Features

- Independent supply and input common-mode voltages
- Wide common-mode operating range: 2.8 to 30 V
- Wide common-mode surviving range: -0.3 to 60 V (load-dump)
- Wide supply voltage range: 4 to 24 V
- Low current consumption: I_{CC} max = 300 µA
- Internally fixed gain: 20 V/V, 50 V/V or 100 V/V
- Buffered output

Applications

- Wireless battery chargers
- Chargers for portable equipment
- Precision current sources
- Wearable

Description

The CS30 measures a small differential voltage on a high-side shunt resistor and translates it into a ground referenced output voltage. The gain is internally fixed.

Wide input common-mode voltage range, low quiescent current, and tiny SOT23 packaging enable use in a wide variety of applications.

The input common-mode and power supply voltages are independent. The common-mode voltage can range from 2.8 to 30 V in operating conditions and up to 60 V in absolute maximum rating conditions.

The current consumption below 300 µA and the wide supply voltage range enable the power supply to be connected to either side of the current measurement shunt with minimal error.

Table 1. Device summary

<table>
<thead>
<tr>
<th>Part number</th>
<th>Temperature range</th>
<th>Package</th>
<th>Packaging</th>
<th>Marking</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS30AL</td>
<td>-40°C to +125°C</td>
<td>SOT23-5L</td>
<td>Tape & reel</td>
<td>O104</td>
<td>20</td>
</tr>
<tr>
<td>CS30BL</td>
<td></td>
<td></td>
<td></td>
<td>O105</td>
<td>50</td>
</tr>
<tr>
<td>CS30CL</td>
<td></td>
<td></td>
<td></td>
<td>O106</td>
<td>100</td>
</tr>
</tbody>
</table>
Contents

1. **Application schematic and pin description** ... 3
2. **Absolute maximum ratings and operating conditions** 4
3. **Electrical characteristics** ... 5
 3.1 Electrical characteristics curves ... 8
4. **Parameter definitions** ... 12
 4.1 Common mode rejection ratio (CMR) ... 12
 4.2 Supply voltage rejection ratio (SVR) ... 12
 4.3 Gain (Av) and input offset voltage (V_{os}) ... 12
 4.4 Output voltage drift versus temperature ... 13
 4.5 Output voltage accuracy ... 14
5. **Application information** ... 15
6. **Package information** ... 16
7. **Revision history** ... 17
1 Application schematic and pin description

The CS30 high-side current sense amplifier features a 2.8 to 30 V input common-mode range that is independent of the supply voltage. The main advantage of this feature is that it allows high-side current sensing at voltages much greater than the supply voltage (V_{CC}).

![Application schematic](image)

Table 2 describes the function of each pin. The pin positions are shown in the illustration on the cover page and in Figure 1 above.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out</td>
<td>Analog output</td>
<td>Output voltage, proportional to the magnitude of the sense voltage V_p/V_m.</td>
</tr>
<tr>
<td>Gnd</td>
<td>Power supply</td>
<td>Ground line</td>
</tr>
<tr>
<td>V_{CC}</td>
<td>Power supply</td>
<td>Positive power supply line</td>
</tr>
<tr>
<td>V_p</td>
<td>Analog input</td>
<td>Connection for the external sense resistor. The measured current enters the shunt on the V_p side.</td>
</tr>
<tr>
<td>V_m</td>
<td>Analog input</td>
<td>Connection for the external sense resistor. The measured current exits the shunt on the V_m side.</td>
</tr>
</tbody>
</table>
Absolute maximum ratings and operating conditions

2 Absolute maximum ratings and operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{id}</td>
<td>Input pins differential voltage ($V_p - V_m$)</td>
<td>±60</td>
<td>V</td>
</tr>
<tr>
<td>V_i</td>
<td>Input pin voltages (V_p and V_m)(^{(1)})</td>
<td>-0.3 to 60</td>
<td>V</td>
</tr>
<tr>
<td>V_{CC}</td>
<td>DC supply voltage(^{(1)})</td>
<td>-0.3 to 25</td>
<td>V</td>
</tr>
<tr>
<td>V_{out}</td>
<td>DC output pin voltage(^{(1)})</td>
<td>-0.3 to V_{CC}</td>
<td>V</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage temperature</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Maximum junction temperature</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>R_{thja}</td>
<td>SOT23-5 thermal resistance junction to ambient</td>
<td>250</td>
<td>°C/Ω</td>
</tr>
</tbody>
</table>

1. Voltage values are measured with respect to the ground pin.

2. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

3. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.

4. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>DC supply voltage from T_{min} to T_{max}</td>
<td>4.0 to 24</td>
<td>V</td>
</tr>
<tr>
<td>T_{oper}</td>
<td>Operational temperature range (T_{min} to T_{max})</td>
<td>-40 to 125</td>
<td>°C</td>
</tr>
<tr>
<td>V_{icm}</td>
<td>Common mode voltage range</td>
<td>2.8 to 30</td>
<td>V</td>
</tr>
</tbody>
</table>
3 Electrical characteristics

Table 5. Supply\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{CC})</td>
<td>Total supply current</td>
<td>(V_{\text{sense}} = 0, \text{V}) (T_{\text{min}} < T_{\text{amb}} < T_{\text{max}})</td>
<td>165</td>
<td></td>
<td>300</td>
<td>(\mu\text{A})</td>
</tr>
</tbody>
</table>

1. Unless otherwise specified, the test conditions are \(T_{\text{amb}} = 25^\circ\text{C}\), \(V_{\text{CC}} = 12\, \text{V}\), \(V_{\text{sense}} = V_{\text{P}} - V_{\text{m}} = 50\, \text{mV}\), \(V_{\text{m}} = 12\, \text{V}\), no load on Out.

Table 6. Input\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMR</td>
<td>Common mode rejection Variation of (V_{\text{out}}) versus (V_{\text{icm}}) referred to input(^{(2)})</td>
<td>(2.8, \text{V} < V_{\text{icm}} < 30, \text{V}) (T_{\text{min}} < T_{\text{amb}} < T_{\text{max}})</td>
<td>90</td>
<td>105</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>SVR</td>
<td>Supply voltage rejection Variation of (V_{\text{out}}) versus (V_{\text{CC}})(^{(3)})</td>
<td>(4.0, \text{V} < V_{\text{CC}} < 24, \text{V}) (V_{\text{sense}} = 30, \text{mV}) (T_{\text{min}} < T_{\text{amb}} < T_{\text{max}})</td>
<td>90</td>
<td>105</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>(V_{\text{os}})</td>
<td>Input offset voltage(^{(4)})</td>
<td>(T_{\text{amb}} = 25^\circ\text{C}) (T_{\text{min}} < T_{\text{amb}} < T_{\text{max}})</td>
<td>±0.2</td>
<td>±0.9</td>
<td>±1.5</td>
<td>±2.3</td>
</tr>
<tr>
<td>(dV_{\text{os}}/dT)</td>
<td>Input offset drift vs. (T)</td>
<td>(T_{\text{min}} < T_{\text{amb}} < T_{\text{max}})</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{lk}})</td>
<td>Input leakage current</td>
<td>(V_{\text{CC}} = 0, \text{V}) (T_{\text{min}} < T_{\text{amb}} < T_{\text{max}})</td>
<td>5.5</td>
<td>8</td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
</tbody>
</table>

1. Unless otherwise specified, the test conditions are \(T_{\text{amb}} = 25^\circ\text{C}\), \(V_{\text{CC}} = 12\, \text{V}\), \(V_{\text{sense}} = V_{\text{P}} - V_{\text{m}} = 50\, \text{mV}\), \(V_{\text{m}} = 12\, \text{V}\), no load on Out.

2. See Section 4.1: Common mode rejection ratio (CMR) on page 12 for the definition of CMR.

3. See Section 4.2: Supply voltage rejection ratio (SVR) on page 12 for the definition of SVR.

4. See Section 4.3: Gain (Av) and input offset voltage (\(V_{\text{os}}\)) on page 12 for the definition of \(V_{\text{os}}\).
Table 7. Output(1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_v</td>
<td>Gain</td>
<td>CS30A</td>
<td>20</td>
<td>50</td>
<td>100</td>
<td>V/V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS30B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS30C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV_{out}/A_T</td>
<td>Gain accuracy</td>
<td>$T_{amb} = 25^\circ C$</td>
<td>±2.5</td>
<td>±4.5</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>$T_{min} < T_{amb} < T_{max}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV_{out}/A_{out}</td>
<td>Output voltage drift vs. $T^{(2)}$</td>
<td>$T_{min} < T_{amb} < T_{max}$</td>
<td>0.4</td>
<td></td>
<td></td>
<td>mV/^\circ C</td>
</tr>
<tr>
<td></td>
<td>I_{out} sink or source current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV_{out}</td>
<td>Total output voltage accuracy$^{(3)}$</td>
<td>$V_{sense} = 50 \text{mV}$ $T_{amb} = 25^\circ C$</td>
<td>±2.5</td>
<td>±4.5</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>$T_{min} < T_{amb} < T_{max}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV_{out}</td>
<td>Total output voltage accuracy</td>
<td>$V_{sense} = 100 \text{mV}$ $T_{amb} = 25^\circ C$</td>
<td>±3.5</td>
<td>±5</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>$T_{min} < T_{amb} < T_{max}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV_{out}</td>
<td>Total output voltage accuracy</td>
<td>$V_{sense} = 20 \text{mV}$ $T_{amb} = 25^\circ C$</td>
<td>±8</td>
<td>±11</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>$T_{min} < T_{amb} < T_{max}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AV_{out}</td>
<td>Total output voltage accuracy</td>
<td>$V_{sense} = 10 \text{mV}$ $T_{amb} = 25^\circ C$</td>
<td>±15</td>
<td>±20</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>$T_{min} < T_{amb} < T_{max}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{sc-sink}$</td>
<td>Short-circuit sink current</td>
<td>Out connected to V_{CC}, $V_{sense} = -1 \text{V}$</td>
<td>30</td>
<td>60</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$I_{sc-source}$</td>
<td>Short-circuit source current</td>
<td>Out connected to Gnd, $V_{sense} = 1 \text{V}$</td>
<td>15</td>
<td>26</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>V_{oh}</td>
<td>Output stage high-state saturation voltage</td>
<td>$V_{sense} = 1 \text{V}$ $I_{out} = 1 \text{mA}$</td>
<td>0.8</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{ol}</td>
<td>Output stage low-state saturation voltage</td>
<td>$V_{sense} = -1 \text{V}$ $I_{out} = 1 \text{mA}$</td>
<td>50</td>
<td>100</td>
<td></td>
<td>mV</td>
</tr>
</tbody>
</table>

1. Unless otherwise specified, the test conditions are $T_{amb} = 25^\circ C$, $V_{CC} = 12\text{V}$, $V_{sense} = V_{p}-V_{m} = 50 \text{mV}$, $V_{m} = 12\text{V}$, no load on Out.

2. See Output voltage drift versus temperature on page 13 for the definition.

3. Output voltage accuracy is the difference with the expected theoretical output voltage $V_{out-th} = A_v \cdot V_{sense}$, See Output voltage accuracy on page 14 for a more detailed definition.
Table 8. Frequency response(1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ts</td>
<td>Output settling to 1% final value</td>
<td>$V_{\text{sense}} = 10 \text{ mV to 100 mV}$ $C_{\text{load}} = 47 \text{ pF}(2)$</td>
<td>CS30A</td>
<td>3</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CS30B</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CS30C</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate</td>
<td>$V_{\text{sense}} = 10 \text{ mV to 100 mV}$</td>
<td>0.55</td>
<td>0.9</td>
<td></td>
<td>V/µs</td>
</tr>
<tr>
<td>BW</td>
<td>3dB bandwidth</td>
<td>$C_{\text{load}} = 47 \text{ pF}(2)$ $V_{\text{sense}} = 100 \text{ mV}$</td>
<td>CS30A</td>
<td>500</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CS30B</td>
<td>670</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CS30C</td>
<td>450</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Unless otherwise specified, the test conditions are $T_{\text{amb}} = 25^\circ\text{C}$, $V_{\text{CC}} = 12 \text{ V}$, $V_{\text{sense}} = V_{p} - V_{m} = 50 \text{ mV}$, $V_{m} = 12 \text{ V}$, no load on Out.

2. For stability purposes, we do not recommend using a greater value of load capacitor.

Table 9. Noise(1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total output voltage noise</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>nV/$\sqrt{\text{Hz}}$</td>
</tr>
</tbody>
</table>

1. Unless otherwise specified, the test conditions are $T_{\text{amb}} = 25^\circ\text{C}$, $V_{\text{CC}} = 12 \text{ V}$, $V_{\text{sense}} = V_{p} - V_{m} = 50 \text{ mV}$, $V_{m} = 12 \text{ V}$, no load on Out.
3.1 Electrical characteristics curves

For the following curves, the tested device is a CS30C, and the test conditions are
\(T_{\text{amb}} = 25^\circ\text{C}, \ V_{\text{CC}} = 12\ \text{V}, \ V_{\text{sense}} = V_p-V_m = 50\ \text{mV}, \ V_m = 12\ \text{V}, \) no load on Out unless otherwise specified.

Figure 2. Supply current vs. supply voltage
\((V_{\text{sense}} = 0\ \text{V})\)

Figure 3. Supply current vs. \(V_{\text{sense}} \)

Figure 4. \(V_p \) pin input bias current vs. \(V_{\text{sense}} \)

Figure 5. \(V_m \) pin input bias current vs. \(V_{\text{sense}} \)
CS30

Electrical characteristics

Figure 6. Minimum common mode operating voltage vs. temperature

![Figure 6. Minimum common mode operating voltage vs. temperature](image)

Figure 7. Output stage low-state saturation voltage versus output current ($V_{\text{sense}} = -1\,\text{V}$)

![Figure 7. Output stage low-state saturation voltage versus output current ($V_{\text{sense}} = -1\,\text{V}$)](image)

Figure 8. Output stage high-state saturation voltage versus output current ($V_{\text{sense}} = +1\,\text{V}$)

![Figure 8. Output stage high-state saturation voltage versus output current ($V_{\text{sense}} = +1\,\text{V}$)](image)

Figure 9. Output short-circuit source current versus temperature (Out pin connected to ground)

![Figure 9. Output short-circuit source current versus temperature (Out pin connected to ground)](image)

Figure 10. Output short-circuit sink current versus temperature (Out pin connected to V_{CC})

![Figure 10. Output short-circuit sink current versus temperature (Out pin connected to V_{CC})](image)

Figure 11. Output stage load regulation

![Figure 11. Output stage load regulation](image)
Electric characteristics CS30

Figure 12. Input offset drift versus temperature

Figure 13. Output voltage drift versus temperature

Figure 14. Bode diagram ($V_{sense}=100\text{mV}$)

Figure 15. Power-supply rejection ratio versus frequency

Figure 16. Total output voltage accuracy versus V_{sense}

Figure 17. Output voltage versus V_{sense}
Figure 18. Output voltage versus V_{sense} (detail for low V_{sense} values)

Figure 19. Step response
4 Parameter definitions

4.1 Common mode rejection ratio (CMR)

The common-mode rejection ratio (CMR) measures the ability of the current-sensing amplifier to reject any DC voltage applied on both inputs V_p and V_m. The CMR is referred back to the input so that its effect can be compared with the applied differential signal. The CMR is defined by the formula:

$$CMR = -20 \cdot \log\left(\frac{\Delta V_{out}}{\Delta V_{icm} \cdot Av}\right)$$

4.2 Supply voltage rejection ratio (SVR)

The supply-voltage rejection ratio (SVR) measures the ability of the current-sensing amplifier to reject any variation of the supply voltage V_{CC}. The SVR is referred back to the input so that its effect can be compared with the applied differential signal. The SVR is defined by the formula:

$$SVR = -20 \cdot \log\left(\frac{\Delta V_{out}}{\Delta V_{CC} \cdot Av}\right)$$

4.3 Gain (Av) and input offset voltage (V_{os})

The input offset voltage is defined as the intersection between the linear regression of the V_{out} versus V_{sense} curve with the X-axis (see Figure 20). If V_{out1} is the output voltage with $V_{sense}=V_{sense1}=50mV$ and V_{out2} is the output voltage with $V_{sense}=V_{sense2}=5mV$, then V_{os} can be calculated with the following formula:

$$V_{os} = V_{sense1} - \left(\frac{V_{sense1} - V_{sense2}}{V_{out1} - V_{out2}} \cdot V_{out1}\right)$$

The amplification gain Av is defined as the ratio between output voltage and input differential voltage:

$$Av = \frac{V_{out}}{V_{sense}}$$
4.4 Output voltage drift versus temperature

The output voltage drift versus temperature is defined as the maximum variation of V_{out} with respect to its value at 25°C, over the temperature range. It is calculated as follows:

$$\frac{\Delta V_{out}}{\Delta T} = \max\left(\frac{V_{out}(T_{amb}) - V_{out}(25^\circ C)}{T_{amb} - 25^\circ C}\right)$$

with $T_{min} < T_{amb} < T_{max}$.

Figure 21 provides a graphical definition of output voltage drift versus temperature. On this chart, V_{out} is always comprised in the area defined by dotted lines representing the maximum and minimum variation of V_{out} versus T.

Figure 21. Output voltage drift versus temperature
4.5 Output voltage accuracy

The output voltage accuracy is the difference between the actual output voltage and the theoretical output voltage. Ideally, the current sensing output voltage should be equal to the input differential voltage multiplied by the theoretical gain, as in the following formula:

\[V_{\text{out-th}} = A_v \times V_{\text{sense}} \]

The actual value is very slightly different, mainly due to the effects of:
- the input offset voltage \(V_{\text{OS}} \),
- non-linearity

![Figure 22. V\text{out} vs. V\text{sense} theoretical and actual characteristics](image)

The output voltage accuracy, expressed in percentage, can be calculated with the following formula:

\[\Delta V_{\text{out}} = \frac{\text{abs}(V_{\text{out}} - (A_v \cdot V_{\text{sense}}))}{A_v \cdot V_{\text{sense}}} \]

with \(A_v = 20 \, \text{V/V} \) for CS30A, \(A_v = 50 \, \text{V/V} \) for CS30B and \(A_v = 100 \, \text{V/V} \) for CS30C.
5 Application information

The CS30 can be used to measure current and to feed back the information to a microcontroller, as shown in Figure 23.

Figure 23. Typical application schematic

The current from the supply flows to the load through the R_{sense} resistor causing a voltage drop equal to V_{sense} across R_{sense}. The amplifier input currents are negligible, therefore its inverting input voltage is equal to V_m. The amplifier's open-loop gain forces its non-inverting input to the same voltage as the inverting input. As a consequence, the amplifier adjusts current flowing through R_g1 so that the voltage drop across R_g1 exactly matches V_{sense}.

Therefore, the drop across R_g1 is: $V_{R_g1}=V_{\text{sense}}=R_{\text{sense}}I_{\text{load}}$

If I_{R_g1} is the current flowing through R_g1, then I_{R_g1} is given by the formula: $I_{R_g1}=V_{\text{sense}}/R_{g1}$

The I_{R_g1} current flows entirely into resistor R_g3 (the input bias current of the buffer is negligible). Therefore, the voltage drop on the R_g3 resistor can be calculated as follows:

$V_{R_g3}=R_g3I_{R_g1}=(R_{g3}/R_{g1})V_{\text{sense}}$

Because the voltage across the R_g3 resistor is buffered to the Out pin, V_{out} can be expressed as:

$V_{\text{out}}=(R_{g3}/R_{g1})V_{\text{sense}}$ or $V_{\text{out}}=(R_{g3}/R_{g1})R_{\text{sense}}I_{\text{load}}$

The resistor ratio R_{g3}/R_{g1} is internally set to 20V/V for CS30A, to 50V/V for CS30B and to 100V/V for CS30C.

The R_{sense} resistor and the R_{g3}/R_{g1} resistor ratio (equal to A_v) are important parameters because they define the full scale output range of your application. Therefore, they must be selected carefully.
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Table 10. SOT23-5L package mechanical data

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Dimensions</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A1</td>
<td>0.90</td>
<td>1.20</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>0.90</td>
<td>1.05</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>0.35</td>
<td>0.40</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>0.09</td>
<td>0.15</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>2.80</td>
<td>2.90</td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td>1.90</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>2.60</td>
<td>2.80</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>0.10</td>
<td>0.35</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td>0 degrees</td>
<td>10 degrees</td>
</tr>
</tbody>
</table>
7 Revision history

Table 11. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-Mar-2014</td>
<td>1</td>
<td>Initial release</td>
</tr>
</tbody>
</table>