table 7. LmHandlerdoin description 19
Table 8. LmHandlerdoinStatus descriplion. 20
Table 9. LmHandlerRequestClass descCription 20
Table 10. LmHandlerlsBusy description 20
Table 1. LmHandlerSend description e 20
Table 12. Crypto switch descriptions. 25
Table 13. Security switch description 25
Table 14. Switch OptiONS 25
Table 15. Memory footprint figures 26
Table 16. Document revision history 27

AN5411 - Rev 1 page 30/32

m AN5411

List of figures

List of figures

Figure 1. Network diagram. 5
Figure 2. Client/server architecture example e 5
Figure 3. Tx/Rx timing diagram (Class C)ot 6
Figure 4. LoRa network protoCols o 7
Figure 5. LORAWAN [@Yers oo e e e e 8
Figure 6. Message sequence chart for device timing. e 9
Figure 7. Message sequence chart for Class-C creation 10
Figure 8. Message sequence chart for data block broadcasting 11
Figure 9. Boot flow with SBSFU and SBSFU memory map 13
Figure 10. Signed firmware image 14
Figure 11. Projectfile structure 15
Figure 12. Cryptographic library file location 16
Figure 13. Default cryptographic file structure 17
Figure 14. File structure for SBFU application features e 17
Figure 15. Top-level firmware design. 18
Figure 16. Projectfile structure 21
Figure 17. Application generations steps. 22
Figure 18. File generation flow. 23
Figure 19. I-CUBE-LRWAN project structure e 24

AN5411 - Rev 1 page 31/32

m AN5411

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics — All rights reserved

AN5411 - Rev 1 page 32/32

http://www.st.com/trademarks

	Introduction
	1 General information
	2 Overview
	2.1 Application supports
	2.2 Terms and acronyms
	2.3 References

	3 LoRa standard and FUOTA application feature
	3.1 Network architecture
	3.1.1 Client/server architecture
	3.1.2 End-device architecture

	3.2 End-device classes
	3.2.1 Class definition

	3.3 FUOTA - firmware update over the air
	3.4 Network protocol architectures
	3.4.1 Network layer
	3.4.2 Physical layer (PHY)
	3.4.3 MAC layer
	3.4.4 Application layer

	3.5 Network/end-device interworking
	3.5.1 Multicast and fragmentation set-up

	4 SBSFU/end-device manager relationship
	4.1 Secure boot (SB)
	4.2 Secure firmware update (SFU)
	4.2.1 Device update scenario

	4.3 Security
	4.4 end-device
	4.5 Update agent

	5 Design overview
	5.1 Features
	5.1.1 SBSFU features
	5.1.1.1 Secure boot (root of trust)
	5.1.1.2 Secure firmware update (SFU)
	5.1.1.3 Cryptography
	5.1.1.4 SBSFU configuration

	5.1.2 LoRaWAN features

	5.2 Firmware architecture

	6 FUOTA middleware programming guidelines
	6.1 Middleware initialization
	6.2 LoRaMac process
	6.3 Package registering
	6.4 Join a LoRa network
	6.5 Check the join status
	6.6 LoRaWAN class change
	6.7 Check the LoRaMac handler state
	6.8 Send an uplink frame

	7 Getting started
	7.1 FUOTA programing guide
	7.2 Folder structure
	7.2.1 How to generate a FUOTA application
	7.2.2 How to generate a data block (new firmware update)
	7.2.3 How to download the data block (full firmware) to the end-device
	7.2.4 How to create and manage a FUOTA campaign
	7.2.5 How to debug the end-node application

	7.3 Software description
	7.3.1 Compilation switches
	7.3.1.1 Crypto switches
	7.3.1.2 Security switch
	7.3.1.3 Debug switch
	7.3.1.4 Sensor switches
	7.3.1.5 Switch options

	8 Memory footprint
	8.1 End-node application
	8.2 SBSFU

	Revision history
	Contents
	List of tables
	List of figures

