15 kW, three-phase Vienna rectifier with low cost mixed-signal control for power factor correction

Features

• 3-phase, 3-level AC/DC power converter
 – Rated nominal output DC voltage: 800 V_{DC}
 – Rated nominal input AC voltage: 400 V_{AC} at 50 Hz
 – Nominal output power AC/DC: 15 kW
 – Power factor, PF>0.99
 – Inrush current control and soft start-up
 – THD lower than 5% at nominal operation

• Power section based on SiC MOSFETs and diodes:
 – High frequency operation (70 kHz)
 – High peak efficiency greater than 98%
 – Passive element weight and size reduction

• Control section based on programmable STNRG388A digital controller
 – Low cost mixed-signal control

• Overcurrent and overvoltage protections

Description

This reference design represents a complete solution for high power three-phase AC/DC rectifier applications based on the Vienna topology. It features mixed-signal control, with the STNRG388A controller providing digital output voltage regulation, and dedicated analog circuitry providing high bandwidth continuous conduction mode (CCM) current regulation for maximum power quality in terms of total harmonic distortion (THD) and power factor (PF).

The high switching frequency of the SiC MOSFETs (70 kHz) and the multilevel structure allow nearly 99% efficiency as well as the optimization of passive power components in terms of size and cost.

This high efficiency Vienna rectifier is designed for several end applications such as electric vehicle (EV) and industrial battery chargers, and industrial equipment requiring very high PF and low THD.
<table>
<thead>
<tr>
<th>Product summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>converter with direct</td>
</tr>
<tr>
<td>feedback</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Applications</td>
</tr>
<tr>
<td>PFC Converter -</td>
</tr>
<tr>
<td>Three Phase Input</td>
</tr>
<tr>
<td>DC Fast Charging Station</td>
</tr>
</tbody>
</table>
Vienna rectifier with mixed mode control reference design overview

This reference design consists of the following separate components:
- Power board with power section, EMI filter, sensing circuit, inrush circuit and auxiliary power supply.
- Control board based on the STNRG388A 8-bit digital controller for power conversion applications, along with connectors for communication, and test-points and status indicators for testing and debugging.

The input and output current and voltage measurements necessary for responsive control are acquired through isolated measurement blocks, and the control section allows analog implementation of CCM current regulation for power factor correction, while the bus voltage is regulated through digital control.

The STNRG388A provides comprehensive control of the application currents and voltages as well as monitoring and protection, plus the start-up sequence and load variation control. The driving signals of the switching devices are determined by an internal State Machine Event Driven (SMED), ensuring that time critical tasks are never interrupted.

Figure 1. 3-phase mixed-signal rectifier block diagram
Figure 2. STDES-VIENNARECT schematic diagram - control board
Figure 3. STDES-VIENNARECT schematic diagram - power board: AC current sensing
Figure 4. STDES-VIENNRECT schematic diagram - power board: AC voltage sensing
Figure 5. STDES-VIENNARECT schematic diagram - power board: temp control
Figure 6. STDES-VIENNARECT schematic diagram - power board: connectors
Figure 7. STDES-VIENNARECT schematic diagram - power board: DC current sensing
Figure 8. STDES-VIENNARECT schematic diagram - power board: DC voltage sensing

Figure 9. STDES-VIENNARECT schematic diagram - power board: input EMI filter
Figure 10. STDES-VIENNARECT schematic diagram - power board: gate drivers (x6)

Figure 11. STDES-VIENNARECT schematic diagram - power board: power section
Figure 12. STDES-VIENNARECT schematic diagram - power board: aux power DC/DC
Figure 13. STDES-VIENNARECT schematic diagram - power board: aux power VIPER
Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>05-Dec-2019</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>

Table 1. Document revision history
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved