Secure microcontroller
- ARM® SecurCore® SC000™ 32-bit RISC core
- 12 Kbytes of user RAM
- Up to 480 Kbytes of secure, high-density user Flash memory including 128 bytes of user OTP area
- Three 16-bit timers with interrupts
- Watchdog timer
- External clock frequency up to 10 MHz
- CPU clock frequency up to 28 MHz
- Power-saving Standby state
- Asynchronous receiver transmitter (IART) with RAM buffer for high-speed serial data support (ISO/IEC 7816-3 T=0/T=1 compliant)

Booster
- Extended read range in card emulation mode with antennas smaller than 100 mm²
- boostedNFC technology based on active load modulation
- Automatic power control
- Automatic gain control
- Low power consumption

Contactless features
- EMVCo™ and ISO/IEC 14443 compliance for full interoperability with existing payment and ticketing infrastructures
- Card emulation supporting ISO/IEC 14443 Type A at 106 kbps
- MIFARE Plus® and MIFARE® DESFire® EV1 hardware and software implementation
- MIFARE® Classic available as part of MIFARE Plus®

Features
- System in package (SiP) integrating a 32-bit secure microcontroller (ST31G480, ST31G384, ST31G320 or ST31G256) and an STS3922 booster for optimized wearable applications (card emulation boosted performance)
- Single power supply pin (VBAT)
- 2.7 to 3.6 V supply voltage range
- Battery voltage supported
- Supports Class B operating conditions
- Ambient operating temperature range: −25 to +85 °C
- 10-year data retention
- 100 000 Erase/Write cycle endurance
- ESD protection greater than 4 kV (HBM)
- Communication interfaces:
  - SPI
  - ISO 7816
  - ISO 14443A
- Delivery form:
  - WFBGA64: 64-ball, 4 x 4 mm, 0.4 mm pitch, very, very thin profile, fine pitch, ball grid array package
Security features

- Active shield
- Monitoring of environmental parameters
- Three-key triple DES accelerator
- AES accelerator
- AIS-31 Class PTG2-compliant true random number generator (TRNG)
- NESCRIPT coprocessor for public-key cryptography algorithms
- ISO/IEC 13239 CRC calculation block
- Unique serial number for each die
- Protection against multiple attacks

Applications

Ideal for NFC applications on small-footprint devices, such as wearables, to allow payment and ticketing on smart devices, and communication with a microcontroller through an RF interface.

a. MIFARE DESFire, MIFARE Classic and MIFARE Plus are registered trademarks of NXP B.V. and are used under license.
1 Description

The ST53G device is an all-in-one secure solution that includes the STS3922 near-field communication (NFC) booster and a secure element (SE) certified by EMVCo and available in different memory sizes ranging from 256 to 480 Kbytes (ST31G480, ST31G384, ST31G320 or ST31G256).

Fully manufactured in a secure environment, the ST53G provides the highest performance levels thanks to the ARM® SC300® core of their secure element.

The ST53G is ideal for applications that require card emulation functionality, but have limited space for the antenna. This solution allows a simpler design than the conventional NFC controller-based architecture, and occupies a board footprint approximately one-third smaller.

The ST53G operates in the −25 to + 85 °C temperature range at voltages from 2.7 to 3.6 V. It is delivered in WFBGA64 packages dimensioned for use in small-footprint devices.

In order to meet environmental requirements, ST offers the ST53G in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.
2 Software development tool description

Dedicated SecurCore® SC000™ software development tools are provided by ARM® and Keil™. These include the Instruction Set Simulator (ISS) and C compiler. The corresponding documentation is available from the ARM and Keil websites.

STMicroelectronics provides:
- A time-accurate hardware emulator controlled by the Keil debugger and the ST development environment.
- A complete product simulator based on Keil's ISS simulator for the SecurCore® SC000™ CPU.
- A software and hardware development package

Moreover, STMicroelectronics provides a comprehensive development and design package to:
- Simplify software integration: ST lowers the cost for developers by providing multi-application support with optimized solutions, which include intuitive software development kit (SDK) platforms for integrating contactless services around any microcontroller wearable device architecture.
- Simplify hardware integration: ST provides a set of reference designs, expansion boards and design guidelines.
- Simplify deployment: ST provides turnkey solution partnership with operating system vendors, and precertification services to help to reduce the time-to-market as well as development costs.
Figure 1. SiP block diagram
3 Revision history

Table 1. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-Jul-2017</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved