ESDV5-1BF4

Low clamping, very low capacitance bidirectional single line ESD protection

Features
- Low clamping voltage
- Bidirectional device
- Low leakage current
- 0201 package
- Ultralow PCB area: 0.18 mm²
- ECOPACK®2 compliant component
- Exceeds the IEC 61000-4-2 level 4 standard:
 - ±30 kV (air discharge)
 - ±12 kV (contact discharge)

Applications
Where transient overvoltage protection in ESD sensitive equipment is required, such as:
- Smartphones, mobile phones and accessories
- Tablets and notebooks
- Portable multimedia devices and accessories
- Wearable, home automation, healthcare
- Highly integrated systems

Description
The ESDV5-1BF4 is a bidirectional single line TVS diode designed to protect the data line or other I/O ports against ESD transients.

The device is ideal for applications where both reduced line capacitance and board space saving are required.

Figure 1: Functional diagram
1 Characteristics

Table 1: Absolute ratings (T_{amb} = 25 °C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{PP}</td>
<td>Peak pulse voltage</td>
<td>IEC 61000-4-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact discharge</td>
<td>12</td>
<td>kV</td>
</tr>
<tr>
<td></td>
<td>Air discharge</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>P_{PP}</td>
<td>Peak pulse power dissipation (8/20 μs)</td>
<td>20</td>
<td>W</td>
</tr>
<tr>
<td>I_{PP}</td>
<td>Peak pulse current (8/20 μs)</td>
<td>1.7</td>
<td>A</td>
</tr>
<tr>
<td>T_{j}</td>
<td>Operating junction temperature range</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{L}</td>
<td>Maximum lead temperature for soldering during 10 s</td>
<td>260</td>
<td>°C</td>
</tr>
</tbody>
</table>

Figure 2: Electrical characteristics (definitions)

Table 2: Electrical characteristics (T_{amb} = 25 °C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Test condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BR}</td>
<td>I_{R} = 1 mA</td>
<td>5.8</td>
<td>8.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{RM}</td>
<td>V_{RM} = 5.5 V</td>
<td>1</td>
<td>100</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>V_{CL}</td>
<td>8 kV contact discharge after 30 ns, IEC 61000-4-2</td>
<td>16.3</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>C_{LINE}</td>
<td>F = 1 MHz, V_{LINE} = 0 V, V_{OSC} = 30 mV</td>
<td>5</td>
<td>7</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>R_{D}</td>
<td>Pulse duration 100 ns</td>
<td>0.67</td>
<td></td>
<td>Ω</td>
<td></td>
</tr>
</tbody>
</table>
1.1 Characteristics (curves)

Figure 3: Leakage current versus junction temperature (typical values)

- Leakage current I_R versus junction temperature T ($V_{IR} = V_{IM} = 5 \text{ V}$)
- Forward and Reverse

Figure 4: Junction capacitance versus reverse voltage applied (typical values)

- Capacitance C versus reverse voltage V_R ($V_{VR} = 5 \text{ V}$)

Figure 5: ESD response to IEC 61000-4-2 (+8 kV contact discharge)

- Peak clamping voltage
- Clamping voltage at 30 ns
- Clamping voltage at 60 ns
- Clamping voltage at 100 ns

Figure 6: ESD response to IEC 61000-4-2 (-8 kV contact discharge)

- Peak clamping voltage
- Clamping voltage at 30 ns
- Clamping voltage at 60 ns
- Clamping voltage at 100 ns

Figure 7: TLP characteristic

- Input current I_{IP} versus input voltage V_{CL}

Figure 8: S21 attenuation measurement result

- S21 attenuation S_21 versus frequency F

STI

DocID029509 Rev 1 3/10
2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

2.1 0201 package information

Figure 9: ST0201 package outline
Table 3: ST0201 package mechanical data

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Dimensions</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Typ.</td>
</tr>
<tr>
<td>A</td>
<td>0.270</td>
<td>0.300</td>
</tr>
<tr>
<td>b</td>
<td>0.1675</td>
<td>0.1875</td>
</tr>
<tr>
<td>D</td>
<td>0.56</td>
<td>0.58</td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td>0.3375</td>
</tr>
<tr>
<td>E</td>
<td>0.260</td>
<td>0.280</td>
</tr>
<tr>
<td>E1</td>
<td>0.205</td>
<td>0.225</td>
</tr>
<tr>
<td>fD</td>
<td>0.0175</td>
<td>0.0275</td>
</tr>
<tr>
<td>fE</td>
<td>0.0175</td>
<td>0.0275</td>
</tr>
</tbody>
</table>

2.2 ESDV5-1BF4 marking and tape and reel

Product marking may be rotated by multiples of 90° for assembly plant differentiation. In no case should this product marking be used to orient the component for its placement on a PCB. Only pin 1 mark is to be used for this purpose.
Figure 11: Tape and reel specification (in mm)

Bar indicates Pin 1

All dimensions in mm

User direction of unreeling

- 0.22
- 0.36 ± 0.03
- 8.0 ± 0.08 ± 0.01
- 6.6 ± 0.03
- 0.38 ± 0.20
- 0.36 ± 0.03
- 2.0 ± 0.05
- 4.0 ± 0.1
- Ø 1.5 ± 0.1
- 1.2 ± 0.03
- 0.38 ± 0.03
- 0.36 ± 0.03
- 0.38 ± 0.03
- 0.22
- 0.68 ± 0.03 0.38 ± 0.03
- 0.22
- 0.68 ± 0.03
- 0.22
- 0.68 ± 0.03
- 0.22
- 0.68 ± 0.03
- 0.22
- 0.68 ± 0.03
3 Recommendation on PCB assembly

3.1 Footprint
1. Footprint in mm
 a. SMD footprint design is recommended.

 Figure 12: Footprint in mm

 ![Footprint Diagram]

3.2 Stencil opening design
1. Reference design
 a. Stencil opening thickness: 75 μm / 3 mils

 Figure 13: Recommended stencil window position in mm (inches)

 ![Stencil Design Diagram]

3.3 Solder paste
1. Halide-free flux qualification ROL0 according to ANSI/J-STD-004.
2. “No clean” solder paste is recommended.
3. Offers a high tack force to resist component movement during high speed.
4. Solder paste with fine particles: powder particle size is 20-38 μm.
3.4 Placement

1. Manual positioning is not recommended.
2. It is recommended to use the lead recognition capabilities of the placement system, not the outline centering.
3. Standard tolerance of ±0.05 mm is recommended.
4. 3.5 N placement force is recommended. Too much placement force can lead to squeezed out solder paste and cause solder joints to short. Too low placement force can lead to insufficient contact between package and solder paste that could cause open solder joints or badly centered packages.
5. To improve the package placement accuracy, a bottom side optical control should be performed with a high resolution tool.
6. For assembly, a perfect supporting of the PCB (all the more on flexible PCB) is recommended during solder paste printing, pick and place and reflow soldering by using optimized tools.

3.5 PCB design preference

1. To control the solder paste amount, the closed via is recommended instead of open vias.
2. The position of tracks and open vias in the solder area should be well balanced. A symmetrical layout is recommended, to avoid any tilt phenomena caused by asymmetrical solder paste due to solder flow away.

3.6 Reflow profile

Figure 14: ST ECOPACK® recommended soldering reflow profile for PCB mounting

Minimize air convection currents in the reflow oven to avoid component movement. Maximum soldering profile corresponds to the latest IPC/JEDEC J-STD-020.
4 Ordering information

Figure 15: Ordering information scheme

<table>
<thead>
<tr>
<th>ESD V 5 -1 B F4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD protection</td>
</tr>
<tr>
<td>Very low capacitance</td>
</tr>
<tr>
<td>Stand-off voltage at 5.5 V max.</td>
</tr>
<tr>
<td>Number of lines</td>
</tr>
<tr>
<td>Directional</td>
</tr>
<tr>
<td>B = Bi-directional</td>
</tr>
<tr>
<td>Package</td>
</tr>
<tr>
<td>F4 = ST0201</td>
</tr>
</tbody>
</table>

Table 4: Ordering information

<table>
<thead>
<tr>
<th>Order code</th>
<th>Marking</th>
<th>Package</th>
<th>Weight</th>
<th>Base qty.</th>
<th>Delivery mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESDV5-1BF4</td>
<td>M(1)</td>
<td>ST0201</td>
<td>0.116 mg</td>
<td>15000</td>
<td>Tape and reel</td>
</tr>
</tbody>
</table>

Notes:
(1) The marking can be rotated by multiples of 90° to differentiate assembly location

5 Revision history

Table 5: Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-Nov-2016</td>
<td>1</td>
<td>First issue.</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved