Introduction

The BlueNRG-LP is a high performance, ultra-low power wireless system-on-chip, which supports the Bluetooth® Low Energy specifications.

In order to achieve the maximum performance, some procedures must be carried out before finalizing the application.

This document summarizes the following fundamental steps:

- Application PCB test points
- Power supply and current consumption tests
- Device configuration
- XTAL and LSOSC centering tests
- Output power test
- Packet exchange test
- Sensitivity test
- Power consumption in advertising mode.
ST recommends a set of test points to measure the performance of the device on the customer's PCB. According to PCB constraints, it may not always be possible to add all test points, therefore some tests cannot be performed.

<table>
<thead>
<tr>
<th>Test point</th>
<th>Function</th>
<th>Details of the test point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current consumption</td>
<td>Should be added to the PCB to measure the BlueNRG-LP current consumption</td>
<td>In series with the VDD1,2,3,4, VDDRF, and VDDSD pins</td>
</tr>
<tr>
<td>Voltage supply</td>
<td>Should be added to measure the BlueNRG-LP supply voltages</td>
<td>To pins: VCAP, VDDA, VLXSD, VFBSD</td>
</tr>
<tr>
<td>RF</td>
<td>If the PCB uses an embedded antenna, like a PCB or a chip antenna, it is recommended to add a UFL connector to allow measurement of the RF performance with a spectrum analyzer</td>
<td>Between the matching network (or balun) and the embedded antenna</td>
</tr>
</tbody>
</table>

Figure 1. UFL connector

1.1 **DTM test applications**

DTM (direct test mode) test application is used as reference software to configure the platform under test. DTM binary file can be built using the DTM test application available on the BlueNRG-LP software package (STSW-BNRGLP-DK) in the BLE_Examples/DTM folder, and it can be directly loaded on related STEVAL board using the drag-drop capability or the BlueNRG-X Flasher utility. Based on the test requirements, the user can select:

- BlueNRG-LP DTM UART image
- BlueNRG-LP DTM SPI image.

2 Power supply test

2.1 Test case specification identifier
SUPPLY_TEST
No specific firmware is needed for this test.

2.2 Test prerequisite
In order to perform this test, it is necessary to add some test points to the platform. Refer to Section 1 Application PCB test points for test pin description.

2.3 Test description
The aim of this test is to ensure that the BlueNRG-LP is correctly powered.

2.4 Test setup

2.4.1 Hardware
A multimeter is required for this test.

2.4.2 Software
DTM binary file loaded into the BlueNRG-LP device. Please refer to Section 1.1 DTM test applications.

2.5 Test procedure
Power up the BlueNRG-LP platform.
Measure the voltage in: VDD1,2,3,4, VDDRF, VDDSD, VCAP, VDDA, VLXSD and VFBSD.

2.6 Expected results
The measured pin voltage and current should be aligned with the following values if the DC-DC converter ON configuration has been chosen.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Expected value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD1,2,3,4, VDDRF and VDDSD</td>
<td>1.7 – 3.6 V</td>
</tr>
<tr>
<td>VCAP and VDDA</td>
<td>1.2 V</td>
</tr>
<tr>
<td>VLXSD</td>
<td>Square wave around 1.2 – 1.95 V</td>
</tr>
<tr>
<td>VFBSD</td>
<td>1.2 – 1.95 V</td>
</tr>
</tbody>
</table>

If the DC-DC converter OFF configuration has been chosen, the VLXSD pin is left floating and the VFBSD pin is connected directly to VBAT.

2.7 Note
If some of the measured values are not aligned with the expected values, it is recommended to double-check the integrity of the board connection.
2.8 Other

N/A.
3 Device configuration

There are some parameters of the BlueNRG-LP device that must be defined and used during software initialization, before the application board is finalized. These parameters are:

- Low speed oscillator source (32 kHz or the internal ring oscillator)
- Power management options (SMPS inductor or SMPS off configuration)
- Change HS start-up time parameter from 512 µs to 1953 µs
- Sleep clock accuracy.

The device configuration parameters can also be set using the BlueNRG GUI PC application available on the BlueNRG GUI SW package (STSW-BNRGUI).

Figure 2. BlueNRG GUI device configuration tool
The high speed external clock oscillator (HSE) needs time in order to be ready after system wake-up, upon exit from Deepstop mode. A parameter, referred to as HS_STARTUP_TIME inside the firmware examples, reflects this time. It needs to be tuned in order to let the radio transmit and receive at the programmed instants if the system exits from Deepstop. Higher values are safer, but they may lead to unnecessary extra power consumption since the system wakes up too early in order to give time to the HSE to be ready before transmission or reception. A too short value instead prevents the BlueNRG-LP from correctly sending or receiving packets.

4.1 Test case specification identifier

HS_XTAL_startup_TEST.

4.2 Test prerequisite

- A power source at the lowest operating voltage
- One of the following:
 - access to the UART interface OR
 - an oscilloscope and access to VCAP pin and one GPIO (default PA4).

4.3 Test description

The aim of this test is to measure the HSE start-up time in the worst condition. A firmware application measures the HSE start-up time using the internal clock as a reference (assuming the frequency of the HSE is correct, since it is needed to calibrate the internal clock for measurement). A pulse is also generated on a configurable GPIO (PA4 is the default) when HSE is ready. This is useful in case there is no access to the UART interface or just to double check.

4.4 Test setup

4.4.1 Hardware

A serial terminal connected to the board to receive data from UART. As an alternative, an oscilloscope is required for this test.

4.4.2 Software

RCC_HSEStartupTest firmware application on the STSW-BNRGLP-DK, BlueNRG-LP SDK, Projects \Peripheral_Examples\Examples_MIX\RCC. This application programs periodic wake-up of the system and it measures the start-up time of the HSE at each wake-up. The current and longer (worst) measure is reported on the UART interface.

4.5 Test procedure

- Load firmware into BlueNRG-LP
- Power the device at the lowest supported operating voltage: this is the condition in which the HSE needs more time to be ready
- Run the test at ambient temperature (around 25 °C).

4.6 Expected results

The application outputs on the UART interface information about the measured start-up time. Increasing the longer reported value by 10% in order to consider variation from 25 °C to 105 °C. Increasing again the value by 30% to have a safe margin, since variation of the crystal parameters like motional inductance and capacitance influence the start-up time.

\[HS_{\text{STARTUP_TIME}} = \text{measured_value} \times 1.1 \times 1.3. \]
4.7 **Note**

The measurement should be taken on a sufficient number of boards in order to have the knowledge of the distribution of this value in the entire set of boards.

4.8 **Other**

As an alternative, the start-up time can be obtained by measuring time from when the voltage begins to rise on VCAP pin and the time the voltage on the test GPIO is high. The test GPIO can be easily changed (default is PA4).
5 HSOSC centering test

The BlueNRG-LP integrates a low-speed frequency oscillator (LSOSC) and a high-speed (32 MHz) frequency oscillator (HSOSC).

The low frequency clock is used in low power mode and can be supplied either by a 32.7 kHz oscillator that uses an external crystal or by a ring oscillator with maximum ±500 ppm frequency tolerance, which does not require any external components.

The primary high frequency clock is a 32 MHz crystal oscillator.

The frequency tolerance of the high-speed crystal oscillator must be below ±50 ppm.

The BlueNRG-LP device, as with all RF systems, are highly dependent on accurate clocks for the correct operation. A deviation in clock frequency directly deviates the radio frequency, and this can degrade RF performance, violate legal requirements or in the worst case lead to a non-functioning system.

For these reasons, the crystal frequency must be centered and this has to be done by choosing the optimum load capacitors for a given circuit and layout. The easiest way to find the correct load capacitance is through the experimentation. The BlueNRG-LP makes the process of finding the correct capacitor value very easy. In fact, it has an integrated capacitor bank that can be set by software. In this way, no external capacitors are needed, for maximum flexibility, and the cost of external components as well as space on the board are saved.

5.1 Test case specification identifier

HSOSC_center_TEST.

5.2 Test prerequisite

For this test, the UFL connector (see Table 1. Test points) is not mandatory.

5.3 Test description

For the reasons previously explained, the crystal frequency must be centered, and the optimum load capacitor values can be found through experimentation. The radio can be set by fixing a constant carrier at a given frequency.

By measuring the output frequency with a spectrum analyzer, the offset can be easily found.

5.4 Test setup

5.4.1 Hardware

A spectrum analyzer is required for this test.

5.4.2 Software

The ST BlueNRG GUI and DTM binary file loaded in the BlueNRG-LP device. Refer to Section 1.1 DTM test applications.

5.5 Test procedure

The following procedure is valid for the high-speed oscillator (32 MHz):

Connect the BlueNRG-LP board to the spectrum analyzer through an RF cable if it is equipped with UFL connector, otherwise plug a 2.4 GHz antenna into the input port of the instrument.

Power up the selected platform.

Set the spectrum analyzer to: res BW = 1 kHz, SPAN = 500 kHz (see Figure 3. Frequency tone at Ch0 for the XTAL center test).

Generate a carrier wave tone at Ch0 (freq. 2402 GHz) using the BlueNRG GUI, RF test window, start tone button and selecting TX frequency as 2402 MHz, channel 0 (a tone can be emitted at f = 2402 + k*2 MHz, with k = 0 to 39).

The difference between the desired tone and the measured tone is the frequency offset.
5.6 Expected results

The offset limit is:
|Offset| < 50 kHz
If DUT frequency > 2402.05 MHz → increases XTAL caps
If DUT frequency < 2401.95 MHz→ decreases XTAL caps

5.7 Note

Load capacitor value can be increased by choosing a higher value of SWXOTUNE in the RCC_RFSWHSECR register.
Use CONFIG_HW_HSE_TUNE to set the correct value (e.g. CONFIG_HW_HSE_TUNE=32). In DTM application, the user can change the value through a Device configuration parameter (or force the firmware to use a given value by defining the macro CONFIG_HW_HSE_TUNE).

5.8 Other

N/A.
The LSOSC is used to have a reference time clock. The advantage of using the external 32.768 kHz clock is that it consumes less power than internal RO and it is more accurate (typ. 50 ppm). This test allows its oscillator frequency to be centered, changing the crystal capacitance.

6.1 Test case specification identifier
LSOSC_center_TEST.

6.2 Test prerequisite
For this test, access to PA4 pin is required.

6.3 Test description
There is a way, using the device configuration tool of the BlueNRG GUI, to put the LSOSC signal to PA4. By measuring its frequency with an oscilloscope, the frequency offset can easily be measured.

6.4 Test setup

6.4.1 Hardware
An oscilloscope is required for this test.

6.4.2 Software
The ST BlueNRG GUI and DTM binary file loaded in the BlueNRG-LP device. Refer to Section 1.1 DTM test applications.

6.5 Test procedure
Connect an oscilloscope probe to PA4. Power up the BlueNRG-LP platform.
Set the scope to capture a consistent number of 32 kHz waveform periods (for example 64 cycles, so set the time base at 200 µs). In this way, the influence of the jitter in the measure is minimized.
In the device configuration tool of the GUI, perform a “Read” of the current device configuration, then tick the check-box “LS crystal measure” and perform a “Write” operation.
Now a power cycle is required to let the new device configuration be operative.
At this point, the 32.768 kHz waveform is visible on the oscilloscope screen.
Perform the measurement of the frequency: the difference between the target value \(f = 32.768 \text{ kHz} \) and the measured one is the frequency offset \(\Delta f \).

6.6 Expected results
If DUT frequency > 32.768 kHz → increases XTAL caps
If DUT frequency < 32.768 kHz → decreases XTAL caps
To find the frequency offset of the crystal oscillator in ppm, use the following formula:

\[
\text{ppm} = \frac{\Delta f}{f} \times 10^6
\]

\(\Delta f = \text{offset} \)
\(f = 32.768 \text{ kHz} \)

The total accuracy of the crystal oscillator is the sum of two parts: the accuracy, due to the offset, and the accuracy, due to temperature and aging, as reported in the crystal datasheet.
6.7 Note

The total accuracy of the low frequency oscillator must be given to the BLE stack during initialization, through the SleepClockAccuracy parameter (field of BLE_STACK_InitTypeDef).

6.8 Other

N/A.
7 Output power test

7.1 Test case specification identifier
OUTPUT_TESTS.

7.2 Test prerequisite
For this test the UFL or SMA connector is mandatory.

7.3 Test description
The aim of this test is verification of the Tx output power level and the step linearity.

7.4 Test setup

7.4.1 Hardware
A spectrum analyzer is required for this test.

7.4.2 Software
The ST BlueNRG GUI and DTM binary file loaded in the BlueNRG-LP device. Refer to Section 1.1 DTM test applications.

7.5 Test procedure
Connect the BlueNRG-LP board to the spectrum analyzer through an RF cable. Set the spectrum analyzer to:
Res BW = 100 kHz, SPAN = 500 kHz.
Power up the BlueNRG-LP platform.
Generate a carrier wave tone at Ch0 (frequency 2402 MHz) using the BlueNRG GUI, RF test window:
• Check the "high power" check-box to enable "high power mode" (SMPS level at 1.9 V)
• Select power level 31.
• Click on "Start Tone" button.
The same results can be achieved by using the ACI commands:
• ACI_HAL_SET_TX_POWER_LEVEL (En_High_Power = 0x01,PA_Level: 31)
• ACI_HAL_TONE_START (RF_Channel = 0x00, offset = 0x00).

7.6 Expected results
Spectrum analyzer measures a power value of around 8 dBm.

7.7 Note
The results are significantly influenced by the matching network performance. The user may need to tune it to obtain maximum performance.

7.8 Other
N/A
Figure 4. Output power measurement in high power mode with PA_level 31
8 Packet exchange test

8.1 Test case specification identifier
PACKET_TEST.

8.2 Test prerequisite
In order to perform these tests, two BlueNRG-LP boards are used: one for the tester, the second one as the DUT. Tester must be a verified working board.

8.3 Test description
The aim of this test is to verify that the DUT board is able to send and receive packets correctly.

8.4 Test setup

8.4.1 Hardware
No instruments required.

8.4.2 Software
Load DTM firmware into the BlueNRG-LP device. Use the BlueNRG GUI to control the device. Refer to Section 1.1 DTM test applications.

8.5 Test procedure
Power up the BlueNRG-LP device (tester and DUT boards) and ensure antennas are mounted. Follow these steps to start packet exchange test and verify that the DUT is able to receive:

In the GUI related to DUT (RX device)
• Go to RF test window, RECEIVER section
• Set Rx frequency
• Click on "Start Receiver" button, to start "Receiver Test".

In the GUI related to tester (TX device)
• Go to RF test window, TRANSMITTER section
• Set Tx power
• Set Tx frequency
• Set length of data to 0x25
• Set packet payload format
• Click on "Start Transmitter" button, to start "Transmitter Test".

In the GUI related to Tester (TX device)
• Click on "Stop Transmitter" button. The number of transmitted packets are displayed
• On #Packet Transmitted field.

In the GUI related to DUT (RX device)
• Click on "Stop Receiver" button. The number of received packets are displayed on the #Packet Received field
• In the PER section, insert the number of transmitted packets from Tx device in the packet transmitted field (read this value from the TRANSMITTER section in the GUI related to the Tx device)
• PER (packet error rate) value is shown in the packet error rate field.

The same results can be achieved by using the ACI commands:
• Start Rx on DUT: HCI_LE_ENHANCED_RECEIVER_TEST
• Make the Tx board send packets: HCI_LE_ENHANCED_TRANSMITTER_TEST, with the length of test data: 0x25
• Stop test on Tx board: HCI_LE_TEST_END
• Send this command in order to determine the number of packets sent by the Tx: ACI_HAL_LE_TX_TEST_PACKET_NUMBER
• Stop test on DUT: HCI_LE_TEST_END
• This returns Y as the number of received packets
• Exchange roles and repeat the same test to verify that DUT is able to transmit.

8.6 Expected results

In a "clean RF environment" (i.e. with no interference), the number of packets received over-the-air should be equal to the number of packets sent by the Tx board.

8.7 Note

Tester may be replaced by any other device with HCI interface.

8.8 Other

N/A.
9 Sensitivity test

9.1 Test case specification identifier
SENSITIVITY_TEST.

9.2 Test prerequisite
Two different hardware configurations can be adopted for this test:
1. A signal generator (Agilent E4438C, controlled through a GPIB interface) as Tx and the BlueNRG-1 board (DUT) connected as shown in Figure 1. UFL connector.
2. ST BlueNRG-LP demo kit as Tx device and BlueNRG-LP board (DUT).

9.3 Test description
The aim of this test is to verify the sensitivity level of the DUT board.

9.4 Test setup

9.4.1 Hardware
Tx: Agilent E4438C signal generator or ST BlueNRG-LP demo kit.
Rx: DUT application board to test (see Figure 1. UFL connector).

9.4.2 Software
ST BlueNRG GUI and DTM binary file related to the selected BLE stack modular configuration option loaded in the BlueNRG-LP device. Refer to Section 1.1 DTM test applications.

9.5 Test procedure
Two procedures can be used.

9.5.1 Signal generator and DUT board
The sensitivity can be evaluated by performing the following steps:
1. Connect the instrument and DUT with an RF cable (with no significant loss)
2. Start Rx on DUT: on the RF test window click on "Start Receiver" button
3. Make the generator send X packets (well-formatted as described in “Direct Test Mode”, vol. 6, part F, and “Host Controller Interface Functional Specification”, vol. 2, part E, in point 3 Section 13 References)
4. Stop test on DUT: on the RF test window click on stop receiver button
On packet received tab there is the number of received packets. PER is 1-Y/X.
If PER is below 0.308 (30.8%), go back to step 2 and decrease the power of the transmitter by one step. If PER goes above 0.308, then the level of power emitted by the equipment in the previous test is the sensitivity of the receiver. The algorithm can be more accurate by reducing the power level step when it is close to the sensitivity level.
The same results can be achieved by directly using the ACI commands:
1. Connect the instrument and DUT with an RF cable (with no significant loss)
2. Start Rx on DUT: HCI_LE_ENHANCED_RECEIVER_TEST
3. Make the generator send X packets (well-formatted as described in “Direct Test Mode”, vol. 6, part F, and “Host Controller Interface Functional Specification”, vol. 2, part E, in point 3 Section 13 References)
4. Stop test on DUT: HCI_LE_TEST_END
This returns Y as the number of received packets. PER is 1-Y/X.
If PER is below 0.308 (30.8%), go back to step b and decrease the power of the transmitter by one step. If PER goes above 0.308, then the level of power emitted by the equipment in the previous test is the sensitivity of the receiver.
The algorithm can be more accurate by reducing the power level step when it is close to the sensitivity level.

9.5.2 **ST demo kit and DUT board**

In this case, the previous procedure changes in the following way:

1. Connect RF input/output of the two boards, DUT and ST BlueNRG-LP, by using a variable attenuator
2. In the GUI related to DUT Rx device
 - Go to RF test window, RECEIVER section
 - Set Rx frequency
 - Click on "Start Receiver" button, to start "Receiver Test"
3. In the GUI related to Tx device
 - Go to RF test window, TRANSMITTER section
 - Set Tx power
 - Set Tx frequency
 - Set length of data to 0x25
 - Set packet payload format
 - Click on "Start Transmitter" button to start "Transmitter Test"
4. In the GUI related to Tx device
 - Click on "Stop Transmitter" button. The number of transmitted packets are displayed on #Packet Transmitted field.
5. In the GUI related to DUT Rx device
 - Click on "Stop Receiver" button. The number of received packets are displayed on #Packet Received field
6. In PER section, insert the number of transmitted packets from Tx device in the packet transmitted field (read this value from TRANSMITTER section in the GUI related to Tx device)
7. PER (packet error rate) value is shown in the packet error rate field

If PER is below 0.308 (30.8%), go back to step 2 and increase the value of attenuation. If PER goes above 0.308, then the level of power received by DUT in the previous test is the sensitivity of the receiver. It is very important to measure correctly or estimate the power received by DUT (for example: by using a tone instead of a modulated signal).

Moreover, in order to reduce the level of the signal received over-the-air by DUT, the ST BlueNRG-1 and BlueNRG-2 demo kit should use the minimum output power. Performing the measurements inside an anechoic chamber also gives more accurate results.

The same results can be achieved by using ACI commands:

1. Connect the RF input/output of the two boards, DUT and STM BlueNRG-1, by using a variable attenuator
2. Start Rx on DUT: HCI_LE_ENHANCED_RECEIVER_TEST
3. Make the board send packets: HCI_LE_ENHANCED_TRANSMITTER_TEST, with the length of test data: 0x25
4. Stop test on the board: HCI_LE_TEST_END
5. Send a further command to determine the number of packets sent by the board: ACI_HAL_LE_TX_TEST_PACKET_NUMBER
6. Stop test on DUT: HCI_LE_TEST_END

This returns Y as the number of received packets. PER is 1-Y/X.

If PER is below 0.308 (30.8%), go back to step 2 and increase the value of the attenuation. If PER goes above 0.308, then the level of power received by DUT in the previous test is the sensitivity of the receiver.

9.6 Expected results

The expected value should be a few dB from the value reported in the datasheet. If it is not so, the reason could be related to the matching network.

9.7 Note

Since the sensitivity test is very time-consuming, ST can provide a specific software for both hardware configurations in order to implement an automatic procedure.
9.8 Other

N/A.
10 Power consumption in advertising mode

10.1 Test case specification identifier
CURRENT_TEST.

10.2 Test prerequisite
In order to perform this test the platform must be provided with the test points in series with Vbat1, 2, 3 pins (see Table 1. Test points).

10.3 Test description
The aim of this test is to verify that BlueNRG-LP current consumption profile during the advertising is aligned with the simulated value (for simulated values use the BlueNRG current consumption estimation tool (STSW-BNRG001) available on www.st.com.

10.4 Test setup

10.4.1 Hardware
Agilent N6705B power analyzer or an oscilloscope.

10.4.2 Software
This test uses an application, which puts the device in advertising mode (i.e. power consumption example available on the BlueNRG-LP DK development kit/STSW-BNRGLP-DK, on Firmware/BLE_Examples folder).

10.5 Test procedure
The power analyzer has to be connected in series to Vbat pins in BlueNRG-LP. If it is not available, a 10 Ohm resistor has to be used to sense the current, connecting two probes to it.
Power up the BlueNRG-LP platform and load a firmware so that the device is in advertising mode. Capture the current waveform.

10.6 Expected results
The average current should be measured using the power analyzer tool (see Figure 5. Typical current profile during an advertising event).
The measured values are significantly influenced by the device configuration parameters, such as: the HS_Startup_Time and the 32 kHz crystal (external or internal ring oscillator).
10.7 Note
N/A.

10.8 Other
N/A.
Tests described in this application note should be used to check the basic functionality of the BlueNRG-LP device on prototype boards.

Before Bluetooth trademark can be used on the BlueNRG-LP device, the company must complete the Bluetooth compliance program; that means the board must be qualified and listed.

Since BlueNRG-LP is an already qualified product, a board using the BlueNRG-LP device does not have to re-run all Bluetooth tests. However, when using the BlueNRG-LP support in a new RF design, the RF-PHY layer must be still tested. To know which tests are to be performed, refer to the current test case reference list (TCRL) and related RF-PHY test specifications on the official Bluetooth website (http://bluetooth.com/).

Moreover, depending on the country of use, an RF product must be compliant with one or more standards before it can be sold. In particular, Bluetooth low energy products, which operate in the unlicensed ISM band at 2.4 GHz, must be compliant to:

- FCC part 15.205, 15.209, 15.247 in North America
- ETSI EN 300 328 in Europe
- ARIB STD-T66 in Japan.

Bluetooth LE tests can be manually performed, but some instruments exist to simplify and automate the testing process.

Usually these instruments operate in two modes:

- Signaling mode
- Non-signaling mode.

11.1 Signaling mode

In this mode, the instrument can autonomously perform the tests. DUT (device under test) must be connected to the instrument with an RF cable. Moreover, DUT has to be connected to one instrument port in order to be controlled by the instrument itself (to start/stop test and receive feedback from DUT). The BlueNRG-LP supports the direct test mode over HCI, which allows testing low energy PHY layer (see Bluetooth specifications, vol. 6, part F: direct test mode).
11.2 Non-signaling mode

In non-signaling mode a third entity (e.g. a PC) controls both DUT and Test instrument at the same time. Typically, the instrument can be controlled by using proprietary commands. The BlueNRG-LP can use either UART or SPI as the communication interface. The device can be connected to the PC through a serial-to-USB converter.
Figure 7. Non-signaling mode RF tests
Once the final board has been designed and sent to production, the manufacturer may want to run some basic tests to be confident that the device works correctly. The minimal set of suggested tests is:

- Output power (see Section 7 Output power test) and crystal frequency centering test (see Section 5 HSOSC centering test)
- Packet exchange test (see Section 8 Packet exchange test).

Some of these tests can also be performed by dedicated instruments, as described in Section 11.1 Signaling mode. In this case, the set of tests to be performed is:

- Output power
- Carrier frequency offset and drift
- Receiver sensitivity.
13 References

1. BlueNRG-LP datasheets
2. BlueNRG GUI SW package (STSW-BNRGUI) user manual (UM2058)
Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-Jul-2020</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
5.4 Test setup ... 8
 5.4.1 Hardware ... 8
 5.4.2 Software ... 8
5.5 Test procedure .. 8
5.6 Expected results .. 9
5.7 Note ... 9
5.8 Other ... 9

6 LSOSC centering test .. 10
 6.1 Test case specification identifier .. 10
 6.2 Test prerequisite ... 10
 6.3 Test description .. 10
 6.4 Test setup ... 10
 6.4.1 Hardware .. 10
 6.4.2 Software .. 10
 6.5 Test procedure .. 10
 6.6 Expected results .. 10
 6.7 Note ... 11
 6.8 Other ... 11

7 Output power test .. 12
 7.1 Test case specification identifier ... 12
 7.2 Test prerequisite .. 12
 7.3 Test description .. 12
 7.4 Test setup ... 12
 7.4.1 Hardware .. 12
 7.4.2 Software .. 12
 7.5 Test procedure .. 12
 7.6 Expected results .. 12
 7.7 Note ... 12
 7.8 Other ... 12

8 Packet exchange test .. 14
 8.1 Test case specification identifier .. 14
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>Test prerequisite</td>
<td>14</td>
</tr>
<tr>
<td>8.3</td>
<td>Test description</td>
<td>14</td>
</tr>
<tr>
<td>8.4</td>
<td>Test setup</td>
<td>14</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Hardware</td>
<td>14</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Software</td>
<td>14</td>
</tr>
<tr>
<td>8.5</td>
<td>Test procedure</td>
<td>14</td>
</tr>
<tr>
<td>8.6</td>
<td>Expected results</td>
<td>15</td>
</tr>
<tr>
<td>8.7</td>
<td>Note</td>
<td>15</td>
</tr>
<tr>
<td>8.8</td>
<td>Other</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>Sensitivity test</td>
<td>16</td>
</tr>
<tr>
<td>9.1</td>
<td>Test case specification identifier</td>
<td>16</td>
</tr>
<tr>
<td>9.2</td>
<td>Test prerequisite</td>
<td>16</td>
</tr>
<tr>
<td>9.3</td>
<td>Test description</td>
<td>16</td>
</tr>
<tr>
<td>9.4</td>
<td>Test setup</td>
<td>16</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Hardware</td>
<td>16</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Software</td>
<td>16</td>
</tr>
<tr>
<td>9.5</td>
<td>Test procedure</td>
<td>16</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Signal generator and DUT board</td>
<td>16</td>
</tr>
<tr>
<td>9.5.2</td>
<td>ST demo kit and DUT board</td>
<td>17</td>
</tr>
<tr>
<td>9.6</td>
<td>Expected results</td>
<td>17</td>
</tr>
<tr>
<td>9.7</td>
<td>Note</td>
<td>17</td>
</tr>
<tr>
<td>9.8</td>
<td>Other</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>Power consumption in advertising mode</td>
<td>19</td>
</tr>
<tr>
<td>10.1</td>
<td>Test case specification identifier</td>
<td>19</td>
</tr>
<tr>
<td>10.2</td>
<td>Test prerequisite</td>
<td>19</td>
</tr>
<tr>
<td>10.3</td>
<td>Test description</td>
<td>19</td>
</tr>
<tr>
<td>10.4</td>
<td>Test setup</td>
<td>19</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Hardware</td>
<td>19</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Software</td>
<td>19</td>
</tr>
<tr>
<td>10.5</td>
<td>Test procedure</td>
<td>19</td>
</tr>
<tr>
<td>10.6</td>
<td>Expected results</td>
<td>19</td>
</tr>
</tbody>
</table>
List of tables

Table 1. Test points ... 2
Table 2. Supply test results .. 3
List of figures

Figure 1. UFL connector .. 2
Figure 2. BlueNRG GUI device configuration tool 5
Figure 3. Frequency tone at Ch0 for the XTAL center test 9
Figure 4. Output power measurement in high power mode with PA_level 31 13
Figure 5. Typical current profile during an advertising event 20
Figure 6. Signaling mode RF tests .. 22
Figure 7. Non-signaling mode RF tests ... 23