Features

- Set of firmware examples to build applications for condition monitoring and predictive maintenance based on 3D digital accelerometer, environmental and acoustic MEMS sensors
- Middleware including algorithms for advanced time and frequency domain signal processing for vibration analysis
 - Programmable FFT size (512, 1024 or 2048 points)
 - Programmable FFT averaging and overlapping
 - Programmable windowing (Flat Top, Hanning, Hamming)
 - Speed RMS moving average, acceleration max peak
- Middleware integrating microphone algorithms for:
 - PDM to PCM
 - Sound pressure
 - Audio FFT
- Firmware package developed for STM32F469AI with easy portability across different MCU families
- PC data monitoring through any free terminal emulator
- Sample demonstration firmware to communicate with STEVAL-IDP004V1 IO-Link-master-capable multi-port evaluation board and dedicated PC GUI

Description

The firmware package is designed to help you develop industrial predictive maintenance solutions based on condition monitoring.

The software runs on the STM32F469AI microcontroller and includes drivers for sensor devices HTS221, LPS25HB, ISM330DLC (support for accelerometer only), MP34DT05-A and M95M01-DF.

The package integrates complete middleware with algorithms for accelerometer data signal processing to enable monitoring of rotating equipment such as motors, pumps and fans in time and frequency domains, up to the maximum bandwidth function of the accelerometer output data rate (up to ODR/2=3.3kHz).

The package includes audio lib middleware to perform acoustic emission analysis.

You can monitor environmental, acoustic and vibration data through a terminal emulator.

The software comes with different demonstrations and applications to monitor sensor data and output algorithm results. One demonstration is based on programmable thresholds for warning and alarm conditions in the time domain and in spectral bands.

The package is IO-Link capable (IO-Link stack is not included) with a demonstration that includes communication with the STEVAL-IDP004V1 IO-Link-master-capable multi-port evaluation board.
1 Detailed description

What is STM32Cube?
STMCube™ represents the STMicroelectronics’ initiative to make developers’ lives easier by reducing development effort, time and cost. STM32Cube covers STM32 portfolio. STM32Cube includes:

- The STM32CubeMX, a graphical software configuration tool that allows the generation of C initialization code using graphical wizards
- A comprehensive embedded software platform specific to each series (such as STM32CubeF4 for the STM32F4 series), which includes:
 - the STM32Cube HAL embedded abstraction-layer software, ensuring maximized portability across the STM32 portfolio
 - a consistent set of middleware components such as RTOS, USB, TCP/IP and graphics
 - all embedded software utilities with a full set of examples

How does this software complement STM32Cube?
The proposed software is based on the STM32CubeHAL hardware abstraction layer for the STM32 microcontroller. The package extends STM32Cube by providing a board support package (BSP) for the STEVAL-IDP005V1 (main board in the STEVAL-BFA001V1B kit).

The drivers abstract low-level details of the hardware and allow the middleware components and applications to access sensor data in a hardware-independent manner.

The package includes applications for environmental parameter monitoring, and vibration and acoustic analysis. These also include a data logger application to monitor and store data to your PC so you can start experimenting with the code. You can use any freeware terminal emulator on your PC to monitor the data.

A sample demonstration to experiment with vibration analysis is provided on top of vibration signal processing middleware. You can use it to monitor time and frequency domain vibration parameters and to set suitable thresholds in spectral bands and in time domains, to test the status of your own motor equipment.

The package includes a condition monitoring demonstration to show IO-Link capability (IO-Link stack is not included) and connect the STEVAL-IDP005V1 with the STEVAL-IDP004V1. A dedicated GUI (included) can be used to display and store sensor data and algorithm output data.
Revision history

Table 1. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-Jul-2018</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved