

700 V, 74 m Ω typ., 21 A, e-mode PowerGaN transistor

PowerFLAT 5x6 HV for PowerGaN

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	Series
SGT100R70FDC	700 V	100 mΩ	21 A	G-HEMT

- · Enhancement mode normally off transistor
- Very high switching speed
- · High power management capability
- Extremely low capacitances
- Zero reverse recovery charge
- ESD safeguard

Applications

- AC-DC converters
- DC-DC converters
- USB type-C PD adapters and quick chargers
- · Wireless charging

Description

The SGT100R70FDC is a 700 V, 21 A e-mode PowerGaN transistor. The resulting device provides extremely low conduction losses, high current capability and ultrafast switching operation to enable high power density and unbeatable efficiency performances.

Product status link

SGT100R70FDC

Product summary			
Order code SGT100R70FDC			
Marking	100R70F		
Package	PowerFLAT 5x6 HV for PowerGaN		
Packing	Tape and reel		

1 Electrical ratings

 T_C = 25 °C unless otherwise specified.

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
\/	Drain-source voltage	700 ⁽¹⁾	V
V_{DS}	Drain-source voltage (transient, t _p < 200 μs)	800	_ v
V _{GS}	Gate-source voltage	-6 to 7	V
I _D	Drain current (continuous)	21	Α
I _{DM}	Pulse drain current (t _p = 10 μs)	41	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	107	W
T _{stg}	Storage temperature range	FF to 150	°C
TJ	Operating junction temperature range	-55 to 150	°C

^{1.} Recommended continuous maximum bus voltage during switching operations should not exceed 450 V.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	1.16	°C/W
R _{thJA} ⁽¹⁾	Thermal resistance, junction-to-ambient	69.94	°C/W

1. When mounted on a standard 1 inch² area of FR-4 PCB with 2-oz copper.

DB5666 - Rev 1 page 2/5

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified.

Table 3. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{DSS} Drain-sou	Desire assumed to the second	V _{GS} = 0 V, V _{DS} = 700 V		0.8		μА
	Drain-source leakage current	V _{GS} = 0 V, V _{DS} = 700 V, T _J = 125 °C		9		
I _{GSS}	Gate-source leakage current	V _{DS} = 0 V, V _{GS} = 6 V		90		μΑ
V _{GS(th)}	Gate threshold voltage	V _{DS} = V _{GS} , I _D = 18.3 mA	1.2	1.7	2.5	V
В	Static drain-source on-resistance	V _{GS} = 6 V, I _D = 0.5 A		74	100	mΩ
R _{DS(on)}		V _{GS} = 6 V, I _D = 6 A, T _J = 125 °C		148		11122

Table 4. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	130	-	pF
C _{oss}	Output capacitance	V _{GS} = 0 V, V _{DS} = 400 V, f = 100 kHz	-	47	-	pF
C _{rss}	Reverse transfer capacitance		-	0.5	-	pF
C _{o(er)} ⁽¹⁾	Equivalent output capacitance energy related	V _{GS} = 0 V, V _{DS} = 0 to 400 V	-	62.9	-	pF
C _{o(tr)} ⁽²⁾	Equivalent output capacitance time related	VGS - 0 V, VDS - 0 to 400 V	-	83.4	-	pF
R_g	Intrinsic gate resistance	f = 5 MHz, I _D = 0 A	-	7	-	Ω
V _{plat}	Gate plateau voltage	V _{DS} = 400 V, I _D = 6 A	-	2.1	-	V
Qg	Total gate charge		-	3.4	-	nC
Q _{gs}	Gate-source charge	$V_{GS} = 0$ to 6 V, $V_{DS} = 400$ V, $I_{D} = 6$ A	-	0.3	-	nC
Q _{gd}	Gate-drain charge		-	1.3	-	nC
Q _{rr}	Reverse recovery charge	V _{GS} = 0 V, V _{DS} = 400 V	-	0	-	nC
Q _{oss}	Output charge	VGS - 0 V, VDS - 400 V	-	32.7	-	nC

C_{o(er)} is a constant capacitance value that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to the stated value

Table 5. Reverse conduction

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD}	Source-drain reverse voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 6 \text{ A}$	-	2.4	-	V

DB5666 - Rev 1 page 3/5

^{2.} $C_{O(tr)}$ is a constant capacitance value that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to the stated value.

Revision history

Table 6. Document revision history

Date	Revision	Changes
08-Oct-2025	1	First release.

DB5666 - Rev 1 page 4/5

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DB5666 - Rev 1 page 5/5