

Data brief

Evaluation board for STDRIVEG212 220 V high-speed half-bridge gate driver with 2.2 mΩ, 100 V e-mode GaN HEMT

Features

- Half-bridge topology featuring the STDRIVEG212 GaN gate driver with integrated LDOs, separated sink/source, integrated bootstrap diode, standby
- Equipped with 2.2 mΩ typ., 100 V e-mode GaN HEMT
- Tunable hard-on and hard-off dV/dt
- 10.3 to 18 V (12 V typ.) VCC supply voltage
- Onboard adjustable deadtime generator to convert a single PWM signal in independent high-side and low-side inputs with deadtime
- Separated inputs with external deadtime can also be used
- External bootstrap diode to achieve minimum high side start-up time
- Onboard 3.3 V regulator for external circuitry supply
- RoHS compliant.

Product status link

EVLSTDRIVEG212

Description

As a part of the STDRIVE product family, the STDRIVEG212 is a 220 V high-speed half-bridge gate driver optimized for 5 V driving enhanced-mode GaN HEMTs.

It features separated high-current sink/source gate driving pins, integrated LDOs, undervoltage, bootstrap diode, high-side fast startup, overtemperature, fault and shutdown pins, and standby to fully support hard-switching topologies in a 4x5 mm QFN package.

The EVLSTDRIVEG212 board is easy to use, as well as quick and suitable for evaluating the characteristics of the STDRIVEG212 driving two 2.2 m Ω typ., 100 V emode GaN switches in a half-bridge configuration. The STDRIVEG212 comes in a 4x5 mm QFN package, while GaN switches are in a 3x5 mm En-FCQFN package. The EVLSTDRIVEG212 board is also suitable for evaluating the STDRIVEG612 features.

It provides an onboard programmable deadtime generator and a 3.3 V linear voltage regulator to supply external logic such as microcontrollers.

Spare footprints are also included to allow for customization of the board for the final application, such as separate LIN and HIN input signals or single PWM signal.

The EVLSTDRIVEG212 is 56 x 79 mm wide, 4 layers, 1.5 Oz, FR-4 PCB, resulting in an overall 19 °C/W $R_{th(J-A)}$ (equivalent to 38 °C/W for each GaN) in still air without heatsink to evaluate high-power applications.

Important:

Safety and operating instructions

1.1 General terms

Warning: During assembly, testing, and operation, the evaluation board poses several inherent hazards, including bare wires, moving or rotating parts, and hot surfaces.

Danger: There is a danger of serious personal injury, property damage, or death due to electrical shock and burn hazards if the kit or components are improperly used or installed incorrectly.

Attention: The kit is not electrically isolated from the high-voltage supply DC input. No insulation is ensured between the accessible parts and the high voltage. All measuring equipment must use adequately insulated probes, clamps, and connecting wires. Never touch the evaluation board while it is energized as it is capable of causing an electrical shock hazard.

All operations involving transportation, installation and use, and maintenance must be performed by skilled technical personnel able to understand and implement national accident prevention regulations. For the purposes of these basic safety instructions, "skilled technical personnel" are suitably qualified people who are familiar with the installation, use, and maintenance of power electronic systems.

1.2 Intended use of evaluation board

The evaluation board is designed for demonstration purposes only, and must not be used for electrical installations or machinery. Technical data and information concerning the power supply conditions are detailed in the documentation and should be strictly observed.

1.3 Installing the evaluation board

- The installation and cooling of the evaluation board must be in accordance with the specifications and target application.
- The board must be protected against excessive strain. In particular, components should not be bent nor should isolating distances be altered during transportation or handling.
- No contact must be made with other electronic components and contacts.
- The board contains electrostatically sensitive components that are prone to damage if used incorrectly. Do
 not mechanically damage or destroy the electrical components (potential health risks).

DB5645 - Rev 1 page 2/17

Operating the evaluation board

To properly operate the board, follow these safety rules.

- 1. Work area safety:
 - The work area must be clean and tidy.
 - Do not work alone when boards are energized.
 - Protect against inadvertent access to the area where the board is energized using suitable barriers and
 - A system architecture that supplies power to the evaluation board must be equipped with additional control and protective devices in accordance with the applicable safety requirements (that is, compliance with technical equipment and accident prevention rules).
 - Use a non-conductive and stable work surface.
 - Use adequately insulated clamps and wires to attach measurement probes and instruments.

2. Electrical safety:

- Remove the power supply from the board and electrical loads before taking any electrical measurements.
- Proceed with the arrangement of measurement setup, wiring, or configuration paying attention to highvoltage sections.
- Once the setup is complete, energize the board.

Danger: Do not touch the board when it is energized or immediately after it has been disconnected from the voltage supply as several parts and power terminals containing potentially energized capacitors need time to discharge.

> Do not touch the board after disconnection from the voltage supply as several parts, included PCB, may still be very hot.

The kit is not electrically isolated from DC input.

3. Personal safety

- Always wear suitable personal protective equipment such as insulating gloves and safety glasses.
- Take adequate precautions and install the board in such a way to prevent accidental touch. Use protective shields such as, for example, an insulating box with interlocks if necessary.

DB5645 - Rev 1 page 3/17

2 Schematic diagrams

Figure 1. EVLSTDRIVEG212 schematic - STDRIVEG212 gate driver and e-mode GaN HEMT power stage

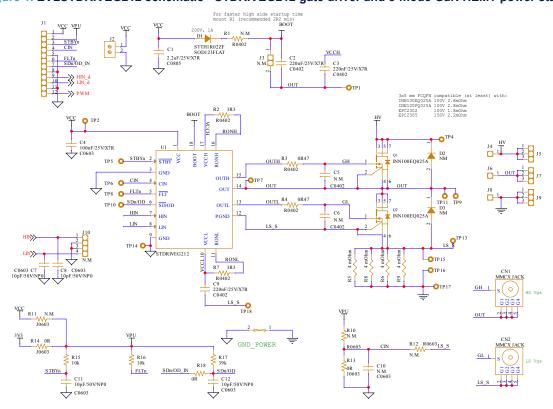
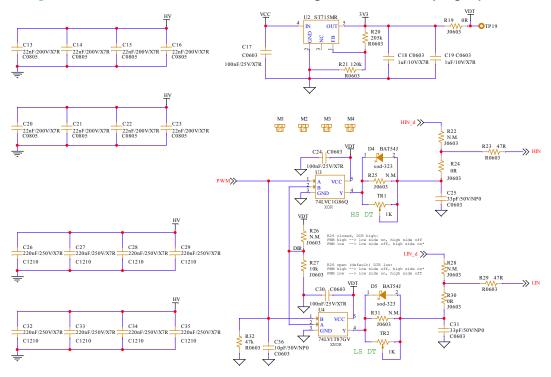



Figure 2. EVLSTDRIVEG212 schematic - deadtime generator and decoupling capacitors

DB5645 - Rev 1 page 4/17

Board power-up and input connection

The following image shows how to supply the EVLSTDRIVEG212, how to provide LIN and HIN inputs and set the programmable deadtime generator.

J2: 12V typ gate driver supply VCC GND TR1: High-side deadtime generator J4, J5: HV BUS J6, J7: OUT, Half-bridge PWM polarity selector middle point **Direct LIN & HIN inputs** Single signal input for deadtime generator J8. J9: POWER GROUND J1: Driver supply and inputs connector J8 & J4: Half bridge high voltage supply Single PWM input selector TR2: Low-side deadtime generator Direct LIN & HIN inputs selector

Figure 3. EVLSTDRIVEG212 - supply and signal connection

The LIN, HIN inputs can be provided from the onboard deadtime generator or directly from an external generator or control device (such as DSP/MCU).

The deadtime value set by the onboard deadtime generator, fed by PWM input signal on J1, can be tuned by setting TR1 and TR2.

It is possible to change the deadtime generator range by changing C25 and C31. Polarity of PWM input can be modified with R26 as in Table 3.

TR2 sets the deadtime between high-side turn-off and low-side turn-on.

TR1 sets the deadtime between low-side turn-off and high-side turn-on.

The on-board LDO is used to supply the deadtime generator and, by default, signal pull-ups. The supply voltage

is set at 3.3 V to match a typical 3.3 V input/output microcontroller voltage levels even if the deadtime generator logics are 5 V input tolerant. To change LDO voltage and deadtime logic threshold levels to 5 V, modify R20 to 374 kΩ. LDO output and deadtime supply can be probed/connected at TP19. The LDO can be used to supply external circuitry (up to about 50 mA).

Table 1. Connector map

Ref	Pin#	Name	Function	Description
	1	VCC	IN power	Board supply voltage (12 V typ.)
	2	V _{PU}	Power	Pull-up supply voltage, by default connected to the 3.3 V onboard LDO. Further options to explore standby consumption listed in Table 4.
	3	STBY	IN digital	Standby input signal (active low)
	4	CIN	OUT analog	Feature not available on STDRIVEG212, connected to GND.
J1	6	FLT	OUT digital	Fault output (UVLO, overtemperature)
	7	SD	IN digital	Disable input signal (0 to 3.3 V or up to 20 V) – see Table 3
	9	HIN_D	IN digital	HIN direct input signal (0 to 3.3 V or up to 20 V): mount R22 and remove R24 – see Table 2 and Table 3
	10	LIN_D	IN digital	LIN direct input signal (0 to 3.3 V or up to 20 V): mount R28 and remove R30 – see Table 2 and Table 3

DB5645 - Rev 1 page 5/17

Ref	Pin#	Name	Function	Description
J1	12	PWM	IN digital	PWM input signal (0 to 3.3 V or 5 V) – see Table 2 and Table 3
01	5, 8, 11	GND	Power	Board reference potential
J6, J7	1, 2, 3	OUT	OUT power	J6 (hole) and J7 pins are all connected to the OUT pin of the power stage: connect the load to J5 for a low-resistive connection
J4, J5	1, 2, 3	HV	IN power	J4 (hole) and J5 pins are all connected to the positive pin of the half-bridge power stage: connect the supply positive pole to J4 for a low-resistive connection
J8, J9	1, 2, 3	GND_P	Power	J8 (hole) and J9 pins are all connected to the negative pin of the half-bridge power stage: connect the supply negative pole to J8 for a low-resistive connection
J2	1	VCC	IN power	Board driver supply voltage 12 V typ. (as J1 pin 1)
JZ	2	GND	Power	Board reference potential

Table 2. Device input selection

Board status	Input source	R24, R30	R22, R28	Function and description
Default	PWM J1: pin 12	0 Ω (closed)	Open	LIN & HIN are generated by the onboard deadtime generator from a single PWM signal. PWM input range: 0 to 3.3 V (5 V compatible)
	PWM	Onon	0 Ω	Direct connection to LIN and HIN STDRIVEG212 pins.
	J1: pin 9, 10	Open	(closed)	LIN, HIN input range: up to 20 V

Table 3. Input signal truth table

Board inputs			PWM polarity	PWM polarity Driver inputs and outputs (1)				
STBY	SD	PWM	R26, R27	LIN	HIN	Low-side	High-side	Half-bridge output
L	X	X	Х	Х	х	Off	Off	High 7
X	L	^		^				High-Z
	H (default, pull-up)	L	R26 open	Н	L	On	Off	GND
Н		Н	(default)	L	Н	Off	On ⁽²⁾	HV ⁽²⁾
(default, pull-up)		L	R26 closed	L	Н	Off	On (2)	HV (2)
		Н		Н	L	On	Off	GND

^{1.} With device not in VCC and VCCL UVLO, or overtemperature.

To minimize minimum wirings required to control STDRIVEG212 (VCC and PWM input signal), all pull-ups are, by BOM default, connected to the onboard 3.3 V regulator. All functions can be tested but consumption at VCC connector during standby is not as low as could be expected due to pull-up resistor bias current consumption.

DB5645 - Rev 1 page 6/17

^{2.} With device not in VCCH UVLO

To minimize overall VCC rail consumption in standby mode is suggested to supply VPU rail from STBY net. Doing so, during standby, all pull-up are de-polarized and consumption is minimized. This operating mode is described in Table 4.

Table 4. Standby and V_{PU} pull-up voltage operating mode

Mode	R11	R14	R15	Note
V _{PU} at 3.3 V from LDO (default)	Open	0 R	10 kΩ	Higher VCC rail consumption due to pull-up resistor bias currents
V _{PU} from STBY	Open	Open	0 Ω	Minimal VCC rail consumption, STBY must be externally driven.
V _{PU} at VCC	0 Ω	Open	10 kΩ	STBY, SD and FLT pull-up to VCC (12 V). Verify controller input voltage tolerance.

The recommended power-on sequence is to turn VCC on first, then apply the HV bus voltage. The recommended power-off sequence is to turn off the HV bus supply first, then VCC.

DB5645 - Rev 1 page 7/17

4 Bill of materials

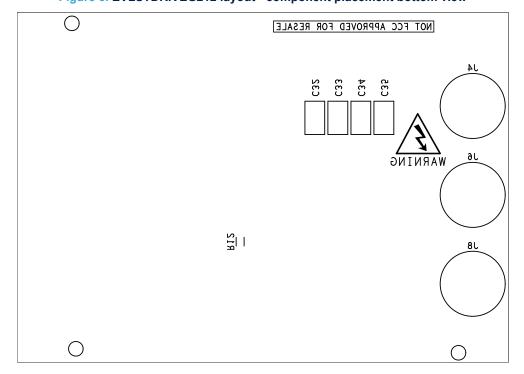
Table 5. EVLSTDRIVEG212 - bill of materials

Part reference	Part description	Part value	Package / manufacturer' code
CN1, CN2	MMCX, VERTICAL JACK, 50 Ohm	-	Würth Elektronik 66012102111404 or equivalent
			Size 0805
C1	SMT ceramic capacitor	2.2 µF / 25 V / X7R	Würth Elektronik 885012207079 or equivalent
C2, C3, C9	SMT ceramic capacitor	220 nF / 25 V / X7R	Size 0402
			Size 0603
C4, C17, C24, C30	SMT ceramic capacitor	100 nF / 25 V / X7R	Würth Elektronik 885012206071 or equivalent
C5, C6	SMT ceramic capacitor	N.M.	Size 0402
			Size 0603
C7, C8, C11, C12, C36	SMT ceramic capacitor	10 pF / 50 V / NP0	Würth Elektronik 885012006051 or equivalent
C10	SMT ceramic capacitor	N.M.	Size 0603
C13, C14, C15, C16,			Size 0805
C20, C21, C22, C23	SMT ceramic capacitor	22 nF / 200 V / X7R	Würth Elektronik 885342207006 or equivalent
			Size 0603
C18, C19	SMT ceramic capacitor	1 μF / 10 V / X7R	Würth Elektronik 885012206026 or equivalent
			Size 0603
C25, C31	SMT ceramic capacitor	33 pF / 50 V / NP0	Würth Elektronik 885012006054 or equivalent
C26, C27, C28, C29,			Size 1210
C32, C33, C34, C35	SMT ceramic capacitor	220 nF / 250 V / X7R	Würth Elektronik 885342209003 or equivalent
D1	Ultrafast high-voltage rectifier 1	STTH1R02ZF	SOD123Flat
DI	A 200 V	STITIKUZZF	STMicroelectronics STTH1R02ZF
D2, D3	1 A SBR surface mount super barrier rectifier	N.M.	PowerDI123
D4 D5	40 V, 300 mA small signal	DATEAL	SOD-323
D4, D5	Schottky diode	BAT54J	STMicroelectronics BAT54JFILM
			Pitch 2.54 mm
J1	Strip connector	1x 12 pins	Würth Elektronik 61301211121 or equivalent
			Pitch 3.5 mm
J2	Connector terminal block T.H	2 poles	Würth Elektronik 691214110002 or equivalent
			Pitch 2.54 mm
J3	Strip connector	1x2 pins	Würth Elektronik 61300211121 or equivalent
J4, J6, J8	Solder pad		Diam. 10, hole diam. 3.2 mm
J5, J7, J9	Strip connector	1x3pins	Pitch 2.54 mm

DB5645 - Rev 1 page 8/17

Part reference	Part description	Part value	Package / manufacturer' code
			Würth Elektronik 61300311121 or equivalent
J10	Strip connector	N.M.	Pitch 2.54 mm (1x4 pins)
	WA-SMSI SMT steel spacer		1mm thick, M2
M1, M2, M3, M4	with internal thread	-	Würth Elektronik 9774010243R or equivalent
01.02	100 V, 80 A e-mode GaN power	ININIAOOEOOGEA	3.5 mm En-FCQFN
Q1, Q2	transistor	INN100EQ025A	Innoscience INN100EQ025A or equivalent
R1	SMT resistor	N.M.	Size 0402
R2, R7	SMT resistor	3.3 Ω	Size 0402
R3, R4	SMT resistor	0.47 Ω	Size 0402
	Motel feil leur registenes chin		Size 0508
R5, R6, R8, R9	Metal foil low resistance chip resistors (long side terminal)	4 mΩ	Susumu KRL2012E-M-R004-F-Tx or equivalent
R10, R11, R12, R22, R25, R26, R28, R31	SMT resistor	N.M.	Size 0603
R13, R14, R18, R19, R24, R27, R30	SMT resistor	0 Ω	Size 0603
R15, R16, R27	SMT resistor	10 kΩ	Size 0603
R17	SMT resistor	39 kΩ	Size 0603
R20	SMT resistor	205 kΩ	Size 0603
R21	SMT resistor	120 kΩ	Size 0603
R23, R29	SMT resistor	47 Ω	Size 0603
R32	SMT resistor	47 kΩ	Size 0603
TP1, TP15	Solder pad	-	Copper PAD, 1.27 mm diameter
TP2, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP13, TP14, TP16, TP17, TP18, TP19	Test point for probe	-	Metallized hole, 0.8 mm diameter
TR1, TR2	Trimming potentiometer	1 kΩ	Bourns 3266W-1-102LF or equivalent
U1	220 V high-speed half-bridge	STDRIVEG212	QFN18 4x5 mm
U I	GaN driver	3 I DRIVEG2 IZ	STMicroelectronics STDRIVEG212Q
U2	High input voltage, 85 mA LDO	ST715MR	SOT23-5L
52	linear regulator	O 17 TOWN	STMicroelectronics ST715MR
			SOT23-5L
U3	2-inputs EXCLUSIVE-OR gate	74LVC1G86Q	Diodes incorporated 74LVC1G86QW5-7 or equivalent
U4	2-inputs EXCLUSIVE-NOR gate	74LV1T87GV	SOT23-5L
34	pato Excessive Hort gate		Nexperia 74LV1T87GV or equivalent

DB5645 - Rev 1 page 9/17



Layout and component placements

EVLSTDRIVEG212 Rev.1.0 Н۷ HS VGS VCC GND R11 C17 $| \cdot | \cdot | \cdot |$ CIN 2 _ OUT]GND C24 📇 וַוווויוּ FLT S Н٧ 0201 ÌSD OUT GND HIN_D | EC30C31R30 GND_P]LIN_D ┌ ̄ CN2 JGND 🕏 LS_S GND STBY TR2 LS PWM C36 R32 GND RoHS COMPLIANT FOR EVALUATION ONLY

Figure 4. EVLSTDRIVEG212 layout - component placement top view

Figure 5. EVLSTDRIVEG212 layout - component placement bottom view

DB5645 - Rev 1 page 10/17

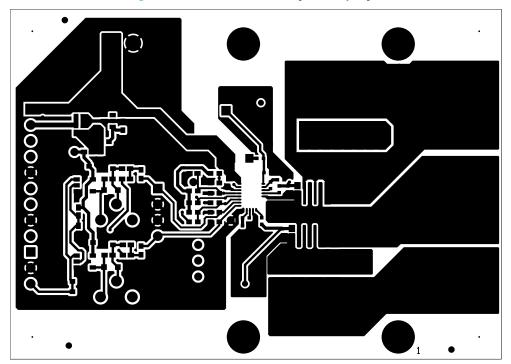
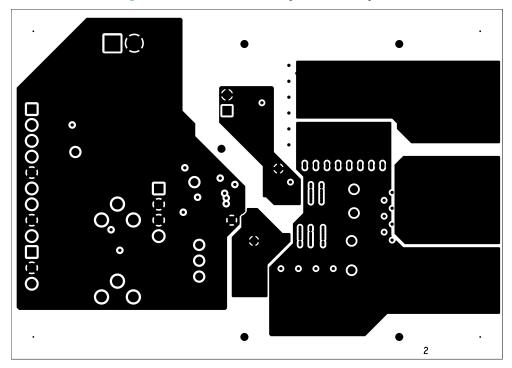
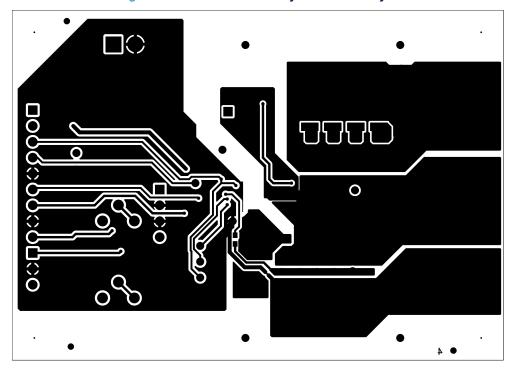



Figure 6. EVLSTDRIVEG212 layout - top layer



DB5645 - Rev 1 page 11/17

Figure 8. EVLSTDRIVEG212 layout - inner layer 3

DB5645 - Rev 1 page 12/17

Revision history

Table 6. Document revision history

Date	Version	Changes
17-Oct-2025	1	Initial release.

DB5645 - Rev 1 page 13/17

Contents

1	Safe	ety and operating instructions	2
	1.1	General terms	
	1.2	Intended use of evaluation board	2
	1.3	Installing the evaluation board	2
	1.4	Operating the evaluation board	3
2	Sch	ematic diagrams	4
3	Boa	rd power-up and input connection	5
4		of materials	
5	Lay	out and component placements	.10
Rev	ision	history	.13
		bles	
List	of fic	gures	16

List of tables

Table 1.	Connector map	5
Table 2.	Device input selection	6
Table 3.	Input signal truth table	6
Table 4.	Standby and V _{PU} pull-up voltage operating mode	7
Table 5.	EVLSTDRIVEG212 - bill of materials	8
Table 6.	Document revision history	13

DB5645 - Rev 1 page 15/17

List of figures

Figure 1.	EVLSTDRIVEG212 schematic - STDRIVEG212 gate driver and e-mode GaN HEMT power stage	. 4
Figure 2.	EVLSTDRIVEG212 schematic - deadtime generator and decoupling capacitors	. 4
Figure 3.	EVLSTDRIVEG212 - supply and signal connection	. 5
Figure 4.	EVLSTDRIVEG212 layout - component placement top view	10
Figure 5.	EVLSTDRIVEG212 layout - component placement bottom view	10
Figure 6.	EVLSTDRIVEG212 layout - top layer	11
Figure 7.	EVLSTDRIVEG212 layout - inner layer 2	11
Figure 8.	EVLSTDRIVEG212 layout - inner layer 3	12
Figure 9.	EVLSTDRIVEG212 layout - bottom layer	12

DB5645 - Rev 1 page 16/17

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DB5645 - Rev 1 page 17/17