Satellite transceiver ARM® Cortex®-based SoC with integrated DVB-S2/S2X forward link and IQ-streamer for return link

Features

- Integrated DVB-S/S2/S2X demodulator
- Dual core ARM® Cortex®-A9 application CPU:
 - Up to 1.2 GHz and 6000 DMIPS
 - NEON™ accelerator
 - 512-Kbyte L2 cache
- DDR3/3L 16-bit interface running at up to 1066 MHz (DDR3-2133)
- Integrated ARM® Cortex®-M4 standby controller with low-power micro and power islands
- Quad ST231 offload CPUs
- IQ data pipe and streaming engine to high-speed DACs
- Sample-rate conversion filter including root-raised-cosine
- High-speed IQ signal DACs
- High-precision low-speed DACs

- Connectivity:
 - 2 x USB 2.0 ports
 - 1 x PCIe port
 - 1 x SD card
 - 1 x eMMC
 - 1 x RGMII muxed with internal Ethernet PHY
 - 4 x input transport streams
 - 6 x UART
 - 9 x I2C

- Package: FCBGA 16 mm x 16 mm, 0.65 mm pitch, 552 balls

Description

The STiD337 is a system-on-chip (SoC) for interactive satellite applications that includes an integrated DVB-S2/S2X demodulator for the satellite forward link with flexible GSE and MPEG-TS PID filtering.

The compute platform is based on a dual-core ARM® Cortex®-A9 architecture with Neon™ coprocessors and multiple ST231 DSP offload processors.

The return link implements an IQ streamer which streams a linked list of pre-calculated data to the integrated 10-bit DACs for IQ output to external up-converters.

Accurate Network clock recovery (NCR) with precision real-time control is implemented for the most demanding applications.

Multiple interfaces such as integrated Ethernet physical layer (PHY), USB, PCIe, VCXO, GPIO, SPI, I2C, and I2S are included to provide a complete low-cost satellite modem.
Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-Feb-2017</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>

Table 1. Document revision history