eDSim: fast and powerful electrical simulation software for SMPS and analog ICs

Features
- Built-in interface with eDesignSuite
- SMPS circuit full modeling using ST components
- Time domain simulation
- Control loop stability
- Predefined application use-case simulation
- Schematic editor for customization
- Waveform viewer with measurement capabilities

Description
eDSim is a fast and powerful electrical simulation tool for SMPS and analog ICs, integrated in the eDesignSuite tool. It features enhanced accuracy and higher convergence speed for SMPS, enabling a simulation time 10-50x faster than the classical analog SPICE simulators.

The tool is a specific version of the SIMPLIS/SIMetrix simulation environment paired with ST model components, for a full electrical simulation with no limitation of nodes and circuit size.

Design your analog circuit using the eDesignSuite engine, display a preview of it in few seconds with full annotated schematic and BOM, and then run the electrical simulation through eDSim to get fast and accurate simulations and reliable design validation, thus reducing the effort and risks related to hardware prototyping.

With the eDSim tool you can also create your schematic from scratch using ST models or simulate your SMPS and analog ICs from a list of predefined ST application schematics - test benches, that you can partially modify according to your needs.

Software release 2022.11 is now available.
1 General information

Based on the SIMPLIS/SIMetrix AE version, the eDSim simulator software tool allows full simulations of all the ST encrypted models and applications supported, with the option of applying additional customizations as listed below.

For SIMPLIS:

- A maximum of 15 state variables. Each capacitor or inductor requires one state variable. Each time-varying or small-signal AC source requires one state variable, except for sinusoidal or cosinusoidal sources, which require two state variables per source.
- A maximum of 10 capacitors or inductors combined.
- A maximum of 6 switches (simple or transistor).
- A maximum of 6 logic gates.
- A maximum of 26 states. Each PWL element, switch, time-varying source, and logic gate requires one state.
- A maximum of 100 new topologies, which are enough for simple switching circuits that use simple models only. More complex circuits or circuits that have more complicated models may exceed this limit.

For SIMetrix:

- 140 analog nodes (internal and external).
- 360 digital nodes.
- 720 digital ports.
- 300 digital components.
- 360 digital outputs.

eDSim requires Windows® 10 or higher 64-bit edition (Home, Pro, or Enterprise).

Figure 1. eDSim main window

Fast and powerful electrical simulation software for SMPS and analog ICs

Now run the eDSim tool to crunch the electrical simulations 10-50 times faster than traditional analog SPICE simulators!
2 Supported devices

Simplis ICs models for power supply
Power conversion
DC/DC converters
• Not isolated
 – Buck:
 ◦ L6983: L6983CQTR, L6983C33QTR, L6983C50QTR, L6983NQTR, L6983N33QTR, L6983N50QTR
 ◦ L6981: L6981C33DR, L6981C50DR, L6981CDR, L6981N33DR, L6981N50DR, L6981NDR
 ◦ L6982: L6982C33DR, L6982C50DR, L6982CDR, L6982N33DR, L6982N50DR, L6982NDR
 ◦ L7983: L7983PU50R, L7983PU33R, L7983PUR
 ◦ ST1PS01: ST1PS01AJR, ST1PS01BJR, ST1PS01CJR, ST1PS01DJR, ST1PS01EJR, ST1PS01FJR, ST1PS01GJR, ST1PS01HJR
 ◦ ST1PS02: ST1PS02AQTR, ST1PS02BQTR, ST1PS02CQTR, ST1PS02DQTR
 ◦ ST1PS03: ST1PS03A1QTR, ST1PS03AQTR
 ◦ L3751: L3751PUR
• Isolated
 – Iso-buck/Iso-buck-boost:
 ◦ L6986i: L6986ITR
 ◦ L6983i: L6983IQTR

SiMetrix ICs models for linear analog
Linear amplifiers
• Op-Amps: LM2904, LMV321, LMV820, LMV821, TSV791, TSZ121, TSZ181, TSV911, TSV991, TSV631, TSV630, TSB711, TSU111, TSV711, TSV731, TSU101, TSB571, TXS711, TSX707, TSX921, TSX920, TSV7721, TSV7723_SINGLE
• Current sense amplifiers: TSC2010, TSC2011, TSC2012
• Comparators: TS3011, TS3021
Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-Apr-2022</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>02-May-2022</td>
<td>2</td>
<td>Updated title, cover page description, and General information.</td>
</tr>
<tr>
<td>13-Jan-2023</td>
<td>3</td>
<td>Updated description. Added Section 2 Supported devices</td>
</tr>
</tbody>
</table>