

EVAL-RHF1201V2

EVAL-RHF1201V2 evaluation board

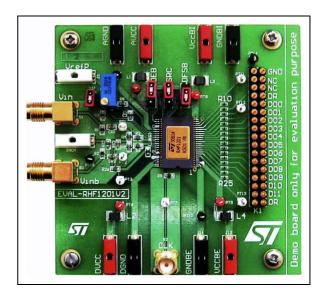
Data brief

Features

- Mounted Engineering Model RHF1201K1: Rad-hard, 50 Msps, 12-bit analog-to-digital converter (see RHF1201 datasheet for further information)
- Mounted components (ready-to-use)

■ Material: two-layered FR-4
■ PCB thickness: 1.6 mm
■ Copper thickness: 35 µm
■ Analog connections: SMA
■ Digital connections: IDC34

■ Supply connections: banana 2 mm



This data brief describes the EVAL-RHF1201V2 evaluation board.

This evaluation board is a ready-to-use, configurable hardware which allows designers to efficiently test the RHF1201, a radiation-hardened, 12-bit, analog-to-digital converter.

This document shows the components incorporated on the EVAL-RHF1201V2 evaluation board and suggests several ways to use the board.

The EVAL-RHF1201V2 evaluation board is intended only for evaluation purposes.

Contents EVAL-RHF1201V2

Contents

1	Bill	l of material			
2	Devi	ce pin connections and description	4		
3	Eval	nation board schematic	6		
4	РСВ	print out	7		
5	Eval	uation board description	9		
	5.1	Driving the analog input	9		
		5.1.1 C5 capacitor (between VIN and VINB)	9		
		5.1.2 CR1, CR2	9		
		5.1.3 Common mode voltage	0		
	5.2	Input range	0		
	5.3	Polarization	0		
	5.4	Digital control pins	11		
	5.5	Driving the clock	11		
	5.6	Digital outputs	2		
	5.7	Supplies	2		
	5.8	Test points	2		
6	Ravi	sion history 1	3		

EVAL-RHF1201V2 Bill of material

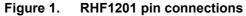

1 Bill of material

Table 1. Bill of material

Used	Part type ⁽¹⁾	Designator	Footprint	Туре
4	Red test point	PT4, PT6, PT8, PT9		
4	Black test point	PT5, PT10, PT14, PT15	SIP1	Test point
7	White test point	PT1, PT2, PT3, PT7, PT11, PT12, PT13		
1	4.7 μF	C15	0603	
3	10 nF	C16, CR1, CR2	0003	
2	10 μF	C11, C13	0805	Canacitor
2	22 μF	C8, C9	0003	Capacitor
9	470 nF	C1, C2, C3, C4, C6, C7, C10, C12, C14	0603	
1	100 pF	C5	0402	
4	10 μΗ	L1, L2, L3, L4	1210	Inductor
3	0 Ω	R3, R6, R26	0603	
16	33 Ω	33 Ω R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25 0402		
3	50 Ω	R1, R2, R9		Resistor
1	1 ΚΩ	R8	0603	
2	100 ΚΩ	R4, R5		
4	Black banana 2 mm	J5, J8, J10, J11		
4	Red banana 2 mm	J6, J7, J9, J12	Connector 2 mm	
2	White banana 2 mm	J1, J3		
2	SMA right angle	S1, S2	SMA	
1	SMA straight	S3	SIVIA	Connector
3	1 x 3 header MM	JU4, JU5, JU6	SIP3	
1	1 x 3 socket MF	J4	SIFS	
1	1 x 2 header MM	JU7	SIP2	
1	2 x 17 header MM	K1	IDC34	
1	RHF1201	1	SO48 ceramic	IC
1		R7	0603	Resistor
1	NC	C17		Capacitor
1		C18	0805	Capaciloi
4	Jumper	JU4, JU5, JU6, JU7		Jumper
1	200 ΚΩ	J4		Potentiometer

^{1.} MM = male-male, MF = male-female, and NC = not connected

2 Device pin connections and description

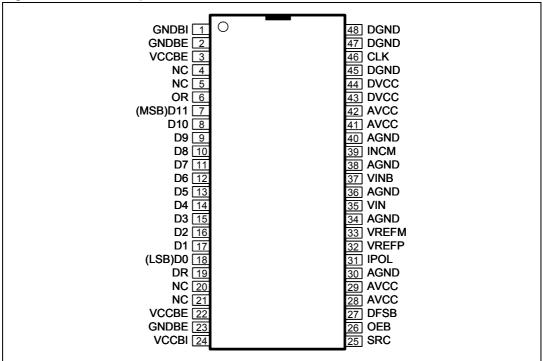
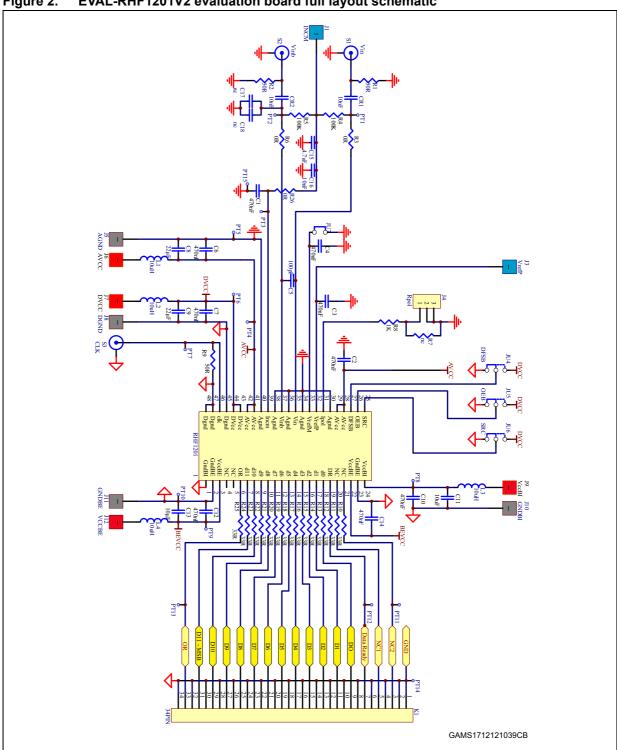



Table 2. RHF1201 pin description

Pin	Name	Description	Observations	Pin	Name	Description	Observations	
1	GNDBI	Digital internal buffer GND	0 V	25	SRC	Slew rate control		
2	GNDBE	Digital external buffer GND	0 0	26	OEB	Output enable bit	CMOS input	
3	VCCBE	Digital external buffer power supply	2.5 V/3.3 V	27	DFSB Data format select bit		(2.5 V/3.3 V)	
4		NC	Not connected	28	AVCC	Analog power supply	2.5 V	
5	_			29				
6	OR	Out of range		30	AGND	Analog ground	0 V	
7	D11 (MSB)	Most significant bit output		31	IPOL	Analog polarization current		
8	D10			32	VREFP	Top voltage reference	1 V	
9	D9		CMOS output (2.5 V/3.3 V)	33	VREFM	Bottom voltage reference	0 V	
10	D8			34	AGND	Analog ground		
11	D7			35	VIN	Analog input	1 Vpp	
12	D6			36	AGND	Analog ground	0 V	
13	D5	Digital output		37	VINB	Inverted analog input	1 Vpp	
14	D4	Digital output		38	AGND	Analog ground	0 V	
15	D3			39	INCM	Input common mode	0.5 V	
16	D2			40	AGND	Analog ground	0 V	
17	D1			41		Analog power supply	2.5 V	
18	D0 (LSB)			42	AVCC			
19	DR			43	DVCC	Digital power supply		
20	_	NC	Not connected	44	DVCC	Digital power supply		
21	_	110	Not connected	45	DGND	Digital ground	0 V	
22	VCCBE	Digital external buffer power supply	2.5 V/3.3 V	46	CLK	Clock input	CMOS input 2.5 V	
23	GNDBE	Digital external buffer GND	0 V	47	DGND Digital ground		0 V	
24	VCCBI	Digital internal buffer power supply	2.5 V	48				

Evaluation board schematic 3

EVAL-RHF1201V2 PCB print out

4 PCB print out

The PCB is a two-layered FR-4 material which is 1.6 mm thick. The copper thickness is $35 \, \mu m$.

Figure 3. Top layer

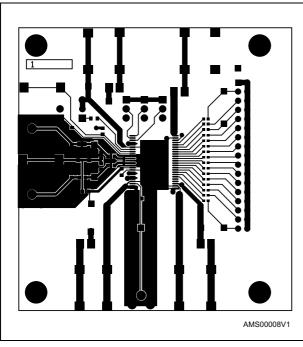


Figure 4. Top overlay

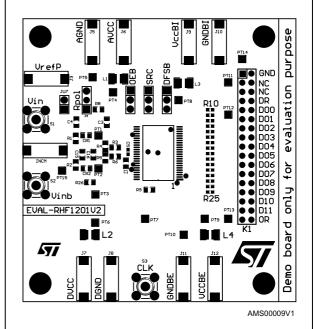
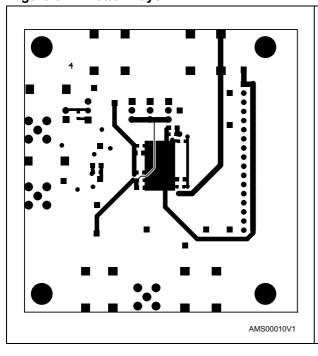
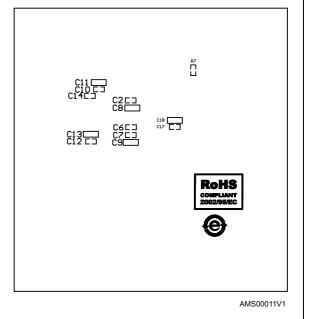
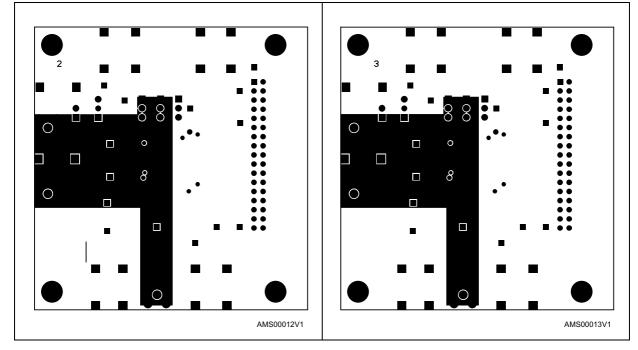


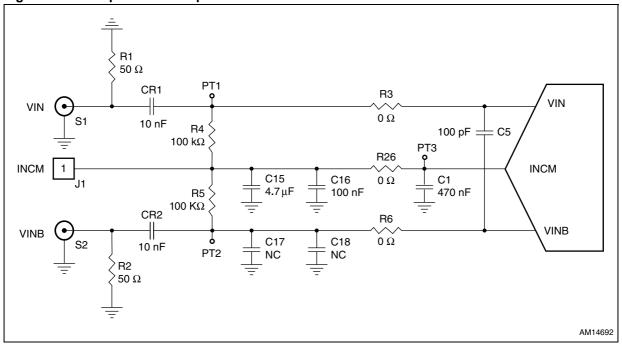
Figure 5. Bottom layer


Figure 6. Bottom overlay

PCB print out EVAL-RHF1201V2

Figure 7. Inside layer 1


Figure 8. Inside layer 2

5 Evaluation board description

Figure 9 shows the components on the evaluation board inputs.

Figure 9. Components on inputs

5.1 Driving the analog input

The EVAL-RHF1201V2 evaluation board has components for an AC coupled, differential input signal. However, by changing a few components the board can operate on either AC or DC connection and differential or single ended inputs.

The PCB layout is adapted for a $50-\Omega$ signal.

5.1.1 C5 capacitor (between VIN and VINB)

The C5 capacitor is chosen to give high performances but for a frequency equal or lower than 2 MHz. For tens of MHz, this component should be decreased or removed.

5.1.2 CR1, CR2

Two 10-nF capacitors are implemented on the CR1 and CR2 layout to give an AC coupled, differential input.

They can be removed and replaced by a 0 Ω resistor to obtain a DC coupled input. In this case, R4 and R5 become NC.

5.1.3 Common mode voltage

The internal common mode voltage can be used or the voltage can be supplied externally by the connector J1.

5.2 Input range

The full scale range is twice the difference between VREFP and VREFM.

VREFM is connected to GND by the jumper JU7. It can easily be removed from GND and connected to a specified voltage, if needed, using JU7.

VREFP can be connected to an external voltage by the jumper J3 or it can be left at the default value (see RHF1201 datasheet).

VREFM is high impedance. VREFP is low impedance (about 39 Ω).

The output code for differential inputs is as follows:

- Maximum output code is when: VIN VINB = + (VREFP VREFM)
- Half code is when: VIN = VINB
- Zero output code is when: VIN VINB = (VREFP VREFM)

5.3 Polarization

To optimize analog consumption, the current on the IPOL pin (the IPOL pin delivers voltage) has to be adjusted. A resistor between this pin and GND fixes the current.

There is a 200 K Ω potentiometer on J4 to set this current at the right value for a given application.

If the user chooses a high value resistor for the potentiometer, the current is low (analog consumption is low) but a clock at high frequency must not be used.

The default potentiometer value is 12 K Ω for the 60 MHz clock.

See the RHF1201 datasheet to choose the resistor value which best fits your application.

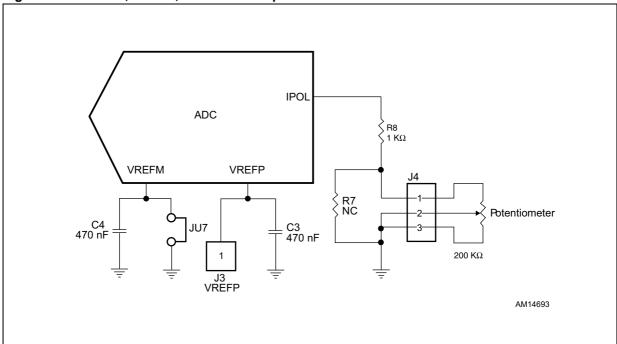


Figure 10. VREFM, VREFP, and IPOL components

5.4 Digital control pins

There are three control pins that can be programmed with jumpers or driven by a processor.

Table 3. Control pin description

	Control pin				
	SRC	OEB	DFSB		
Jumper	JU6	JU5	JU4		
Pin set to 0	Delivers fast slew rate for digital output pins which is mandatory for low level impedance	Enables digital output pins	Provides a two's complement digital output MSB		
Pin set to 1	Delivers slow slew rate for digital output pins	Disables digital output pins	Provides a standard binary output coding		

5.5 Driving the clock

A square or sine signal can be used to drive the clock. The edges of sine signals below 5 MHz are not sharp enough to drive the ADC correctly.

The PCB layout is adapted for a $50-\Omega$ clock.

5.6 Digital outputs

Digital output pins are sensitive to load. Consequently, there is no ground plane under the output lines to decrease parasitic capacitance on these pins.

There is also a 33 Ω resistor on each output line to decrease the capacitance recorded by the ADC.

5.7 Supplies

On each supply there is a 10 μH coil and two bypass capacitors. The capacitors are 470 nF and 10 μF or 22 $\mu F.$

5.8 Test points

There are 15 test points called TPx to help the user check signals on the board. Black points are grounds, reds points are supplies, and white points are signals.

EVAL-RHF1201V2 Revision history

6 Revision history

Table 4. Document revision history

Date	Revision	Changes
28-Jan-2013	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14 Doc ID 024032 Rev 1