Introduction

This document is intended as a quick guide to help the user in the startup phase of EVAL-L9963-MCU combining and summarizing the information contained in EVAL-L9963-MCU and STSW-L9963 user manuals.
1 What you need

- EVAL-L9963-MCU
- USB cable
- Power supply (at least 3 output 0 – 30 V (if possible 60V):
 - 1 output to power L9963 (0:60 V)
 - 1 output to simulate Cells common mode voltage (0:60 V)
 - 1 output to simulate Cell voltage (0:5 V)
- L9963 evaluation GUI STSW-L9963
- NI Labview-runtime 2014
- NI VISA-RUNTIME

Note: Before using the UART/USB bridge FT2232H, the Virtual Com Port (VCP D2XX) driver needs to be installed. It can be downloaded by the FTDI Chip website.

Figure 1. EVAL-L9963-MCU board

Figure 2. EVAL-L9963-NDS board
Note: 1. EVAL-L9963-MCU can be considered the only stage or the first stage of several stages. The port is the isolated vertical interface to the next stage (EVAL-L9963-NDS);
2. A second L9963T (optional) may be needed to create a direct loop with the last stage (dual ring access);
3. MCU can be supplied either by USB or by L9001 (PMIC);
4. On board MCU can be bypassed in case a different MCU is needed for the user trials; these pins allow an SPI connection with an external MCU (upon a specific board configuration). Anyway a specific board derivative of EVAL-L9963-MCU has been designed for this purpose (same form factor/layout with MCU not mounted: EVAL-L9963).
3 Block diagram

Figure 4. EVAL-L9963-MCU block diagram
4 Microcontroller Power supply

Figure 5. Microcontroller Power supply

Jumper settings:

JP10 closed (5V from USB)

S1 position 2-3 (like in the picture)

JP12 – JP13 open (LS001 not active)

If the power supply is properly working, LED D10 and D3 will be switched ON when USB is connected to PC.
Figure 6. L9963 external connection and power supply

Minimum connection setup:
- VBAT_CELL: power supply
- GND_B: power supply

Voltage: 0 – 60V: This is the battery voltage that will power L9963.

When the device is supplied LED D13 will be switched ON. If the addressing procedure is not executed within 1 minute, the device will move to sleep (LED OFF). It will be possible to perform addressing later via GUI.
6 Transceiver settings

Figure 7. Transceiver settings

Jumper settings:

JP3 1-2
JP4-JP5: OPEN

JP7 1-2

JP2 – JP5: position 2-3 transceiver connected to L9663
Possible connection for battery simulation

Figure 8. Battery simulation 1

Minimum cells set: 1,2,13,14

Figure 9. Battery simulation 2

\[V_{\text{common mode}} = (n-1) \times V_{\text{cell}} \]
Install the following SW on your PC:
• NI Labview-runtime 2014
• NI VISA-RUNTIME
• FTDI driver
 – Before using the UART/USB bridge FT2232H, the Virtual Com Port (VCP) driver needs to be installed.
 It can be downloaded by the FTDI Chip website.

When all is installed reboot your PC and open STSW-L9963.exe
USB to PC connection

Figure 10. USB to PC connection

USB port to be connected to PC
If FTDI Virtual COM PORT (VCP D2XX) driver has been correctly installed, you will find in Windows Device manager a USB serial port under Ports (COM&LPT). Take note of the COM port number (i.e. COM13).

Figure 11. Windows Device Manager COM port number
11 GUI usage and setup

11.1 Connection

Steps:
1. Select COM port according to your device manager. The COM led will become green;
2. Press on "get firmware version" button to check the communication with uC and the firmware version. The version should be 1.5;
3. In the "ID assignment" text box write 1 because you are using 1 L9963 then press "Configure IDs Button", ACK LED will become green. If D13 LED on the board was switched OFF it will be switched ON and will not switch OFF anymore.

Figure 12. GUI connection
11.2 Threshold configuration

Steps:
1. Select Cell overvoltage and undervoltage, i.e. UV 2.8 V and OV 4.250 V;
2. The VCELL_THRESH_UV_OV register will be automatically updated;
3. Select Dev ID 1;
4. Select Write;
5. Press on “Single write/read” button;
6. If communication with L9963 is ok the ACK LED will become green.

Figure 13. Threshold configuration 1
Steps:
1. Select Battery overvoltage and undervoltage, i.e. UV 39.2 V and OV 59.5 V;
2. The VBAT_SUM_TH register will be automatically updated;
3. Select Dev ID 1;
4. Select Write;
5. Press on “Single write/read” button;
6. If communication with L9963 is ok the ACK LED will become green.

Figure 14. Threshold configuration 2
11.3 Measure enabling

Steps:
1. Select cell voltage gauge with the EN check box. At least Cells 1, 2, 13, 14 must be selected;
2. The VCELLS_EN register will be automatically updated;
3. Select Dev ID 1;
4. Select Write;
5. Press on “Single write/read” button;
6. If communication with L9963 is ok the ACK LED will become green.

Figure 15. Measure enabling
11.4 Measure starting

Steps:
1. Select time interval. i.e. 100 ms. This is the refresh rate of GUI measurement;
2. Press on "Time interval" button to apply setting. ACK LED will become green;
3. Check Diagnostic checkbox to start measurement.

Figure 16. Measure starting
11.5 Alternative measure setting

Figure 17. Alternative measure setting

Selecting Chart, the voltage will be plotted on a time diagram.
11.6 Measurements example

Figure 18. Setup

Figure 19. Results

Cell2 voltage = 3.3V

Common mode on Cell1 = 3.6V

Floating voltage

Active Cell voltages sum = 3.61838V + 3.36233V + 0 + 0.47250V = 7.45322V

VREF
11.7 Diagnostic

All the diagnostics are available in the Diagnostic-Information tab. They are updated at the same rate as measurement.

Figure 20. Diagnostic
Appendix A Reference documents

Table 1. Reference documents

<table>
<thead>
<tr>
<th>Doc Name</th>
<th>ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>UM2698</td>
<td>034111</td>
<td>EVAL-L9963-MCU Evaluation Board</td>
</tr>
<tr>
<td>UM2734</td>
<td>034356</td>
<td>L9963 evaluation graphical user interface</td>
</tr>
</tbody>
</table>
Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-Sep-2020</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>

Table 2. Document revision history
Contents

1. What you need ... 2
2. Board description ... 3
3. Block diagram ... 4
4. Microcontroller Power supply ... 5
5. L9963 external connection and power supply 6
6. Transceiver settings .. 7
7. Possible connection for battery simulation 8
8. Preliminary action to open the GUI 9
9. USB to PC connection .. 10
10. Device Manager appearance ... 11
11. GUI usage and setup .. 12
 11.1 Connection ... 12
 11.2 Threshold configuration .. 13
 11.3 Measure enabling .. 15
 11.4 Measure starting ... 16
 11.5 Alternative measure setting 17
 11.6 Measurements example .. 18
 11.7 Diagnostic .. 19
12. Appendix A Reference documents 20
13. Revision history ... 21
List of tables

Table 1. Reference documents ... 20
Table 2. Document revision history ... 21
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>EVAL-L9963-MCU board</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>EVAL-L9963-NDS board</td>
<td>2</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Main components and connectors</td>
<td>3</td>
</tr>
<tr>
<td>Figure 4</td>
<td>EVAL-L9963-MCU block diagram</td>
<td>4</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Microcontroller Power supply</td>
<td>5</td>
</tr>
<tr>
<td>Figure 6</td>
<td>L9963 external connection and power supply</td>
<td>6</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Transceiver settings</td>
<td>7</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Battery simulation 1</td>
<td>8</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Battery simulation 2</td>
<td>8</td>
</tr>
<tr>
<td>Figure 10</td>
<td>USB to PC connection</td>
<td>10</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Windows Device Manger COM port number</td>
<td>11</td>
</tr>
<tr>
<td>Figure 12</td>
<td>GUI connection</td>
<td>12</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Threshold configuration 1</td>
<td>13</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Threshold configuration 2</td>
<td>14</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Measure enabling</td>
<td>15</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Measure starting</td>
<td>16</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Alternative measure setting</td>
<td>17</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Setup</td>
<td>18</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Results</td>
<td>18</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Diagnostic</td>
<td>19</td>
</tr>
</tbody>
</table>