Features

- 3D accelerometer with selectable full scale: ±2/±4/±8/±16 g
- 3D gyroscope with selectable full scale: ±125/±250/±500/±1000/±2000 dps
- Analog supply voltage: 1.71 V to 3.6 V
- SPI & I²C serial interface with main processor data synchronization
- Dedicated gyroscope output chain with low latency, low noise and dedicated low-pass filters for control loop stability (OIS and other stabilization applications)
- Auxiliary SPI serial interface for independent, low-noise low-latency data output for gyroscope and accelerometer
- Ultra-low power consumption for both accelerometer and gyroscope enabling long-lasting battery-operated applications: 0.5 mA in combo normal mode and 0.75 mA in combo high-performance mode
- Smart FIFO up to 4 kbyte
- Smart embedded functions and interrupts: tilt detection, free-fall, wakeup, 6D/4D orientation, click and double-click
- Sensor hub feature to efficiently collect data from additional external sensors
- Embedded hard, soft ironing for external magnetic sensor corrections
- Embedded temperature sensor
- Embedded self-test both for gyroscope and accelerometer
- High shock survivability
- Extended operating temperature range (-40 °C to +85 °C)
- **ECOPACK®**, RoHS and “Green” compliant

Applications

- Industrial IoT and connected devices
- Antennas, platforms, and optical image and lens stabilization
- Robotics, drones and industrial automation
- Navigation systems and telematics
- Vibration monitoring and compensation

Description

The ISM330DLC is a system-in-package featuring a high-performance 3D digital accelerometer and 3D digital gyroscope tailored for Industry 4.0 applications.

ST’s family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.

The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

In the ISM330DLC the sensing element of the accelerometer and of the gyro are implemented on the same silicon die, thus guaranteeing superior stability and robustness.
The ISM330DLC has a full-scale acceleration range of ±2/±4/±8/±16 g and an angular rate range of ±125/±250/±500/±1000/±2000 dps.

Delivering high accuracy and stability with ultra-low power consumption (0.75 mA in high-performance, combo mode) enables, also in the industrial domain, long-lasting battery-operated applications.

The ISM330DLC includes a dedicated configurable signal processing path with low latency, low noise and dedicated filtering specifically intended for control loop stability. Data from this dedicated signal path can be made available through an auxiliary SPI interface, configurable for both the gyroscope and accelerometer. High-performance, high-quality, small size and low power consumption together with high robustness to mechanical shock makes the ISM330DLC the preferred choice of system designers for the creation and manufacturing of versatile and reliable products.

The ISM330DLC is available in a plastic, land grid array (LGA) package.
Overview

The ISM330DLC is a system-in-package featuring a high-performance 3D digital accelerometer and 3D digital gyroscope tailored for Industry 4.0 applications.

The ISM330DLC has a full-scale acceleration range of ±2/±4/±8/±16 g, an angular rate range of ±125/±250/±500/±1000/±2000 dps and is capable of delivering highly accurate and reliable measurements at an ultra-low power consumption (0.75 mA in high-performance, combo mode).

The ISM330DLC embeds smart features which simplify and optimize the application design and allows the usage of complex motion-sensing information also in power-constrained applications.

The event-detection interrupts enable efficient and reliable motion tracking and contextual awareness, implementing hardware recognition of free-fall events, 6D orientation, click and double-click sensing, activity or inactivity, and wakeup events.

Up to 4 kbyte of FIFO with dynamic allocation of significant data (i.e. external sensors, timestamp, etc.) allows overall power saving of the system and protects against any loss of data.

With the sensor hub feature, data from up to 4 external sensors can be collected and stored in the internal FIFO without intervention of the application microcontroller.

Moreover, the ISM330DLC offers specific support, both for the gyroscope and the accelerometer, to applications requiring closed control loop. The device, through a dedicated auxiliary SPI interface and a configurable signal processing path having low latency and low noise, can provide data for the control loop while, at the same time, a second fully independent path can output data for other application intents.

Like the entire portfolio of MEMS sensor modules, the ISM330DLC leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

In the ISM330DLC, the sensing element of the accelerometer and of the gyroscope are implemented on the same silicon die, thus guaranteeing superior stability and robustness.

The ISM330DLC is available in a small plastic land grid array (LGA) package of 2.5 x 3.0 x 0.83 mm.
2 Embedded smart features

The ISM330DLC features the following on-chip smart functions:

- 4 kbyte data buffering
 - 100% efficiency with flexible configurations and partitioning
 - Possibility to store timestamp
- Event-detection interrupts (fully configurable)
 - Free-fall
 - Wakeup
 - 6D orientation
 - Click and double-click sensing
 - Activity / inactivity recognition
 - Tilt (refer to Section 2.1 Tilt detection for additional information)
- Sensor hub
 - Up to 6 total sensors: 2 internal (accelerometer and gyroscope) and 4 external sensors
- Data rate synchronization with external trigger

2.1 Tilt detection

The tilt function helps to detect activity change and has been implemented in hardware using only the accelerometer to achieve both the targets of ultra-low power consumption and robustness during the short duration of dynamic accelerations.

The tilt function is based on a trigger of an event each time the device’s tilt changes. It is configurable through:

- a programmable average window
- a programmable average threshold
3 Pin description

Figure 1. Pin connections

Direction of detectable acceleration (top view)

Direction of detectable angular rate (top view)
3.1 Pin connections

The ISM330DLC offers flexibility to connect the pins in order to have four different mode connections and functionalities. In detail:

- **Mode 1**: I²C slave interface or SPI (3- and 4-wire) serial interface is available;
- **Mode 2**: I²C slave interface or SPI (3- and 4-wire) serial interface and I²C interface master for external sensor connections are available;
- **Mode 3**: I²C slave interface or SPI (3- and 4-wire) serial interface is available for the application processor interface while an auxiliary SPI (3- and 4-wire) serial interface is available for an auxiliary host to access the gyroscope ONLY;
- **Mode 4**: I²C slave interface or SPI (3- and 4-wire) serial interface is available for the application processor interface while an auxiliary SPI (3- and 4-wire) serial interface is available for an auxiliary host to access the accelerometer and gyroscope.

In the following table each mode is described for the pin connections and function.

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Mode 1 function</th>
<th>Mode 2 function</th>
<th>Mode 3 / Mode 4 function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDO/SA0</td>
<td>SPI 4-wire interface serial data output (SDO)</td>
<td>SPI 4-wire interface serial data output (SDO)</td>
<td>SPI 4-wire interface serial data output (SDO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I²C least significant bit of the device address (SA0)</td>
<td>I²C least significant bit of the device address (SA0)</td>
<td>I²C least significant bit of the device address (SA0)</td>
</tr>
<tr>
<td>2</td>
<td>SDx</td>
<td>Connect to VDDIO or GND</td>
<td>I²C serial data master (MSDA)</td>
<td>Auxiliary SPI 3/4-wire interface serial data input (SDI) and SPI 3-wire serial data output (SDO)</td>
</tr>
<tr>
<td>3</td>
<td>SCx</td>
<td>Connect to VDDIO or GND</td>
<td>I²C serial clock master (MSCL)</td>
<td>Auxiliary SPI 3/4-wire interface serial port clock (SPC_Aux)</td>
</tr>
<tr>
<td>4</td>
<td>INT1</td>
<td>Programmable interrupt 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>VDDIO</td>
<td></td>
<td></td>
<td>Power supply for I/O pins</td>
</tr>
</tbody>
</table>

Figure 2. ISM330DLC connection modes
<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Mode 1 function</th>
<th>Mode 2 function</th>
<th>Mode 3 / Mode 4 function</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>GND</td>
<td></td>
<td>0 V supply</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td></td>
<td>0 V supply</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>VDD((1))</td>
<td>Power supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>INT2</td>
<td>Programmable interrupt 2 (INT2) / Data enable (DEN)</td>
<td>Programmable interrupt 2 (INT2) / Data enable (DEN) / I²C master external synchronization signal (MDRDY)</td>
<td>Programmable interrupt 2 (INT2) / Data enable (DEN)</td>
</tr>
<tr>
<td>10</td>
<td>OCS_Aux</td>
<td>Leave unconnected((2))</td>
<td>Leave unconnected((2))</td>
<td>Auxiliary SPI 3/4-wire interface enable</td>
</tr>
<tr>
<td>11</td>
<td>SDO_Aux</td>
<td>Connect to VDD_IO or leave unconnected((2))</td>
<td>Connect to VDD_IO or leave unconnected((2))</td>
<td>Auxiliary SPI 3-wire interface: leave unconnected((2))</td>
</tr>
<tr>
<td>12</td>
<td>CS</td>
<td>I²C/SPI mode selection (1: SPI idle mode / I²C communication enabled; 0: SPI communication mode / I²C disabled)</td>
<td>I²C/SPI mode selection (1: SPI idle mode / I²C communication enabled; 0: SPI communication mode / I²C disabled)</td>
<td>I²C/SPI mode selection (1: SPI idle mode / I²C communication enabled; 0: SPI communication mode / I²C disabled)</td>
</tr>
<tr>
<td>13</td>
<td>SCL</td>
<td>I²C serial clock (SCL) SPI serial port clock (SPC)</td>
<td>I²C serial clock (SCL) SPI serial port clock (SPC)</td>
<td>I²C serial clock (SCL) SPI serial port clock (SPC)</td>
</tr>
<tr>
<td>14</td>
<td>SDA</td>
<td>I²C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)</td>
<td>I²C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)</td>
<td>I²C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)</td>
</tr>
</tbody>
</table>

1. Recommended 100 nF filter capacitor.
2. Leave pin electrically unconnected and soldered to PCB.
4 Module specifications

4.1 Mechanical characteristics

@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 2. Mechanical characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min. (1)</th>
<th>Typ. (2)</th>
<th>Max. (1)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA_FS</td>
<td>Linear acceleration measurement range</td>
<td></td>
<td>±2</td>
<td>±4</td>
<td>±8</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>±16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_FS</td>
<td>Angular rate measurement range</td>
<td></td>
<td>±125</td>
<td>±250</td>
<td>±500</td>
<td>dps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>±1000</td>
<td></td>
<td></td>
<td>±2000</td>
<td></td>
</tr>
<tr>
<td>LA_So</td>
<td>Linear acceleration sensitivity (3)</td>
<td>FS = ±2</td>
<td>-3%</td>
<td>0.061</td>
<td>+3%</td>
<td>mg/LSB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±4</td>
<td>0.122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±8</td>
<td>0.244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±16</td>
<td>0.488</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_So</td>
<td>Angular rate sensitivity (3)</td>
<td>FS = ±125</td>
<td>-3%</td>
<td>4.375</td>
<td>+3%</td>
<td>mdps/LSB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±250</td>
<td>8.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±500</td>
<td>17.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±1000</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±2000</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA_SoDr</td>
<td>Linear acceleration sensitivity change vs. temperature (4)</td>
<td>from -40° to +85° delta from T = +25°</td>
<td>-0.024</td>
<td>±0.01</td>
<td>+0.024</td>
<td>%/°C</td>
</tr>
<tr>
<td>G_SoDr</td>
<td>Angular rate sensitivity change vs. temperature (4)</td>
<td>from -40° to +85° delta from T = +25°</td>
<td>-0.048</td>
<td>±0.007</td>
<td>+0.048</td>
<td>%/°C</td>
</tr>
<tr>
<td>LA_TyOff</td>
<td>Linear acceleration zero-g level offset accuracy (5)</td>
<td></td>
<td>-85</td>
<td>±40</td>
<td>+85</td>
<td>mg</td>
</tr>
<tr>
<td>G_TyOff</td>
<td>Angular rate zero-rate level (5)</td>
<td></td>
<td>±2</td>
<td></td>
<td></td>
<td>dps</td>
</tr>
<tr>
<td>LA_OffDr</td>
<td>Linear acceleration zero-g level change vs. temperature (4)</td>
<td></td>
<td>±0.1</td>
<td></td>
<td></td>
<td>mg/°C</td>
</tr>
<tr>
<td>G_OffDr</td>
<td>Angular rate typical zero-rate level change vs. temperature (4)</td>
<td></td>
<td>±0.015</td>
<td></td>
<td></td>
<td>dps/°C</td>
</tr>
<tr>
<td>LA_NL</td>
<td>Linear acceleration nonlinearity (4)</td>
<td>@FS = ±8 g</td>
<td>Best-fit straight line</td>
<td>±2</td>
<td></td>
<td>%FS</td>
</tr>
<tr>
<td>G_NL</td>
<td>Angular rate nonlinearity (4)</td>
<td>@FS = ±2000 dps</td>
<td>Best-fit straight line</td>
<td>±0.07</td>
<td></td>
<td>%FS</td>
</tr>
<tr>
<td>Rn</td>
<td>Rate noise density in high-performance mode (6)</td>
<td></td>
<td>3.8</td>
<td>11</td>
<td></td>
<td>mdps/√Hz</td>
</tr>
<tr>
<td>RnRMS</td>
<td>Gyroscope RMS noise in normal/low-power mode (7)</td>
<td></td>
<td>75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Parameter</td>
<td>Test conditions</td>
<td>Min. (1)</td>
<td>Typ. (2)</td>
<td>Max. (1)</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>An</td>
<td>Acceleration noise density in high-performance mode(^{[8]})</td>
<td>FS = ±2 g</td>
<td>75</td>
<td></td>
<td>170</td>
<td>µg/√Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±4 g</td>
<td>80</td>
<td></td>
<td>170</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±8 g</td>
<td>90</td>
<td></td>
<td>180</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±16 g</td>
<td>130</td>
<td></td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>Acceleration RMS noise in normal/low-power mode(^{[9][10]})</td>
<td>FS = ±2 g</td>
<td>1.8</td>
<td></td>
<td></td>
<td>mg(RMS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±4 g</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±8 g</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FS = ±16 g</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA_ODR</td>
<td>Linear acceleration output data rate</td>
<td></td>
<td>1.6</td>
<td>12.5</td>
<td>26</td>
<td>Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td></td>
<td>104</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>208</td>
<td></td>
<td>416</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>833</td>
<td></td>
<td>1666</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3332</td>
<td></td>
<td>6664</td>
<td></td>
</tr>
<tr>
<td>G_ODR</td>
<td>Angular rate output data rate</td>
<td></td>
<td>12.5</td>
<td>26</td>
<td>52</td>
<td>Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>104</td>
<td></td>
<td>208</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>416</td>
<td></td>
<td>833</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1666</td>
<td></td>
<td>3332</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6664</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA_F0</td>
<td>Sensor resonant frequency</td>
<td>X,Y-axis</td>
<td>3.0</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z-axis</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_F0</td>
<td>Sensor resonant frequency</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Vst</td>
<td>Linear acceleration self-test output change(^{[12][13][14]})</td>
<td>FS = ±250 dps</td>
<td>90</td>
<td>1700</td>
<td></td>
<td>mg</td>
</tr>
<tr>
<td></td>
<td>Angular rate self-test output change(^{[15][16]})</td>
<td>FS = ±2000 dps</td>
<td>150</td>
<td>700</td>
<td></td>
<td>dps</td>
</tr>
</tbody>
</table>

1. Min/Max values are based on characterization results, not tested in production and not guaranteed.
2. Typical specifications are not guaranteed.
3. Sensitivity values after factory calibration test and trimming.
4. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured during final test for production.
5. Values after factory calibration test and trimming.
6. Gyroscope rate noise density in high-performance mode is independent of the ODR and FS setting.
7. Gyroscope RMS noise in normal/low-power mode is independent of the ODR and FS setting.
8. Accelerometer noise density in high-performance mode is independent of the ODR.
9. Accelerometer RMS noise in normal/low-power mode is independent of the ODR.
10. Noise RMS related to BW = ODR/2 (for ODR/9, typ value can be calculated by Typ *0.6).
11. This ODR is available when accelerometer is in low-power mode.
12. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in CTRL5_C (14h), Table 63 for all axes.
13. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: \(\text{OUTPUT}[\text{LSb}] \) (self-test enabled) - \(\text{OUTPUT}[\text{LSb}] \) (self-test disabled). \(1\text{LSb} = 0.061 \text{ mg at } \pm 2 \text{ g full scale.} \)
14. Accelerometer self-test limits are full-scale independent.
15. The sign of the angular rate self-test output change is defined by the STx_G bits in CTRL5_C (14h), Table 62 for all axes.
16. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: \(\text{OUTPUT}[\text{LSb}] \) (self-test enabled) - \(\text{OUTPUT}[\text{LSb}] \) (self-test disabled). \(1\text{LSb} = 70 \text{ mdps at } \pm 2000 \text{ dps full scale.} \)
4.2 Electrical characteristics
@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 3. Electrical characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ. (1)</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdd</td>
<td>Supply voltage</td>
<td></td>
<td>1.71</td>
<td>1.8</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Vdd_IO</td>
<td>Power supply for I/O</td>
<td>ODR = 1.6 kHz</td>
<td>0.75</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>IddHP</td>
<td>Gyroscope and accelerometer current consumption in high-performance mode</td>
<td>ODR = 1.6 kHz</td>
<td>0.5</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>IddLP</td>
<td>Gyroscope and accelerometer current consumption in low-power mode</td>
<td>ODR = 52 Hz</td>
<td>0.35</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>LA_IddHP</td>
<td>Accelerometer current consumption in high-performance mode</td>
<td>ODR < 1.6 kHz</td>
<td>180</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>LA_IddNM</td>
<td>Accelerometer current consumption in normal mode</td>
<td>ODR = 208 Hz</td>
<td>85</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>LA_IddLM</td>
<td>Accelerometer current consumption in low-power mode</td>
<td>ODR = 52 Hz</td>
<td>25</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.5</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>IddPD</td>
<td>Gyroscope and accelerometer current consumption during power-down</td>
<td>ODR = 52 Hz</td>
<td>10</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Ton</td>
<td>Turn-on time</td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>VSH</td>
<td>Digital high-level input voltage</td>
<td>ODR < 1.6 kHz</td>
<td>0.7 *VDD_IO</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VIL</td>
<td>Digital low-level input voltage</td>
<td>ODR ≥ 1.6 kHz</td>
<td>0.3 *VDD_IO</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOH</td>
<td>High-level output voltage</td>
<td>ODR = 1.6 kHz</td>
<td>I_OH = 4 mA(2)</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOL</td>
<td>Low-level output voltage</td>
<td>ODR = 1.6 kHz</td>
<td>I_OH = 4 mA(2)</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Top</td>
<td>Operating temperature range</td>
<td>ODR = 1.6 kHz</td>
<td>-40</td>
<td></td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>

1. Typical specifications are not guaranteed.
2. 4 mA is the maximum driving capability, i.e. the maximum DC current that can be sourced/sunk by the digital pad in order to guarantee the correct digital output voltage levels \(V_{OH}\) and \(V_{OL}\).

4.3 Temperature sensor characteristics
@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 4. Temperature sensor characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test condition</th>
<th>Min.</th>
<th>Typ. (1)</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TODR</td>
<td>Temperature refresh rate</td>
<td></td>
<td>52</td>
<td></td>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td>Toff</td>
<td>Temperature offset(2)</td>
<td></td>
<td>-15</td>
<td>+15</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>TSen</td>
<td>Temperature sensitivity</td>
<td></td>
<td>256</td>
<td></td>
<td></td>
<td>LSB/°C</td>
</tr>
<tr>
<td>TST</td>
<td>Temperature stabilization time(3)</td>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>T_ADC_res</td>
<td>Temperature ADC resolution</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td>bit</td>
</tr>
<tr>
<td>Top</td>
<td>Operating temperature range</td>
<td></td>
<td>-40</td>
<td></td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>

1. Typical specifications are not guaranteed.
2. When the accelerometer is in Low-Power mode and the gyroscope part is turned off, the TODR value is equal to the accelerometer ODR.
3. The output of the temperature sensor is 0 LSB (typ.) at 25 °C.
4. Time from power ON bit to valid data based on characterization data.
4.4 Communication interface characteristics

4.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 5. SPI slave timing values

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(_c)(SPC)</td>
<td>SPI clock cycle</td>
<td>100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>f(_c)(SPC)</td>
<td>SPI clock frequency</td>
<td></td>
<td>10</td>
<td>MHz</td>
</tr>
<tr>
<td>t(_{su})(CS)</td>
<td>CS setup time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_h)(CS)</td>
<td>CS hold time</td>
<td>20</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_{su})(SI)</td>
<td>SDI input setup time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_h)(SI)</td>
<td>SDI input hold time</td>
<td>15</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_v)(SO)</td>
<td>SDO valid output time</td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_h)(SO)</td>
<td>SDO output hold time</td>
<td>5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t(_{dis})(SO)</td>
<td>SDO output disable time</td>
<td>50</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production.

Figure 3. SPI slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO for both input and output ports.
4.4.2 I²C- inter-IC control interface
Subject to general operating conditions for Vdd and Top.

Figure 4. I²C timing diagram

4.4.2.1 I²C slave

Table 6. I²C slave timing values

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>I²C standard mode (1)</th>
<th>I²C fast mode (1)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(SCL))</td>
<td>SCL clock frequency</td>
<td>Min 0 Max 100</td>
<td>Min 0 Max 400</td>
<td>kHz</td>
</tr>
<tr>
<td>(t_w(SCLL))</td>
<td>SCL clock low time</td>
<td>4.7 1.3</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(t_w(SCLH))</td>
<td>SCL clock high time</td>
<td>4.0 0.6</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(t_{SU}(SDA))</td>
<td>SDA setup time</td>
<td>250 100</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>(t_h(SDA))</td>
<td>SDA data hold time</td>
<td>0 3.45</td>
<td>0 0.9</td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(t_h(ST))</td>
<td>START condition hold time</td>
<td>4 0.6</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(t_{SU}(SR))</td>
<td>Repeated START condition setup time</td>
<td>4.7 0.6</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(t_w(SP))</td>
<td>STOP condition setup time</td>
<td>4 0.6</td>
<td></td>
<td>(\mu s)</td>
</tr>
<tr>
<td>(t_w(SP:SR))</td>
<td>Bus free time between STOP and START condition</td>
<td>4.7 1.3</td>
<td></td>
<td>(\mu s)</td>
</tr>
</tbody>
</table>

1. Data based on standard I²C protocol requirement, not tested in production.

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO for both ports.
4.4.2.2 \textit{I^2C master}

When in \textit{I^2C} Master Mode, an external sensor can be connected to the ISM330DLC. The ISM330DLC supports \textit{I^2C} Master - Fast Mode only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>\textit{I^2C} Master</th>
<th>\textit{I^2C} Fast Mode (min)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{SCL}</td>
<td>SCL clock frequency</td>
<td>116.3</td>
<td>0 (400 kHz max)</td>
<td>kHz</td>
</tr>
<tr>
<td>$t_{\text{w(SCLL)}}$</td>
<td>SCL clock low time</td>
<td>5.86</td>
<td>1.3</td>
<td>µs</td>
</tr>
<tr>
<td>$t_{\text{w(SCLH)}}$</td>
<td>SCL clock high time</td>
<td>2.74</td>
<td>0.6</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Data valid time</td>
<td>3.9</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>SDA hold time</td>
<td>\geq 0</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>SDA setup time</td>
<td>\geq 100</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{\text{su(SR)}}$</td>
<td>Repeated START condition setup time</td>
<td>1.56</td>
<td>0.6</td>
<td>µs</td>
</tr>
<tr>
<td>$t_{\text{su(HD)}}$</td>
<td>Repeated START condition hold time</td>
<td>1.56</td>
<td>0.6</td>
<td>µs</td>
</tr>
<tr>
<td>$t_{\text{su(SP)}}$</td>
<td>STOP condition setup time</td>
<td>2.73</td>
<td>0.6</td>
<td>µs</td>
</tr>
<tr>
<td>$t_{\text{w(SP:SR)}}$</td>
<td>Bus free time between STOP and START condition</td>
<td>21</td>
<td>1.3</td>
<td>µs</td>
</tr>
</tbody>
</table>
4.5 Absolute maximum ratings

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Ratings</th>
<th>Maximum value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vdd</td>
<td>Supply voltage</td>
<td>-0.3 to 4.8</td>
<td>V</td>
</tr>
<tr>
<td>T_STG</td>
<td>Storage temperature range</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Sg</td>
<td>Acceleration g for 0.2 ms</td>
<td>10,000</td>
<td>g</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic discharge protection (HBM)</td>
<td>2</td>
<td>kV</td>
</tr>
<tr>
<td>Vin</td>
<td>Input voltage on any control pin</td>
<td>0.3 to Vdd_IO +0.3</td>
<td>V</td>
</tr>
</tbody>
</table>

(including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.
4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see mechanical characteristics).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see mechanical characteristics).

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-g offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-g level change vs. temperature" in the mechanical characteristics. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see mechanical characteristics).
5 Functionality

5.1 Operating modes

In the ISM330DLC, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

The ISM330DLC has three operating modes available:
- only accelerometer active and gyroscope in power-down
- only gyroscope active and accelerometer in power-down
- both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo-mode the ODRs are totally independent.

5.2 Gyroscope power modes

In the ISM330DLC, the gyroscope can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to ‘0’, high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the G_HM_MODE bit has to be set to ‘1’. Low-power mode is available for lower ODRs (12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

5.3 Accelerometer power modes

In the ISM330DLC, the accelerometer can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in CTRL6_C (15h). If XL_HM_MODE is set to ‘0’, high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to ‘1’. Low-power mode is available for lower ODRs (1.6, 12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

5.4 Block diagram of filters

![Block diagram of filters](image)
5.4.1 Block diagrams of the gyroscope filters

In the ISM330DLC, the gyroscope filtering chain depends on the mode configuration:

1. Mode 1 (for General Purpose (GP) functionality through primary interface) and Mode 2

 Figure 6. Gyroscope digital chain - Mode 1 (GP) and Mode 2

In this configuration, the gyroscope ODR is selectable from 12.5 Hz up to 6.66 kHz. A low-pass filter (LPF1) is available if the auxiliary SPI is disabled, for more details about the filter characteristics see Table 67. Gyroscope LPF1 bandwidth selection.

Data can be acquired from the output registers and FIFO over the primary I²C/SPI interface.

2. Mode 3 / Mode 4 (for control loop functionality (OIS))

 Figure 7. Gyroscope digital chain - Mode 3 / Mode 4 (OIS)

Note: HP_EN_OIS is active to select HPF on the auxiliary SPI chain only if HPF is not already used in the primary interface.

In this configuration, there are two paths:

- the chain for general purpose (GP) where the ODR is selectable from 12.5 Hz up to 6.66 kHz
- the chain for OIS where the ODR is at 6.66 kHz and the LPF1 is available. For more details about the filter characteristics see Table 215. Gyroscope OIS chain LPF1 bandwidth selection.
5.4.2 Block diagrams of the accelerometer filters
In the ISM330DLC, the filtering chain for the accelerometer part is composed of the following:

- Analog filter (anti-aliasing)
- Digital filter (LPF1)
- Composite filter

Details of the block diagram appear in the following figure.

![Figure 8. Accelerometer chain](image)

The configuration of the digital filter can be set using the LPF1_BW_SEL bit in CTRL1_XL (10h) and the INPUT_COMPOSITE bit in CTRL8_XL (17h).
Figure 9. Accelerometer composite filter (for Modes 1/2 and Mode 3*)

Note: * Mode 3 is available only if Mode4_EN = 0 and OIS_EN_SPI2 = 1 in CTRL1_OIS (70h).
Figure 10. Accelerometer composite filter (Mode 4 only*)

Note: *Mode 4 is enabled when Mode4_EN = 1 and OIS_EN_SPI2 = 1 in CTRL1_OIS (70h).
5.5 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO.

The ISM330DLC embeds 4 kbytes data FIFO to store the following data:

- gyroscope
- accelerometer
- external sensors
- timestamp
- temperature

Writing data in the FIFO can be configured to be triggered by the:

- accelerometer/gyroscope data-ready signal; in which case the ODR must be lower than or equal to both the accelerometer and gyroscope ODRs;
- sensor hub data-ready signal;

In addition, each data can be stored at a decimated data rate compared to FIFO ODR and it is configurable by the user, setting the FIFO_CTRL3 (08h) and FIFO_CTRL4 (09h) registers. The available decimation factors are 2, 3, 4, 8, 16, 32.

The programmable FIFO threshold can be set in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h) using the FTH [10:0] bits.

To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh), FIFO_STATUS3 (3Ch), FIFO_STATUS4 (3Dh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO threshold status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pads of these status events, the configuration can be set in INT1_CTRL (0Dh) and INT2_CTRL (0Eh).

The FIFO buffer can be configured according to five different modes:

- **Bypass mode**
- **FIFO mode**
- **Continuous mode**
- **Continuous-to-FIFO mode**
- **Bypass-to-continuous mode**

Each mode is selected by the FIFO_MODE_[2:0] bits in the FIFO_CTRL5 (0Ah) register. To guarantee the correct acquisition of data during the switching into and out of FIFO mode, the first sample acquired must be discarded.

5.5.1 Bypass mode

In Bypass mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty.

Bypass mode is also used to reset the FIFO when in FIFO mode.

5.5.2 FIFO mode

In FIFO mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0]) to ‘000’. After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0]) to ‘001’.

FIFO buffer memorizes up to 4096 samples of 16 bits each but the depth of the FIFO can be resized by setting the FTH [10:0] bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h). If the STOP_ON_FTH bit in FIFO_CTRL4 (09h) is set to ‘1’, FIFO depth is limited up to FTH [10:0] bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h).
5.5.3 Continuous mode
Continuous mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.
A FIFO threshold flag FIFO_STATUS2 (3Bh)(FTH) is asserted when the number of unread samples in FIFO is greater than or equal to FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)(FTH [10:0]).
It is possible to route FIFO_STATUS2 (3Bh) (FTH) to the INT1 pin by writing in register INT1_CTRL (0Dh) (INT1_FTH) = ‘1’ or to the INT2 pin by writing in register INT2_CTRL (0Eh) (INT2_FTH) = ‘1’.
A full-flag interrupt can be enabled, INT1_CTRL (0Dh) (INT FULL_FLAG) = ‘1’, in order to indicate FIFO saturation and eventually read its content all at once.
If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the OVER.Run flag in FIFO_STATUS2 (3Bh) is asserted.
In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh) (DIFF_FIFO [10:0]).

5.5.4 Continuous-to-FIFO mode
In Continuous-to-FIFO mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt registers FUNC_SRC1 (53h), TAP_SRC (1Ch), WAKE_UP_SRC (1Bh) and D6D_SRC (1Dh).
When the selected trigger bit is equal to ‘1’, FIFO operates in FIFO mode.
When the selected trigger bit is equal to ‘0’, FIFO operates in Continuous mode.

5.5.5 Bypass-to-Continuous mode
In Bypass-to-Continuous mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers in one of the following interrupt registers FUNC_SRC1 (53h), TAP_SRC (1Ch), WAKE_UP_SRC (1Bh) and D6D_SRC (1Dh) are equal to ‘1’, otherwise FIFO content is reset (Bypass mode).

5.5.6 FIFO reading procedure
The data stored in FIFO are accessible from dedicated registers (FIFO_DATA_OUT_L (3Eh) and FIFO_DATA_OUT_H (3Fh)) and each FIFO sample is composed of 16 bits.
All FIFO status registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh), FIFO_STATUS3 (3Ch), FIFO_STATUS4 (3Dh)) can be read at the start of a reading operation, minimizing the intervention of the application processor.
Saving data in the FIFO buffer is organized in four FIFO data sets consisting of 6 bytes each:
The 1st FIFO data set is reserved for gyroscope data;
The 2nd FIFO data set is reserved for accelerometer data;
The 3rd FIFO data set is reserved for the external sensor data stored in the registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h);
The 4th FIFO data set can be alternately associated to the external sensor data stored in the registers from SENSORHUB7_REG (34h) to SENSORHUB12_REG (39h), and timestamp info, or to the temperature sensor data.
6 Digital interfaces

6.1 I²C/SPI interface
The registers embedded inside the ISM330DLC may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (i.e connected to Vdd_IO).

<table>
<thead>
<tr>
<th>Pin name</th>
<th>Pin description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>SPI enable</td>
</tr>
<tr>
<td></td>
<td>I²C/SPI mode selection</td>
</tr>
<tr>
<td></td>
<td>(1: SPI idle mode / I²C communication enabled; 0: SPI communication mode / I²C disabled)</td>
</tr>
<tr>
<td>SCL/SPC</td>
<td>I²C Serial Clock (SCL)</td>
</tr>
<tr>
<td></td>
<td>SPI Serial Port Clock (SPC)</td>
</tr>
<tr>
<td>SDA/SDI/SDO</td>
<td>I²C Serial Data (SDA)</td>
</tr>
<tr>
<td></td>
<td>SPI Serial Data Input (SDI)</td>
</tr>
<tr>
<td></td>
<td>3-wire Interface Serial Data Output (SDO)</td>
</tr>
<tr>
<td>SDO/SA0</td>
<td>SPI Serial Data Output (SDO)</td>
</tr>
<tr>
<td></td>
<td>PC less significant bit of the device address</td>
</tr>
</tbody>
</table>

6.2 Master I²C
If the ISM330DLC is configured in Mode 2, a master I²C line is available. The master serial interface is mapped in the following dedicated pins.

<table>
<thead>
<tr>
<th>Pin name</th>
<th>Pin description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSCL</td>
<td>I²C serial clock master</td>
</tr>
<tr>
<td>MSDA</td>
<td>I²C serial data master</td>
</tr>
<tr>
<td>MDRDY</td>
<td>I²C master external synchronization signal</td>
</tr>
</tbody>
</table>

6.3 Auxiliary SPI
If ISM330DLC is configured in Mode 3, the auxiliary SPI is available. The auxiliary SPI interface is mapped in the following dedicated pins.

<table>
<thead>
<tr>
<th>Pin name</th>
<th>Pin description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCS_Aux</td>
<td>Auxiliary SPI 3/4-wire enable</td>
</tr>
<tr>
<td>SDx</td>
<td>Auxiliary SPI 3/4-wire data input (SDI_Aux) and SPI 3-wire data output (SDO_Aux)</td>
</tr>
<tr>
<td>SCx</td>
<td>Auxiliary SPI 3/4-wire interface serial port clock</td>
</tr>
<tr>
<td>SDO_Aux</td>
<td>SPI serial data</td>
</tr>
</tbody>
</table>
6.4 I²C serial interface

The ISM330DLC I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter</td>
<td>The device which sends data to the bus</td>
</tr>
<tr>
<td>Receiver</td>
<td>The device which receives data from the bus</td>
</tr>
<tr>
<td>Master</td>
<td>The device which initiates a transfer, generates clock signals and terminates a transfer</td>
</tr>
<tr>
<td>Slave</td>
<td>The device addressed by the master</td>
</tr>
</tbody>
</table>

Table 12. I²C terminology

There are two signals associated with the I²C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I²C interface is implemented with fast mode (400 kHz) I²C standards as well as with the standard mode. In order to disable the I²C block, (I2C_disable) = 1 must be written in CTRL4_C (13h).

6.4.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the ISM330DLC is 110101 xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is ‘1’ (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is ‘0’ (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the ISM330DLC behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave address (SAD) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the CTRL3_C (12h) (IF_INC).

The slave address is completed with a Read/Write bit. If the bit is ‘1’ (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write) the master will transmit to the slave with direction unchanged. The following table explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Table 13. SAD_Read/Write patterns

<table>
<thead>
<tr>
<th>Command</th>
<th>SAD[6:1]</th>
<th>SAD[0] = SA0</th>
<th>R/W</th>
<th>SAD+R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>110101</td>
<td>0</td>
<td>1</td>
<td>11010101 (D5h)</td>
</tr>
<tr>
<td>Write</td>
<td>110101</td>
<td>0</td>
<td>0</td>
<td>11010100 (D4h)</td>
</tr>
<tr>
<td>Read</td>
<td>110101</td>
<td>1</td>
<td>1</td>
<td>11010111 (D7h)</td>
</tr>
<tr>
<td>Write</td>
<td>110101</td>
<td>1</td>
<td>0</td>
<td>11010110 (D6h)</td>
</tr>
</tbody>
</table>
Table 14. Transfer when master is writing one byte to slave

<table>
<thead>
<tr>
<th>Master</th>
<th>ST</th>
<th>SAD + W</th>
<th>SUB</th>
<th>DATA</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave</td>
<td>SAK</td>
<td>SAK</td>
<td>SAK</td>
<td>SAK</td>
<td>SAK</td>
</tr>
</tbody>
</table>

Table 15. Transfer when master is writing multiple bytes to slave

<table>
<thead>
<tr>
<th>Master</th>
<th>ST</th>
<th>SAD + W</th>
<th>SUB</th>
<th>DATA</th>
<th>DATA</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave</td>
<td>SAK</td>
<td>SAK</td>
<td>SAK</td>
<td>SAK</td>
<td>SAK</td>
<td>SAK</td>
</tr>
</tbody>
</table>

Table 16. Transfer when master is receiving (reading) one byte of data from slave

<table>
<thead>
<tr>
<th>Master</th>
<th>ST</th>
<th>SAD + W</th>
<th>SUB</th>
<th>SR</th>
<th>SAD + R</th>
<th>NMAK</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave</td>
<td>SAK</td>
<td>SAK</td>
<td>SAK</td>
<td>SAK</td>
<td>DATA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 17. Transfer when master is receiving (reading) multiple bytes of data from slave

<table>
<thead>
<tr>
<th>Master</th>
<th>ST</th>
<th>SAD+W</th>
<th>SUB</th>
<th>SR</th>
<th>SAD+R</th>
<th>MAk</th>
<th>MAK</th>
<th>NMAK</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave</td>
<td>SAK</td>
<td>SAK</td>
<td>SAK</td>
<td>SAK</td>
<td>DATA</td>
<td>DATA</td>
<td>DATA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can’t receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.
6.5 SPI bus interface

The ISM330DLC SPI is a bus slave. The SPI allows writing and reading the registers of the device. The serial interface communicates to the application using 4 wires: **CS**, **SPC**, **SDI** and **SDO**.

![Figure 11. Read and write protocol]

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** just before the rising edge of **CS**. The last bit (bit 15, bit 23, ...) starts at the last falling edge of **SPC** after the falling edge of **CS**.

- **bit 0**: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.
- **bit 1-7**: address AD(6:0). This is the address field of the indexed register.
- **bit 8-15**: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
- **bit 8-15**: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is ‘0’, the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is ‘1’, the address used to read/write data is increased at every block.

The function and the behavior of **SDI** and **SDO** remain unchanged.
6.5.1 SPI read

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Figure 12. SPI read protocol

Figure 13. Multiple byte SPI read protocol (2-byte example)
6.5.2 SPI write

Figure 14. SPI write protocol

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

- **bit 0**: WRITE bit. The value is 0.
- **bit 1-7**: address AD(6:0). This is the address field of the indexed register.
- **bit 8-15**: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).
- **bit 16-...**: data DI(...-8). Further data in multiple byte writes.

Figure 15. Multiple byte SPI write protocol (2-byte example)

6.5.3 SPI read in 3-wire mode

A 3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to ‘1’ (SPI serial interface mode selection).

Figure 16. SPI read protocol in 3-wire mode

The SPI read command is performed with 16 clock pulses:

- **bit 0**: READ bit. The value is 1.
- **bit 1-7**: address AD(6:0). This is the address field of the indexed register.
- **bit 8-15**: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.
7 Application hints

7.1 ISM330DLC electrical connections in Mode 1

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.
7.2 ISM330DLC electrical connections in Mode 2

Figure 18. ISM330DLC electrical connections in Mode 2

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.
7.3 ISM330DLC electrical connections in Mode 3 and Mode 4

Figure 19. ISM330DLC electrical connections in Mode 3 and Mode 4 (auxiliary 3-wire SPI)

1. Leave pin electrically unconnected and soldered to PCB.
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice). The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I2C interface.
The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I2C interface.
Figure 20. ISM330DLC electrical connections in Mode 3 and Mode 4 (auxiliary 4-wire SPI)

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.

Internal pull-up value is from 30 kΩ to 50 kΩ, depending on VDDIO.

NOTE:
To avoid leakage current, it is recommended to add pull-up resistors on the SPI lines unless the SPI master can be left on also while the OIS system is off.
<table>
<thead>
<tr>
<th>pin#</th>
<th>Name</th>
<th>Mode 1 function</th>
<th>Mode 2 function</th>
<th>Mode 3 / Mode 4 function</th>
<th>Pin status Mode 1</th>
<th>Pin status Mode 2</th>
<th>Pin status Mode 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDO</td>
<td>SPI 4-wire interface serial data output (SDO)</td>
<td>SPI 4-wire interface serial data output (SDO)</td>
<td>SPI 4-wire interface serial data output (SDO)</td>
<td>Default: Input without pull-up.</td>
<td>Default: Input without pull-up.</td>
<td>Default: Input without pull-up.</td>
</tr>
<tr>
<td></td>
<td>SA0</td>
<td>I²C least significant bit of the device address (SA0)</td>
<td>I²C least significant bit of the device address (SA0)</td>
<td>I²C least significant bit of the device address (SA0)</td>
<td>Pull-up is enabled if bit SIM = 1 (SPI 3-wire) in reg 12h.</td>
<td>Pull-up is enabled if bit SIM = 1 (SPI 3-wire) in reg 12h.</td>
<td>Pull-up is enabled if bit SIM = 1 (SPI 3-wire) in reg 12h.</td>
</tr>
<tr>
<td>2</td>
<td>SDx</td>
<td>Connect to VDDIO or GND</td>
<td>I²C serial data master (MSDA)</td>
<td>Auxiliary SPI 3/4-wire interface serial data input (SDI) and SPI 3-wire serial data output (SDO)</td>
<td>Default: input without pull-up.</td>
<td>Default: input without pull-up.</td>
<td>Default: input without pull-up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.</td>
<td>Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.</td>
<td>Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.</td>
</tr>
<tr>
<td>3</td>
<td>SCx</td>
<td>Connect to VDDIO or GND</td>
<td>I²C serial clock master (MSCL)</td>
<td>Auxiliary SPI 3/4-wire interface serial port clock (SPC_Aux)</td>
<td>Default: input without pull-up.</td>
<td>Default: input without pull-up.</td>
<td>Default: input without pull-up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.</td>
<td>Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.</td>
<td>Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.</td>
</tr>
<tr>
<td>4</td>
<td>INT1</td>
<td>Programmable interrupt 1</td>
<td>Programmable interrupt 1</td>
<td>Programmable interrupt 1</td>
<td>Default: Output forced to ground</td>
<td>Default: Output forced to ground</td>
<td>Default: Output forced to ground</td>
</tr>
<tr>
<td>5</td>
<td>Vdd_IO</td>
<td>Power supply for I/O pins</td>
<td>Power supply for I/O pins</td>
<td>Power supply for I/O pins</td>
<td>Power supply</td>
<td>Power supply</td>
<td>Power supply</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>0 V supply</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Vdd</td>
<td>Power supply</td>
<td>Power supply</td>
<td>Power supply</td>
<td>Power supply</td>
<td>Power supply</td>
<td>Power supply</td>
</tr>
<tr>
<td>9</td>
<td>INT2</td>
<td>Programmable interrupt 2 (INT2) / Data enabled (DEN)</td>
<td>Programmable interrupt 2 (INT2) / Data enabled (DEN)</td>
<td>Programmable interrupt 2 (INT2) / Data enabled (DEN)</td>
<td>Default: Output forced to ground</td>
<td>Default: Output forced to ground</td>
<td>Default: Output forced to ground</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>OCS</td>
<td>Leave unconnected</td>
<td>Leave unconnected</td>
<td>Auxiliary SPI 3/4-wire interface enabled</td>
<td>Default: Input with pull-up. (See note below to disable pull-up)</td>
<td>Default: Input with pull-up. (See note below to disable pull-up)</td>
<td>Input without pull-up</td>
</tr>
<tr>
<td>11</td>
<td>SDO_Aux</td>
<td>Connect to VDDIO or leave unconnected</td>
<td>Connect to VDDIO or leave unconnected</td>
<td>Auxiliary SPI 3-wire interface: leave unconnected / Auxiliary SPI 4-wire interface: serial data output (SDO_Aux)</td>
<td>Default: Input with pull-up. (See note below to disable pull-up)</td>
<td>Default: Input with pull-up. (See note below to disable pull-up)</td>
<td>Default: Input without pull-up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pin#</td>
<td>Name</td>
<td>Mode 1 function</td>
<td>Mode 2 function</td>
<td>Mode 3 / Mode 4 function</td>
<td>Pin status Mode 1</td>
<td>Pin status Mode 2</td>
<td>Pin status Mode 3/4</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>12</td>
<td>CS</td>
<td>I²C/SPI mode selection (1:SPI idle mode / I²C communication enabled; 0: SPI communication mode / I²C disabled)</td>
<td>I²C/SPI mode selection (1:SPI idle mode / I²C communication enabled; 0: SPI communication mode / I²C disabled)</td>
<td>I²C/SPI mode selection (1:SPI idle mode / I²C communication enabled; 0: SPI communication mode / I²C disabled)</td>
<td>Default: Input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h.</td>
<td>Default: Input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h.</td>
<td>Default: Input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h.</td>
</tr>
<tr>
<td>13</td>
<td>SCL</td>
<td>I²C serial clock (SCL) / SPI serial port clock (SPC)</td>
<td>I²C serial clock (SCL) / SPI serial port clock (SPC)</td>
<td>I²C serial clock (SCL) / SPI serial port clock (SPC)</td>
<td>Input without pull-up</td>
<td>Input without pull-up</td>
<td>Input without pull-up</td>
</tr>
<tr>
<td>14</td>
<td>SDA</td>
<td>I²C serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)</td>
<td>I²C serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)</td>
<td>I²C serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)</td>
<td>Input without pull-up</td>
<td>Input without pull-up</td>
<td>Input without pull-up</td>
</tr>
</tbody>
</table>

Internal pull-up value is from 30 kΩ to 50 kΩ, depending on VDDIO.

Note: The procedure to disable the pull-up on pins 10-11 is as follows:
1. AP side: write 80h in register at address 00h
2. AP side: write 01h in register at address 05h (disable the pull-up on pins 10 and 11 of ISM330DLC)
3. AP side: write 00h in register at address 00h
8 Auxiliary SPI configurations

When the ISM330DLC is configured in Mode 3 and Mode 4, the auxiliary SPI can be connected to an auxiliary host (OIS). In this interface, the SPI can write only to the dedicated registers INT_OIS (6Fh), CTRL1_OIS (70h), CTRL2_OIS (71h), CTRL3_OIS (72h).

8.1 Gyroscope filtering

The gyroscope filtering chain is illustrated in the following figure.

![Gyroscope chain diagram]

Figure 21. Gyroscope chain

Note: **HP_EN_OIS** is active to select HPF on the auxiliary SPI chain only if HPF is not already used in the primary interface.

The auxiliary interface needs to be enabled in CTRL1_OIS (70h).

Gyroscope output values are in registers 22h to 27h with selected full scale (FS[1:0]_G_OIS bit in CTRL1_OIS (70h)) and ODR at 6.66 kHz.

LPF1 configuration depends on the setting of the FTYPE_[1:0]_OIS bit in register CTRL2_OIS (71h).
8.2 Accelerometer filtering

Accelerometer filtering is available only when Mode 4 is enabled.

Figure 22. Accelerometer chain (available only in Mode 4)

Accelerometer output values are in registers OUTX_L_XL (28h) through OUTZ_H_XL (2Dh) and ODR at 6.66 kHz.

8.2.1 Accelerometer full scale set from primary interface

If the SPI/I²C primary interface is used, the full-scale setting has been configured by the primary interface and CTRL3_OIS (72h) must be set to the same full-scale setting of the primary interface.

8.2.2 Accelerometer full scale set from auxiliary SPI

If the configuration uses only the auxiliary SPI, the full scale can be set using the FS[1:0]_XL_OIS bits in CTRL3_OIS (72h). The configuration of the low-pass filter depends on the setting of the FILTER_XL_CONF_OIS[1:0] bits in register CTRL3_OIS (72h).
Register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

Table 19. Registers address map

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Register address</th>
<th>Default</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hex</td>
<td>Binary</td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>-</td>
<td>00</td>
<td>00000000</td>
<td>Reserved</td>
</tr>
<tr>
<td>FUNC_CFG_ACCESS</td>
<td>r/w</td>
<td>01</td>
<td>0000000001</td>
<td>Embedded functions configuration register</td>
</tr>
<tr>
<td>RESERVED</td>
<td>-</td>
<td>02</td>
<td>000000010</td>
<td>Reserved</td>
</tr>
<tr>
<td>RESERVED</td>
<td>-</td>
<td>03</td>
<td>000000111</td>
<td>Reserved</td>
</tr>
<tr>
<td>SENSOR_SYNC_TIME_FRAME</td>
<td>r/w</td>
<td>04</td>
<td>00000100</td>
<td>Sensor sync configuration register</td>
</tr>
<tr>
<td>SENSOR_SYNC_RES_RATIO</td>
<td>r/w</td>
<td>05</td>
<td>00000101</td>
<td>Sensor sync configuration register</td>
</tr>
<tr>
<td>FIFO_CTRL1</td>
<td>r/w</td>
<td>06</td>
<td>00000110</td>
<td>FIFO configuration registers</td>
</tr>
<tr>
<td>FIFO_CTRL2</td>
<td>r/w</td>
<td>07</td>
<td>00000111</td>
<td>FIFO configuration registers</td>
</tr>
<tr>
<td>FIFO_CTRL3</td>
<td>r/w</td>
<td>08</td>
<td>00001000</td>
<td>FIFO configuration registers</td>
</tr>
<tr>
<td>FIFO_CTRL4</td>
<td>r/w</td>
<td>09</td>
<td>00001001</td>
<td>FIFO configuration registers</td>
</tr>
<tr>
<td>FIFO_CTRL5</td>
<td>r/w</td>
<td>0A</td>
<td>00010100</td>
<td>FIFO configuration registers</td>
</tr>
<tr>
<td>DRDY_PULSE_CFG</td>
<td>r/w</td>
<td>0B</td>
<td>00010111</td>
<td>FIFO configuration registers</td>
</tr>
<tr>
<td>RESERVED</td>
<td>-</td>
<td>0C</td>
<td>00011000</td>
<td>Reserved</td>
</tr>
<tr>
<td>INT1_CTRL</td>
<td>r/w</td>
<td>0D</td>
<td>00011101</td>
<td>INT1 pin control</td>
</tr>
<tr>
<td>INT2_CTRL</td>
<td>r/w</td>
<td>0E</td>
<td>00011110</td>
<td>INT2 pin control</td>
</tr>
<tr>
<td>WHO_AM_I</td>
<td>r</td>
<td>0F</td>
<td>00011111</td>
<td>01101010 Who I am ID</td>
</tr>
<tr>
<td>CTRL1_XL</td>
<td>r/w</td>
<td>10</td>
<td>00010000</td>
<td>Accelerometer and gyroscope control registers</td>
</tr>
<tr>
<td>CTRL2_G</td>
<td>r/w</td>
<td>11</td>
<td>00010001</td>
<td>Accelerometer and gyroscope control registers</td>
</tr>
<tr>
<td>CTRL3_C</td>
<td>r/w</td>
<td>12</td>
<td>00010010</td>
<td>Accelerometer and gyroscope control registers</td>
</tr>
<tr>
<td>CTRL4_C</td>
<td>r/w</td>
<td>13</td>
<td>00010011</td>
<td>Accelerometer and gyroscope control registers</td>
</tr>
<tr>
<td>CTRL5_C</td>
<td>r/w</td>
<td>14</td>
<td>00011000</td>
<td>Accelerometer and gyroscope control registers</td>
</tr>
<tr>
<td>CTRL6_C</td>
<td>r/w</td>
<td>15</td>
<td>00011010</td>
<td>Accelerometer and gyroscope control registers</td>
</tr>
<tr>
<td>CTRL7_G</td>
<td>r/w</td>
<td>16</td>
<td>00011110</td>
<td>Accelerometer and gyroscope control registers</td>
</tr>
<tr>
<td>CTRL8_XL</td>
<td>r/w</td>
<td>17</td>
<td>00011111</td>
<td>Accelerometer and gyroscope control registers</td>
</tr>
<tr>
<td>CTRL9_XL</td>
<td>r/w</td>
<td>18</td>
<td>00011000</td>
<td>Accelerometer and gyroscope control registers</td>
</tr>
<tr>
<td>CTRL10_C</td>
<td>r/w</td>
<td>19</td>
<td>00011001</td>
<td>Accelerometer and gyroscope control registers</td>
</tr>
<tr>
<td>MASTER_CONFIG</td>
<td>r/w</td>
<td>1A</td>
<td>00011010</td>
<td>I²C master configuration register</td>
</tr>
<tr>
<td>WAKE_UP_SRC</td>
<td>r</td>
<td>1B</td>
<td>00011011</td>
<td>Interrupt registers</td>
</tr>
<tr>
<td>TAP_SRC</td>
<td>r</td>
<td>1C</td>
<td>00011100</td>
<td>Interrupt registers</td>
</tr>
<tr>
<td>D6D_SRC</td>
<td>r</td>
<td>1D</td>
<td>00011101</td>
<td>Interrupt registers</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Register address</td>
<td>Default</td>
<td>Comment</td>
</tr>
<tr>
<td>----------------------</td>
<td>------</td>
<td>------------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATUS_REG/(1)(2)</td>
<td>r</td>
<td>1E</td>
<td>00011110</td>
<td>Output</td>
</tr>
<tr>
<td>STATUS_SPIAux</td>
<td>r</td>
<td>1F</td>
<td>00011111</td>
<td>Reserved</td>
</tr>
<tr>
<td>OUT_TEMP_L</td>
<td>r</td>
<td>20</td>
<td>00100000</td>
<td>Output</td>
</tr>
<tr>
<td>OUT_TEMP_H</td>
<td>r</td>
<td>21</td>
<td>00100001</td>
<td>Output</td>
</tr>
<tr>
<td>OUTX_L_G</td>
<td>r</td>
<td>22</td>
<td>00100010</td>
<td>Output</td>
</tr>
<tr>
<td>OUTX_H_G</td>
<td>r</td>
<td>23</td>
<td>00100011</td>
<td>Output</td>
</tr>
<tr>
<td>OUTY_L_G</td>
<td>r</td>
<td>24</td>
<td>00100100</td>
<td>Output</td>
</tr>
<tr>
<td>OUTY_H_G</td>
<td>r</td>
<td>25</td>
<td>00100101</td>
<td>Output</td>
</tr>
<tr>
<td>OUTZ_L_G</td>
<td>r</td>
<td>26</td>
<td>00100110</td>
<td>Output</td>
</tr>
<tr>
<td>OUTZ_H_G</td>
<td>r</td>
<td>27</td>
<td>00100111</td>
<td>Output</td>
</tr>
<tr>
<td>OUTX_L_XL</td>
<td>r</td>
<td>28</td>
<td>00101000</td>
<td>Output</td>
</tr>
<tr>
<td>OUTX_H_XL</td>
<td>r</td>
<td>29</td>
<td>00101001</td>
<td>Output</td>
</tr>
<tr>
<td>OUTY_L_XL</td>
<td>r</td>
<td>2A</td>
<td>00101010</td>
<td>Output</td>
</tr>
<tr>
<td>OUTY_H_XL</td>
<td>r</td>
<td>2B</td>
<td>00101011</td>
<td>Output</td>
</tr>
<tr>
<td>OUTZ_L_XL</td>
<td>r</td>
<td>2C</td>
<td>00101100</td>
<td>Output</td>
</tr>
<tr>
<td>OUTZ_H_XL</td>
<td>r</td>
<td>2D</td>
<td>00101101</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB1_REG</td>
<td>r</td>
<td>2E</td>
<td>00101110</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB2_REG</td>
<td>r</td>
<td>2F</td>
<td>00101111</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB3_REG</td>
<td>r</td>
<td>30</td>
<td>00110000</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB4_REG</td>
<td>r</td>
<td>31</td>
<td>00110001</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB5_REG</td>
<td>r</td>
<td>32</td>
<td>00110010</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB6_REG</td>
<td>r</td>
<td>33</td>
<td>00110011</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB7_REG</td>
<td>r</td>
<td>34</td>
<td>00110100</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB8_REG</td>
<td>r</td>
<td>35</td>
<td>00110101</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB9_REG</td>
<td>r</td>
<td>36</td>
<td>00110110</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB10_REG</td>
<td>r</td>
<td>37</td>
<td>00110111</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB11_REG</td>
<td>r</td>
<td>38</td>
<td>00111000</td>
<td>Output</td>
</tr>
<tr>
<td>SENSORHUB12_REG</td>
<td>r</td>
<td>39</td>
<td>00111001</td>
<td>Output</td>
</tr>
<tr>
<td>FIFO_STATUS1</td>
<td>r</td>
<td>3A</td>
<td>00111010</td>
<td>Output</td>
</tr>
<tr>
<td>FIFO_STATUS2</td>
<td>r</td>
<td>3B</td>
<td>00111011</td>
<td>Output</td>
</tr>
<tr>
<td>FIFO_STATUS3</td>
<td>r</td>
<td>3C</td>
<td>00111100</td>
<td>Output</td>
</tr>
<tr>
<td>FIFO_STATUS4</td>
<td>r</td>
<td>3D</td>
<td>00111101</td>
<td>Output</td>
</tr>
<tr>
<td>FIFO_DATA_OUT_L</td>
<td>r</td>
<td>3E</td>
<td>00111110</td>
<td>Output</td>
</tr>
<tr>
<td>FIFO_DATA_OUT_H</td>
<td>r</td>
<td>3F</td>
<td>00111111</td>
<td>Output</td>
</tr>
<tr>
<td>TIMESTAMP0_REG</td>
<td>r/w</td>
<td>40</td>
<td>01000000</td>
<td>Output</td>
</tr>
<tr>
<td>TIMESTAMP1_REG</td>
<td>r</td>
<td>41</td>
<td>01000001</td>
<td>Output</td>
</tr>
<tr>
<td>TIMESTAMP2_REG</td>
<td>r/w</td>
<td>42</td>
<td>01000010</td>
<td>Output</td>
</tr>
<tr>
<td>RESERVED</td>
<td>-</td>
<td>43-4C</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Register address</td>
<td>Default</td>
<td>Comment</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>------------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>SENSORHUB13_REG</td>
<td>r</td>
<td>4D</td>
<td>01001101</td>
<td>output</td>
</tr>
<tr>
<td>SENSORHUB14_REG</td>
<td>r</td>
<td>4E</td>
<td>01001110</td>
<td>output</td>
</tr>
<tr>
<td>SENSORHUB15_REG</td>
<td>r</td>
<td>4F</td>
<td>01001111</td>
<td>output</td>
</tr>
<tr>
<td>SENSORHUB16_REG</td>
<td>r</td>
<td>50</td>
<td>01010000</td>
<td>output</td>
</tr>
<tr>
<td>SENSORHUB17_REG</td>
<td>r</td>
<td>51</td>
<td>01010001</td>
<td>output</td>
</tr>
<tr>
<td>SENSORHUB18_REG</td>
<td>r</td>
<td>52</td>
<td>01010010</td>
<td>output</td>
</tr>
<tr>
<td>FUNC_SRC1</td>
<td>r</td>
<td>53</td>
<td>01010011</td>
<td>output</td>
</tr>
<tr>
<td>FUNC_SRC2</td>
<td>r</td>
<td>54</td>
<td>01010100</td>
<td>output</td>
</tr>
<tr>
<td>RESERVED</td>
<td>-</td>
<td>55-57</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>TAP_CFG</td>
<td>r/w</td>
<td>58</td>
<td>01011000</td>
<td>00000000</td>
</tr>
<tr>
<td>TAP_THS_6D</td>
<td>r/w</td>
<td>59</td>
<td>01011001</td>
<td>00000000</td>
</tr>
<tr>
<td>INT_DUR2</td>
<td>r/w</td>
<td>5A</td>
<td>01011010</td>
<td>00000000</td>
</tr>
<tr>
<td>WAKE_UP_THS</td>
<td>r/w</td>
<td>5B</td>
<td>01011011</td>
<td>00000000</td>
</tr>
<tr>
<td>WAKE_UP_DUR</td>
<td>r/w</td>
<td>5C</td>
<td>01011100</td>
<td>00000000</td>
</tr>
<tr>
<td>FREE_FALL</td>
<td>r/w</td>
<td>5D</td>
<td>01011101</td>
<td>00000000</td>
</tr>
<tr>
<td>MD1_CFG</td>
<td>r/w</td>
<td>5E</td>
<td>01011110</td>
<td>00000000</td>
</tr>
<tr>
<td>MD2_CFG</td>
<td>r/w</td>
<td>5F</td>
<td>01011111</td>
<td>00000000</td>
</tr>
<tr>
<td>MASTER_CMD_CODE</td>
<td>r/w</td>
<td>60</td>
<td>01100000</td>
<td>00000000</td>
</tr>
<tr>
<td>SENS_SYNC_SPI_ERROR_CODE</td>
<td>r/w</td>
<td>61</td>
<td>0110 0001</td>
<td>00000000</td>
</tr>
<tr>
<td>RESERVED</td>
<td>-</td>
<td>62-65</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>OUT_MAG_RAW_X_L</td>
<td>r</td>
<td>66</td>
<td>01100110</td>
<td>output</td>
</tr>
<tr>
<td>OUT_MAG_RAW_X_H</td>
<td>r</td>
<td>67</td>
<td>01100111</td>
<td>output</td>
</tr>
<tr>
<td>OUT_MAG_RAW_Y_L</td>
<td>r</td>
<td>68</td>
<td>01101000</td>
<td>output</td>
</tr>
<tr>
<td>OUT_MAG_RAW_Y_H</td>
<td>r</td>
<td>69</td>
<td>01101001</td>
<td>output</td>
</tr>
<tr>
<td>OUT_MAG_RAW_Z_L</td>
<td>r</td>
<td>6A</td>
<td>01101010</td>
<td>output</td>
</tr>
<tr>
<td>OUT_MAG_RAW_Z_H</td>
<td>r</td>
<td>6B</td>
<td>01101011</td>
<td>output</td>
</tr>
<tr>
<td>RESERVED</td>
<td>-</td>
<td>6C-6E</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>INT_OIS</td>
<td>r/w</td>
<td>6F</td>
<td>01101111</td>
<td>00000000</td>
</tr>
<tr>
<td>CTRL1_OIS</td>
<td>r/w</td>
<td>70</td>
<td>01110000</td>
<td>00000000</td>
</tr>
<tr>
<td>CTRL2_OIS</td>
<td>r/w</td>
<td>71</td>
<td>01110001</td>
<td>00000000</td>
</tr>
<tr>
<td>CTRL3_OIS</td>
<td>r/w</td>
<td>72</td>
<td>01110010</td>
<td>00000000</td>
</tr>
<tr>
<td>X_OF5_USR</td>
<td>r/w</td>
<td>73</td>
<td>01110011</td>
<td>00000000</td>
</tr>
<tr>
<td>Y_OF5_USR</td>
<td>r/w</td>
<td>74</td>
<td>01110100</td>
<td>00000000</td>
</tr>
<tr>
<td>Z_OF5_USR</td>
<td>r/w</td>
<td>75</td>
<td>01110101</td>
<td>00000000</td>
</tr>
<tr>
<td>RESERVED</td>
<td>-</td>
<td>76-7F</td>
<td>-</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

1. This register status is read using the auxiliary SPI for OIS data.
2. This register status is read using the primary interface for general-purpose interface data.
10 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

10.1 FUNC_CFG_ACCESS (01h)
Enable embedded functions register (r/w).

<table>
<thead>
<tr>
<th>FUNC_CFG_ACCESS</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
</tr>
</thead>
</table>

Table 20. FUNC_CFG_ACCESS register

1. This bit must be set to '0' for the correct operation of the device.

Table 21. FUNC_CFG_ACCESS register description

<table>
<thead>
<tr>
<th>FUNC_CFG_ACCESS</th>
<th>Enable access to the embedded functions configuration registers. Default value: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNC_CFG_ACCESS</td>
<td>0: register access disabled</td>
</tr>
<tr>
<td>FUNC_CFG_ACCESS</td>
<td>1: register access enabled</td>
</tr>
</tbody>
</table>

1. The embedded functions configuration registers details are available in Section 11 Embedded functions register mapping, and Section 12 Embedded functions registers description.

10.2 SENSOR_SYNC_TIME_FRAME (04h)
Sensor synchronization time frame register (r/w).

<table>
<thead>
<tr>
<th>SENSOR_SYNC_TIME_FRAME</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>TPH_3</th>
<th>TPH_2</th>
<th>TPH_1</th>
<th>TPH_0</th>
</tr>
</thead>
</table>

Table 22. SENSOR_SYNC_TIME_FRAME register

1. This bit must be set to '0' for the correct operation of the device.

Table 23. SENSOR_SYNC_TIME_FRAME register description

<table>
<thead>
<tr>
<th>SENSOR_SYNC_TIME_FRAME</th>
<th>Sensor synchronization time frame with the step of 500 ms and full range of 5 s. Unsigned 8-bit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSOR_SYNC_TIME_FRAME</td>
<td>Default value: 0000 0000 (sensor sync disabled)</td>
</tr>
</tbody>
</table>

10.3 SENSOR_SYNC_RES_RATIO (05h)
Sensor synchronization resolution ratio (r/w).

<table>
<thead>
<tr>
<th>SENSOR_SYNC_RES_RATIO</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>RR_1</th>
<th>RR_0</th>
</tr>
</thead>
</table>

Table 24. SENSOR_SYNC_RES_RATIO register

1. This bit must be set to '0' for the correct operation of the device.
Table 25. SENSOR_SYNC_RES_RATIO register description

<table>
<thead>
<tr>
<th>RR_[1:0]</th>
<th>Resolution ratio of error code for sensor synchronization.</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>SensorSync, Res_Ratio = 2 (^{11})</td>
</tr>
<tr>
<td>01</td>
<td>SensorSync, Res_Ratio = 2 (^{12})</td>
</tr>
<tr>
<td>10</td>
<td>SensorSync, Res_Ratio = 2 (^{13})</td>
</tr>
<tr>
<td>11</td>
<td>SensorSync, Res_Ratio = 2 (^{14})</td>
</tr>
</tbody>
</table>

10.4 FIFO_CTRL1 (06h)
FIFO control register (r/w).

Table 26. FIFO_CTRL1 register

| FTH_7 | FTH_6 | FTH_5 | FTH_4 | FTH_3 | FTH_2 | FTH_1 | FTH_0 |

Table 27. FIFO_CTRL1 register description

<table>
<thead>
<tr>
<th>FTH_[7:0]</th>
<th>FIFO threshold level setting. Default value: 0000 0000(^{(1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Watermark flag rises when the number of bytes written to FIFO after the next write is greater than or equal to the threshold level.</td>
</tr>
<tr>
<td></td>
<td>Minimum resolution for the FIFO is 1 LSB = 2 bytes (1 word) in FIFO</td>
</tr>
</tbody>
</table>

1. For a complete watermark threshold configuration, consider FTH_[7:0] in FIFO_CTRL2 (07h).

10.5 FIFO_CTRL2 (07h)
FIFO control register (r/w).

Table 28. FIFO_CTRL2 register

| FIFO_TIMER_EN | 0\(^{(1)}\) | 0\(^{(1)}\) | 0\(^{(1)}\) | FIFO_TEMP_EN | FTH10 | FTH_9 | FTH_8 |

1. This bit must be set to ‘0’ for the correct operation of the device.

Table 29. FIFO_CTRL2 register description

<table>
<thead>
<tr>
<th>FIFO_TIMER_EN</th>
<th>Enables timestamp data to be stored as the 4(^{th}) FIFO data set. (0: timestamp not included in FIFO; 1: timestamp included in FIFO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO_TEMP_EN</td>
<td>Enables the temperature data storage in FIFO. Default: 0 (0: temperature not included in FIFO; 1: temperature included in FIFO)</td>
</tr>
<tr>
<td>FTH_[10:8]</td>
<td>FIFO threshold level setting. Default value: 0000(^{(1)}) Watermark flag rises when the number of bytes written to FIFO after the next write is greater than or equal to the threshold level. Minimum resolution for the FIFO is 1 LSB = 2 bytes (1 word) in FIFO</td>
</tr>
</tbody>
</table>

1. For a complete watermark threshold configuration, consider FTH_[7:0] in FIFO_CTRL1 (06h)
10.6 FIFO_CTRL3 (08h)
FIFO control register (r/w).

Table 30. FIFO_CTRL3 register

<table>
<thead>
<tr>
<th>DEC_FIFO_GYRO2</th>
<th>DEC_FIFO_GYRO1</th>
<th>DEC_FIFO_GYRO0</th>
<th>DEC_FIFO_XL2</th>
<th>DEC_FIFO_XL1</th>
<th>DEC_FIFO_XL0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(1)</td>
<td>0(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. This bit must be set to '0' for the correct operation of the device.

Table 31. FIFO_CTRL3 register description

<table>
<thead>
<tr>
<th>DEC_FIFO_GYRO [2:0]</th>
<th>Gyro FIFO (first data set) decimation setting. Default: 000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For the configuration setting, refer to Table 32.</td>
</tr>
<tr>
<td>DEC_FIFO_XL [2:0]</td>
<td>Accelerometer FIFO (second data set) decimation setting. Default: 000</td>
</tr>
<tr>
<td></td>
<td>For the configuration setting, refer to Table 33.</td>
</tr>
</tbody>
</table>

Table 32. Gyro FIFO decimation setting

<table>
<thead>
<tr>
<th>DEC_FIFO_GYRO [2:0]</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Gyro sensor not in FIFO</td>
</tr>
<tr>
<td>001</td>
<td>No decimation</td>
</tr>
<tr>
<td>010</td>
<td>Decimation with factor 2</td>
</tr>
<tr>
<td>011</td>
<td>Decimation with factor 3</td>
</tr>
<tr>
<td>100</td>
<td>Decimation with factor 4</td>
</tr>
<tr>
<td>101</td>
<td>Decimation with factor 8</td>
</tr>
<tr>
<td>110</td>
<td>Decimation with factor 16</td>
</tr>
<tr>
<td>111</td>
<td>Decimation with factor 32</td>
</tr>
</tbody>
</table>

Table 33. Accelerometer FIFO decimation setting

<table>
<thead>
<tr>
<th>DEC_FIFO_XL [2:0]</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Accelerometer sensor not in FIFO</td>
</tr>
<tr>
<td>001</td>
<td>No decimation</td>
</tr>
<tr>
<td>010</td>
<td>Decimation with factor 2</td>
</tr>
<tr>
<td>011</td>
<td>Decimation with factor 3</td>
</tr>
<tr>
<td>100</td>
<td>Decimation with factor 4</td>
</tr>
<tr>
<td>101</td>
<td>Decimation with factor 8</td>
</tr>
<tr>
<td>110</td>
<td>Decimation with factor 16</td>
</tr>
<tr>
<td>111</td>
<td>Decimation with factor 32</td>
</tr>
</tbody>
</table>
10.7 FIFO_CTRL4 (09h)
FIFO control register (r/w).

Table 34. FIFO_CTRL4 register

<table>
<thead>
<tr>
<th>STOP_ON_FTH</th>
<th>ONLY_HIGH_DATA</th>
<th>DEC_DS4_FIFO2</th>
<th>DEC_DS4_FIFO1</th>
<th>DEC_DS4_FIFO0</th>
<th>DEC_DS3_FIFO2</th>
<th>DEC_DS3_FIFO1</th>
<th>DEC_DS3_FIFO0</th>
</tr>
</thead>
</table>

Table 35. FIFO_CTRL4 register description

- **STOP_ON_FTH**: Enable FIFO threshold level use. Default value: 0.
 - 0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level
- **ONLY_HIGH_DATA**: 8-bit data storage in FIFO. Default: 0
 - 0: disable MSByte only memorization in FIFO for XL and Gyro;
 - 1: enable MSByte only memorization in FIFO for XL and Gyro in FIFO
- **DEC_DS4_FIFO2**: Fourth FIFO data set decimation setting. Default: 000. For the configuration setting, refer to Table 36.
- **DEC_DS3_FIFO2**: Third FIFO data set decimation setting. Default: 000. For the configuration setting, refer to Table 37.

Table 36. Fourth FIFO data set decimation setting

<table>
<thead>
<tr>
<th>DEC_DS4_FIFO2[2:0]</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Fourth FIFO data set not in FIFO</td>
</tr>
<tr>
<td>001</td>
<td>No decimation</td>
</tr>
<tr>
<td>010</td>
<td>Decimation with factor 2</td>
</tr>
<tr>
<td>011</td>
<td>Decimation with factor 3</td>
</tr>
<tr>
<td>100</td>
<td>Decimation with factor 4</td>
</tr>
<tr>
<td>101</td>
<td>Decimation with factor 8</td>
</tr>
<tr>
<td>110</td>
<td>Decimation with factor 16</td>
</tr>
<tr>
<td>111</td>
<td>Decimation with factor 32</td>
</tr>
</tbody>
</table>

Table 37. Third FIFO data set decimation setting

<table>
<thead>
<tr>
<th>DEC_DS3_FIFO2[2:0]</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Third FIFO data set not in FIFO</td>
</tr>
<tr>
<td>001</td>
<td>No decimation</td>
</tr>
<tr>
<td>010</td>
<td>Decimation with factor 2</td>
</tr>
<tr>
<td>011</td>
<td>Decimation with factor 3</td>
</tr>
<tr>
<td>100</td>
<td>Decimation with factor 4</td>
</tr>
<tr>
<td>101</td>
<td>Decimation with factor 8</td>
</tr>
<tr>
<td>110</td>
<td>Decimation with factor 16</td>
</tr>
<tr>
<td>111</td>
<td>Decimation with factor 32</td>
</tr>
</tbody>
</table>
10.8 FIFO_CTRL5 (0Ah)

FIFO control register (r/w).

Table 38. FIFO_CTRL5 register

<table>
<thead>
<tr>
<th>ODR_FIFO_3</th>
<th>ODR_FIFO_2</th>
<th>ODR_FIFO_1</th>
<th>ODR_FIFO_0</th>
<th>FIFO_MODE_2</th>
<th>FIFO_MODE_1</th>
<th>FIFO_MODE_0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. This bit must be set to '0' for the correct operation of the device.

Table 39. FIFO_CTRL5 register description

- **ODR_FIFO_[3:0]**: FIFO ODR selection, setting FIFO_MODE also. Default: 0000
 - For the configuration setting, refer to Table 40.
- **FIFO_MODE_[2:0]**: FIFO mode selection bits, setting ODR_FIFO also. Default value: 000
 - For the configuration setting, refer to Table 41.

Table 40. FIFO ODR selection

<table>
<thead>
<tr>
<th>ODR_FIFO_[3:0]</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>FIFO disabled</td>
</tr>
<tr>
<td>0001</td>
<td>FIFO ODR is set to 12.5 Hz</td>
</tr>
<tr>
<td>0010</td>
<td>FIFO ODR is set to 26 Hz</td>
</tr>
<tr>
<td>0011</td>
<td>FIFO ODR is set to 52 Hz</td>
</tr>
<tr>
<td>0100</td>
<td>FIFO ODR is set to 104 Hz</td>
</tr>
<tr>
<td>0101</td>
<td>FIFO ODR is set to 208 Hz</td>
</tr>
<tr>
<td>0110</td>
<td>FIFO ODR is set to 416 Hz</td>
</tr>
<tr>
<td>0111</td>
<td>FIFO ODR is set to 833 Hz</td>
</tr>
<tr>
<td>1000</td>
<td>FIFO ODR is set to 1.66 kHz</td>
</tr>
<tr>
<td>1001</td>
<td>FIFO ODR is set to 3.33 kHz</td>
</tr>
<tr>
<td>1010</td>
<td>FIFO ODR is set to 6.66 kHz</td>
</tr>
</tbody>
</table>

1. If the device is working at an ODR slower than the one selected, FIFO ODR is limited to that ODR value. Moreover, these bits are effective if the DATA_VALID_SEL FIFO bit of MASTER_CONFIG (1Ah) is set to 0.

Table 41. FIFO mode selection

<table>
<thead>
<tr>
<th>FIFO_MODE_[2:0]</th>
<th>Configuration mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Bypass mode. FIFO disabled.</td>
</tr>
<tr>
<td>001</td>
<td>FIFO mode. Stops collecting data when FIFO is full.</td>
</tr>
<tr>
<td>010</td>
<td>Reserved</td>
</tr>
<tr>
<td>011</td>
<td>Continuous mode until trigger is deasserted, then FIFO mode.</td>
</tr>
<tr>
<td>100</td>
<td>Bypass mode until trigger is deasserted, then Continuous mode.</td>
</tr>
<tr>
<td>101</td>
<td>Reserved</td>
</tr>
<tr>
<td>110</td>
<td>Continuous mode. If the FIFO is full, the new sample overwrites the older one.</td>
</tr>
<tr>
<td>111</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
10.9 **DRDY_PULSE_CFG (0Bh)**
Data-Ready configuration register (r/w).

Table 42. DRDY_PULSE_CFG register

<table>
<thead>
<tr>
<th>DRDY_PULSED</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
<th>0(1)</th>
</tr>
</thead>
</table>

1. *This bit must be set to ‘0’ for the correct operation of the device.*

Table 43. DRDY_PULSE_CFG register description

| DRDY_PULSED | Enable pulsed data-ready mode. Default value: 0
| | (0: data-ready latched mode. Returns to 0 only after output data has been read; 1: data-ready pulsed mode. The data-ready pulses are 75 µs long.) |

10.10 **INT1_CTRL (0Dh)**
INT1 pad control register (r/w).

Each bit in this register enables a signal to be carried through INT1. The pad’s output will supply the OR combination of the selected signals.

Table 44. INT1_CTRL register

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>INT1_FULL_FLAG</th>
<th>INT1_FIFO_OVR</th>
<th>INT1_FTH</th>
<th>INT1_BOOT</th>
<th>INT1_DRDY_G</th>
<th>INT1_DRDY_XL</th>
</tr>
</thead>
</table>

Table 45. INT1_CTRL register description

| INT1_FULL_FLAG | FIFO full flag interrupt enable on INT1 pad. Default value: 0
| | (0: disabled; 1: enabled) |
| INT1_FIFO_OVR | FIFO overrun interrupt on INT1 pad. Default value: 0
| | (0: disabled; 1: enabled) |
| INT1_FTH | FIFO threshold interrupt on INT1 pad. Default value: 0
| | (0: disabled; 1: enabled) |
| INT1_BOOT | Boot status available on INT1 pad. Default value: 0
| | (0: disabled; 1: enabled) |
| INT1_DRDY_G | Gyroscope data-ready on INT1 pad. Default value: 0
| | (0: disabled; 1: enabled) |
| INT1_DRDY_XL | Accelerometer data-ready on INT1 pad. Default value: 0
| | (0: disabled; 1: enabled) |
10.11 INT2_CTRL (0Eh)
INT2 pad control register (r/w).
Each bit in this register enables a signal to be carried through INT2. The pad’s output will supply the OR combination of the selected signals.

Table 46. INT2_CTRL register

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>INT2_FULL_FLAG</th>
<th>INT2_FIFO_OVR</th>
<th>INT2_FTH</th>
<th>INT2_DRDY_TEMP</th>
<th>INT2_DRDY_G</th>
<th>INT2_DRDY_XL</th>
</tr>
</thead>
</table>

Table 47. INT2_CTRL register description

- **INT2_FULL_FLAG**: FIFO full flag interrupt enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
- **INT2_FIFO_OVR**: FIFO overrun interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
- **INT2_FTH**: FIFO threshold interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
- **INT2_DRDY_TEMP**: Temperature data-ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
- **INT2_DRDY_G**: Gyroscope data-ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
- **INT2_DRDY_XL**: Accelerometer data-ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)

10.12 WHO_AM_I (0Fh)
Who_AM_I register (r). This register is a read-only register. Its value is fixed at 6Ah.

Table 48. WHO_AM_I register

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>
10.13 CTRL1 XL (10h)
Linear acceleration sensor control register 1 (r/w).

Table 49. CTRL1 XL register

<table>
<thead>
<tr>
<th>ODR_XL3</th>
<th>ODR_XL2</th>
<th>ODR_XL1</th>
<th>ODR_XL0</th>
<th>FS_XL1</th>
<th>FS_XL0</th>
<th>LPF1_BW_SEL</th>
<th>BW0_XL</th>
</tr>
</thead>
</table>

Table 50. CTRL1_XL register description

- **ODR_XL [3:0]** Output data rate and power mode selection. Default value: 0000 (see Table 51).
- **FS_XL [1:0]** Accelerometer full-scale selection. Default value: 00 (00: ±2 g; 01: ±16 g; 10: ±4 g; 11: ±8 g)
- **LPF1_BW_SEL** Accelerometer digital LPF (LPF1) bandwidth selection. For bandwidth selection refer to CTRL8_XL (17h).
- **BW0_XL** Accelerometer analog chain bandwidth selection (only for accelerometer ODR ≥ 1.67 kHz). (0: BW @ 1.5 kHz; 1: BW @ 400 Hz)

Table 51. Accelerometer ODR register setting

<table>
<thead>
<tr>
<th>ODR_XL3</th>
<th>ODR_XL2</th>
<th>ODR_XL1</th>
<th>ODR_XL0</th>
<th>ODR selection [Hz] when XL_HM_MODE = 1</th>
<th>ODR selection [Hz] when XL_HM_MODE = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Power-down</td>
<td>Power-down</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.6 Hz (low power only)</td>
<td>12.5 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>12.5 Hz (low power)</td>
<td>12.5 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>26 Hz (low power)</td>
<td>26 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>52 Hz (low power)</td>
<td>52 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>104 Hz (normal mode)</td>
<td>104 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>208 Hz (normal mode)</td>
<td>208 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>416 Hz (high performance)</td>
<td>416 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>833 Hz (high performance)</td>
<td>833 Hz (high performance)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.66 kHz (high performance)</td>
<td>1.66 kHz (high performance)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.33 kHz (high performance)</td>
<td>3.33 kHz (high performance)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6.66 kHz (high performance)</td>
<td>6.66 kHz (high performance)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>x</td>
<td>x</td>
<td>Not allowed</td>
<td>Not allowed</td>
</tr>
</tbody>
</table>
10.14 CTRL2_G (11h)
Angular rate sensor control register 2 (r/w).

Table 52. CTRL2_G register

<table>
<thead>
<tr>
<th>ODR_G3</th>
<th>ODR_G2</th>
<th>ODR_G1</th>
<th>ODR_G0</th>
<th>FS_G1</th>
<th>FS_G0</th>
<th>FS_125</th>
<th>O1(1)</th>
</tr>
</thead>
</table>

1. *This bit must be set to ‘0’ for the correct operation of the device.*

Table 53. CTRL2_G register description

<table>
<thead>
<tr>
<th>ODR_G [3:0]</th>
<th>Gyroscope output data rate selection. Default value: 0000 (Refer to Table 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS_G [1:0]</td>
<td>Gyroscope full-scale selection. Default value: 00 (00: ±250 dps; 01: ±500 dps; 10: ±1000 dps; 11: ±2000 dps)</td>
</tr>
<tr>
<td>FS_125</td>
<td>Gyroscope full-scale at ±125 dps. Default value: 0 (0: disabled; 1: enabled)</td>
</tr>
</tbody>
</table>

Table 54. Gyroscope ODR configuration setting

<table>
<thead>
<tr>
<th>ODR_G3</th>
<th>ODR_G2</th>
<th>ODR_G1</th>
<th>ODR_G0</th>
<th>ODR [Hz] when G_HM_MODE = 1</th>
<th>ODR [Hz] when G_HM_MODE = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Power down</td>
<td>Power down</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>12.5 Hz (low power)</td>
<td>12.5 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>26 Hz (low power)</td>
<td>26 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>52 Hz (low power)</td>
<td>52 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>104 Hz (normal mode)</td>
<td>104 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>208 Hz (normal mode)</td>
<td>208 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>416 Hz (high performance)</td>
<td>416 Hz (high performance)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>833 Hz (high performance)</td>
<td>833 Hz (high performance)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.66 kHz (high performance)</td>
<td>1.66 kHz (high performance)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.33 kHz (high performance)</td>
<td>3.33 kHz (high performance)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6.66 kHz (high performance)</td>
<td>6.66 kHz (high performance)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Not available</td>
<td>Not available</td>
</tr>
</tbody>
</table>
10.15 CTRL3_C (12h)

Control register 3 (r/w).

Table 55. CTRL3_C register

<table>
<thead>
<tr>
<th>Column1</th>
<th>Column2</th>
<th>Column3</th>
<th>Column4</th>
<th>Column5</th>
<th>Column6</th>
<th>Column7</th>
<th>Column8</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOT</td>
<td>BDU</td>
<td>H_LACTIVE</td>
<td>PP_OD</td>
<td>SIM</td>
<td>IF_INC</td>
<td>BLE</td>
<td>SW_RESET</td>
</tr>
</tbody>
</table>

Table 56. CTRL3_C register description

<table>
<thead>
<tr>
<th>Column1</th>
<th>Description</th>
</tr>
</thead>
</table>
| BOOT | Reboots memory content. Default value: 0
 (0: normal mode; 1: reboot memory content) |
| BDU | Block Data Update. Default value: 0
 (0: continuous update; 1: output registers not updated until MSB and LSB have been read) |
| H_LACTIVE | Interrupt activation level. Default value: 0
 (0: interrupt output pads active high; 1: interrupt output pads active low) |
| PP_OD | Push-pull/open-drain selection on INT1 and INT2 pads. Default value: 0
 (0: push-pull mode; 1: open-drain mode) |
| SIM | SPI Serial Interface Mode selection. Default value: 0
 (0: 4-wire interface; 1: 3-wire interface) |
| IF_INC | Register address automatically incremented during a multiple byte access with a serial interface (I²C or SPI). Default value: 1
 (0: disabled; 1: enabled) |
| BLE | Big/Little Endian Data selection. Default value 0
 (0: data LSB @ lower address; 1: data MSB @ lower address) |
| SW_RESET | Software reset. Default value: 0
 (0: normal mode; 1: reset device)
 This bit is automatically cleared. |
10.16 **CTRL4_C (13h)**
Control register 4 (r/w).

Table 57. **CTRL4_C register**

<table>
<thead>
<tr>
<th>DEN_XL_EN</th>
<th>SLEEP</th>
<th>INT2_on_INT1</th>
<th>DEN_DRDY_INT1</th>
<th>DRDY_MASK</th>
<th>I2C_disable</th>
<th>LPF1_SEL_G</th>
<th>0(1)</th>
</tr>
</thead>
</table>

1. This bit must be set to '0' for the correct operation of the device.

Table 58. **CTRL4_C register description**

<table>
<thead>
<tr>
<th>DEN_XL_EN</th>
<th>Extend DEN functionality to accelerometer sensor. Default value: 0 (0: disabled; 1: enabled)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLEEP</td>
<td>Gyroscope sleep mode enable. Default value: 0 (0: disabled; 1: enabled)</td>
</tr>
<tr>
<td>INT2_on_INT1</td>
<td>All interrupt signals available on INT1 pad enable. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pads; 1: all interrupt signals in logic or on INT1 pad)</td>
</tr>
<tr>
<td>DEN_DRDY_INT1</td>
<td>DEN DRDY signal on INT1 pad. Default value: 0 (0: disabled; 1: enabled)</td>
</tr>
<tr>
<td>DRDY_MASK</td>
<td>Configuration 1 data available enable bit. Default value: 0 (0: DA timer disabled; 1: DA timer enabled)</td>
</tr>
<tr>
<td>I2C_disable</td>
<td>Disable I²C interface. Default value: 0 (0: both I²C and SPI enabled; 1: I²C disabled, SPI only)</td>
</tr>
<tr>
<td>LPF1_SEL_G</td>
<td>Enable gyroscope digital LPF1 if auxiliary SPI is disabled; the bandwidth can be selected through FTYPE [1:0] in CTRL6_C (15h) (0: disabled; 1: enabled)</td>
</tr>
</tbody>
</table>

10.17 **CTRL5_C (14h)**
Control register 5 (r/w).

Table 59. **CTRL5_C register**

<table>
<thead>
<tr>
<th>ROUNDING2</th>
<th>ROUNDING1</th>
<th>ROUNDING0</th>
<th>DEN_LH</th>
<th>ST1_G</th>
<th>ST0_G</th>
<th>ST1_XL</th>
<th>ST0_XL</th>
</tr>
</thead>
</table>

Table 60. **CTRL5_C register description**

<table>
<thead>
<tr>
<th>ROUNDING[2:0]</th>
<th>Circular burst-mode (rounding) read from output registers through the primary interface. Default value: 000 (000: no rounding; others: refer to Table 61)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEN_LH</td>
<td>DEN active level configuration. Default value: 0 (0: active low; 1: active high)</td>
</tr>
<tr>
<td>ST_G[1:0]</td>
<td>Angular rate sensor self-test enable. Default value: 00 (00: self-test disabled; others: refer to Table 62)</td>
</tr>
<tr>
<td>ST_XL[1:0]</td>
<td>Linear acceleration sensor self-test enable. Default value: 00 (00: self-test disabled; others: refer to Table 63)</td>
</tr>
</tbody>
</table>
Table 61. Output registers rounding pattern

<table>
<thead>
<tr>
<th>ROUNDEL[2:0]</th>
<th>Rounding pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>No rounding</td>
</tr>
<tr>
<td>001</td>
<td>Accelerometer only</td>
</tr>
<tr>
<td>010</td>
<td>Gyroscope only</td>
</tr>
<tr>
<td>011</td>
<td>Gyroscope + accelerometer</td>
</tr>
<tr>
<td>100</td>
<td>Registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h) only</td>
</tr>
<tr>
<td>101</td>
<td>Accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h)</td>
</tr>
<tr>
<td>110</td>
<td>Gyroscope + accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h) and registers from SENSORHUB7_REG (34h) to SENSORHUB12_REG (39h)</td>
</tr>
<tr>
<td>111</td>
<td>Gyroscope + accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h)</td>
</tr>
</tbody>
</table>

Table 62. Angular rate sensor self-test mode selection

<table>
<thead>
<tr>
<th>ST1_G</th>
<th>ST0_G</th>
<th>Self-test mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Normal mode</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Positive sign self-test</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Not allowed</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Negative sign self-test</td>
</tr>
</tbody>
</table>

Table 63. Linear acceleration sensor self-test mode selection

<table>
<thead>
<tr>
<th>ST1_XL</th>
<th>ST0_XL</th>
<th>Self-test mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Normal mode</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Positive sign self-test</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Negative sign self-test</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Not allowed</td>
</tr>
</tbody>
</table>
10.18 CTRL6_C (15h)
Angular rate sensor control register 6 (r/w).

Table 64. CTRL6_C register

<table>
<thead>
<tr>
<th>TRIG_EN</th>
<th>LVL1_EN</th>
<th>LVL2_EN</th>
<th>XL_HM_MODE</th>
<th>USR_OFF_W</th>
<th>0(1)</th>
<th>FTYPE_1</th>
<th>FTYPE_0</th>
</tr>
</thead>
</table>

1. This bit must be set to '0' for the correct operation of the device.

Table 65. CTRL6_C register description

<table>
<thead>
<tr>
<th>TRIG_EN</th>
<th>DEN data edge-sensitive trigger enable. Refer to Table 66.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVL1_EN</td>
<td>DEN data level-sensitive trigger enable. Refer to Table 66.</td>
</tr>
<tr>
<td>LVL2_EN</td>
<td>DEN level-sensitive latched enable. Refer to Table 66.</td>
</tr>
<tr>
<td>XL_HM_MODE</td>
<td>High-performance operating mode disable for accelerometer. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: high-performance operating mode enabled;</td>
</tr>
<tr>
<td></td>
<td>1: high-performance operating mode disabled)</td>
</tr>
<tr>
<td>USR_OFF_W</td>
<td>Weight of XL user offset bits of registers X_OFS_USR (73h), Section 10.91 Y_OFS_USR (74h), Z_OFS_USR (75h)</td>
</tr>
<tr>
<td></td>
<td>(0: 2(^{10}) g/LSB;</td>
</tr>
<tr>
<td></td>
<td>1: 2(^{6}) g/LSB)</td>
</tr>
<tr>
<td></td>
<td>Table 67 shows the selectable bandwidth values (available if auxiliary SPI is disabled).</td>
</tr>
</tbody>
</table>

Table 66. Trigger mode selection

<table>
<thead>
<tr>
<th>TRIG_EN, LVL1_EN, LVL2_EN</th>
<th>Trigger mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Edge-sensitive trigger mode is selected</td>
</tr>
<tr>
<td>010</td>
<td>Level-sensitive trigger mode is selected</td>
</tr>
<tr>
<td>011</td>
<td>Level-sensitive latched mode is selected</td>
</tr>
<tr>
<td>110</td>
<td>Level-sensitive FIFO enable mode is selected</td>
</tr>
</tbody>
</table>

Table 67. Gyroscope LPF1 bandwidth selection

<table>
<thead>
<tr>
<th>FTYPE[1:0]</th>
<th>ODR = 800 Hz</th>
<th>ODR = 1.6 kHz</th>
<th>ODR = 3.3 kHz</th>
<th>ODR = 6.6 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BW</td>
<td>Phase delay (1)</td>
<td>BW</td>
<td>Phase delay (1)</td>
</tr>
<tr>
<td>00</td>
<td>245 Hz</td>
<td>14°</td>
<td>315 Hz</td>
<td>10°</td>
</tr>
<tr>
<td>01</td>
<td>195 Hz</td>
<td>17°</td>
<td>224 Hz</td>
<td>12°</td>
</tr>
<tr>
<td>10</td>
<td>155 Hz</td>
<td>19°</td>
<td>168 Hz</td>
<td>15°</td>
</tr>
<tr>
<td>11</td>
<td>293 Hz</td>
<td>13°</td>
<td>505 Hz</td>
<td>8°</td>
</tr>
</tbody>
</table>

1. Phase delay @ 20 Hz
10.19 **CTRL7_G (16h)**
Angular rate sensor control register 7 (r/w).

<table>
<thead>
<tr>
<th>Table 68. CTRL7_G register</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_HM_MODE</td>
</tr>
</tbody>
</table>

1. **This bit must be set to '0' for the correct operation of the device.**

<table>
<thead>
<tr>
<th>Table 69. CTRL7_G register description</th>
</tr>
</thead>
</table>
| **G_HM_MODE** | High-performance operating mode disable for gyroscope. Default: 0
(0: high-performance operating mode enabled;
1: high-performance operating mode disabled) |
| **HP_EN_G** | Gyroscope digital high-pass filter enable. The filter is enabled only if the gyro is in HP mode. Default value: 0
(0: HPF disabled; 1: HPF enabled) |
| **HPM_G[1:0]** | Gyroscope digital HP filter cutoff selection. Default: 00
(00: 16 mHz;
01: 65 mHz;
10: 260 mHz;
11: 1.04 Hz) |
| **ROUNDING_STATUS** | Source register rounding function on WAKE_UP_SRC (1Bh), TAP_SRC (1Ch), D6D_SRC (1Dh), STATUS_REG (1Eh), and FUNC_SRC1 (53h) registers in the primary interface.
Default value: 0
(0: rounding disabled; 1: rounding enabled) |
10.20 CTRL8_XL (17h)
Linear acceleration sensor control register 8 (r/w).

Table 70. CTRL8_XL register

<table>
<thead>
<tr>
<th>LPF2_XL_EN</th>
<th>HPCF_XL1</th>
<th>HPCF_XL0</th>
<th>HP_REF_MODE</th>
<th>INPUT_COMPOSITE</th>
<th>HP_SLOPE_XL_EN</th>
<th>0(1)</th>
<th>LOW_PASS_ON_6D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. This bit must be set to ‘0’ for the correct operation of the device.

Table 71. CTRL8_XL register description

- **LPF2_XL_EN**: Accelerometer low-pass filter LPF2 selection. Refer to Figure 9.
- **HPCF_XL[1:0]**: Accelerometer LPF2 and high-pass filter configuration and cutoff setting. Refer to Table 72.
- **HP_REF_MODE**: Enable HP filter reference mode. Default value: 0(1)
 - (0: disabled; 1: enabled)
- **INPUT_COMPOSITE**: Composite filter input selection. Default: 0
 - (0: ODR/2 low pass filtered sent to composite filter (default)
 - 1: ODR/4 low pass filtered sent to composite filter)
- **HP_SLOPE_XL_EN**: Accelerometer slope filter / high-pass filter selection. Refer to Figure 9.
- **LOW_PASS_ON_6D**: LPF2 on 6D function selection. Refer to Figure 9.

1. When enabled, the first output data has to be discarded.

Table 72. Accelerometer bandwidth selection

<table>
<thead>
<tr>
<th>HP_SLOPE_XL_EN</th>
<th>LPF2_XL_EN</th>
<th>LPF1_BW_SEL</th>
<th>HPCF_XL[1:0]</th>
<th>INPUT_COMPOSITE</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0(1)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>ODR/2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>00</td>
<td>1 (low noise)</td>
<td>ODR/50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>01</td>
<td></td>
<td>0 (low latency)</td>
<td>ODR/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>ODR/9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td>ODR/400</td>
</tr>
<tr>
<td>1(2)</td>
<td>-</td>
<td>-</td>
<td>00</td>
<td></td>
<td>ODR/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>01</td>
<td></td>
<td>ODR/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>ODR/9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td>ODR/400</td>
</tr>
</tbody>
</table>

1. The bandwidth column is related to LPF1 if LPF2_XL_EN = 0 or to LPF2 if LPF2_XL_EN = 1.
2. The bandwidth column is related to the slope filter if HPCF_XL[1:0] = 00 or to the HP filter if HPCF_XL[1:0] = 01/10/11.
10.21 **CTRL9_XL (18h)**
Linear acceleration sensor control register 9 (r/w).

Table 73. CTRL9_XL register

<table>
<thead>
<tr>
<th>DEN_X</th>
<th>DEN_Y</th>
<th>DEN_Z</th>
<th>DEN_XL_G</th>
<th>SOFT_EN</th>
<th>0(1)</th>
<th>0(1)</th>
</tr>
</thead>
</table>

1. *This bit must be set to ‘0’ for the correct operation of the device.*

Table 74. CTRL9_XL register description

| DEN_X | DEN value stored in LSB of X-axis. Default: 1
(0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB) |
|-------|--|
| DEN_Y | DEN value stored in LSB of Y-axis. Default: 1
(0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB) |
| DEN_Z | DEN value stored in LSB of Z-axis. Default: 1
(0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB) |
| DEN_XL_G | DEN stamping sensor selection. Default: 0
(0: DEN pin info stamped in the gyroscope axis selected by bits [7:5]; 1: DEN pin info stamped in the accelerometer axis selected by bits [7:5]) |
| SOFT_EN | Enable soft-iron correction algorithm for magnetometer. Default: 0(1)
(0: soft-iron correction algorithm disabled; 1: soft-iron correction algorithm enabled) |

1. *This bit is effective if the IRON_EN bit of MASTER_CONFIG (1Ah) and FUNC_EN bit of CTRL10_C (19h) are set to 1.*

10.22 **CTRL10_C (19h)**
Control register 10 (r/w).

Table 75. CTRL10_C register

<table>
<thead>
<tr>
<th>0(1)</th>
<th>0(1)</th>
<th>TIMER_EN</th>
<th>0(1)</th>
<th>TILT_EN</th>
<th>FUNC_EN</th>
<th>0(1)</th>
<th>0(1)</th>
</tr>
</thead>
</table>

1. *This bit must be set to ‘0’ for the correct operation of the device.*

Table 76. CTRL10_C register description

| TIMER_EN | Enable timestamp count. The count is saved in TIMESTAMP0_REG (40h), TIMESTAMP1_REG (41h) and
TIMESTAMP2_REG (42h). Default: 0
(0: timestamp count disabled; 1: timestamp count enabled) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TILT_EN</td>
<td>Enable tilt calculation.1(1)</td>
</tr>
</tbody>
</table>
| FUNC_EN | Enable embedded functionalities (tilt, sensor hub and ironing). Default: 0
(0: disable functionalities of embedded functions and accelerometer filters; 1: enable functionalities of embedded functions and accelerometer filters) |

1. *This is effective if the FUNC_EN bit is set to ‘1’.*
10.23 **MASTER_CONFIG (1Ah)**
Master configuration register (r/w).

Table 77. MASTER_CONFIG register

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRDY_ON_INT1</td>
<td>Manage the master DRDY signal on INT1 pad. Default: 0</td>
</tr>
<tr>
<td></td>
<td>(0: disable master DRDY on INT1; 1: enable master DRDY on INT1)</td>
</tr>
<tr>
<td>DATA_VALID_SEL_FIFO</td>
<td>Selection of FIFO data-valid signal. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: data-valid signal used to write data in FIFO is the XL/Gyro data-ready;</td>
</tr>
<tr>
<td></td>
<td>1: data-valid signal used to write data in FIFO is the sensor hub data-ready)</td>
</tr>
<tr>
<td>START_CONFIG</td>
<td>Sensor hub trigger signal selection. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: sensor hub signal is the XL/Gyro data-ready; 1: sensor hub signal external from INT2 pad.)</td>
</tr>
<tr>
<td>PULL_UP_EN</td>
<td>Auxiliary I²C pull-up. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: internal pull-up on auxiliary I²C line disabled; 1: internal pull-up on auxiliary I²C line enabled)</td>
</tr>
<tr>
<td>PASS_THROUGH_MODE</td>
<td>I²C interface pass-through. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: pass-through disabled; 1: pass-through enabled)</td>
</tr>
<tr>
<td>IRON_EN</td>
<td>Enable hard-iron correction algorithm for magnetometer. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: hard-iron correction algorithm disabled; 1: hard-iron correction algorithm enabled)</td>
</tr>
<tr>
<td>MASTER_ON</td>
<td>Sensor hub I²C master enable. Default: 0</td>
</tr>
<tr>
<td></td>
<td>(0: master I²C of sensor hub disabled; 1: master I²C of sensor hub enabled)</td>
</tr>
</tbody>
</table>

1. This bit must be set to ‘0’ for the correct operation of the device.

Table 78. MASTER_CONFIG register description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRDY_ON_INT1</td>
<td>Manage the master DRDY signal on INT1 pad. Default: 0</td>
</tr>
<tr>
<td></td>
<td>(0: disable master DRDY on INT1; 1: enable master DRDY on INT1)</td>
</tr>
<tr>
<td>DATA_VALID_SEL_FIFO</td>
<td>Selection of FIFO data-valid signal. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: data-valid signal used to write data in FIFO is the XL/Gyro data-ready;</td>
</tr>
<tr>
<td></td>
<td>1: data-valid signal used to write data in FIFO is the sensor hub data-ready)</td>
</tr>
<tr>
<td>START_CONFIG</td>
<td>Sensor hub trigger signal selection. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: sensor hub signal is the XL/Gyro data-ready; 1: sensor hub signal external from INT2 pad.)</td>
</tr>
<tr>
<td>PULL_UP_EN</td>
<td>Auxiliary I²C pull-up. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: internal pull-up on auxiliary I²C line disabled; 1: internal pull-up on auxiliary I²C line enabled)</td>
</tr>
<tr>
<td>PASS_THROUGH_MODE</td>
<td>I²C interface pass-through. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: pass-through disabled; 1: pass-through enabled)</td>
</tr>
<tr>
<td>IRON_EN</td>
<td>Enable hard-iron correction algorithm for magnetometer. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: hard-iron correction algorithm disabled; 1: hard-iron correction algorithm enabled)</td>
</tr>
<tr>
<td>MASTER_ON</td>
<td>Sensor hub I²C master enable. Default: 0</td>
</tr>
<tr>
<td></td>
<td>(0: master I²C of sensor hub disabled; 1: master I²C of sensor hub enabled)</td>
</tr>
</tbody>
</table>

1. This is effective if the FUNC_EN bit is set to ‘1’.
10.24 \textbf{WAKE_UP_SRC (1Bh)}

Wake-up interrupt source register (r).

Table 79. \textbf{WAKE_UP_SRC register}

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>FF_IA</th>
<th>SLEEP_STATE_IA</th>
<th>WU_IA</th>
<th>X_WU</th>
<th>Y_WU</th>
<th>Z_WU</th>
</tr>
</thead>
</table>

Table 80. \textbf{WAKE_UP_SRC register description}

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF_IA</td>
<td>Free-fall event detection status. Default: 0</td>
</tr>
<tr>
<td></td>
<td>(0: free-fall event not detected; 1: free-fall event detected)</td>
</tr>
<tr>
<td>SLEEP_STATE_IA</td>
<td>Sleep event status. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: sleep event not detected; 1: sleep event detected)</td>
</tr>
<tr>
<td>WU_IA</td>
<td>Wakeup event detection status. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: wakeup event not detected; 1: wakeup event detected)</td>
</tr>
<tr>
<td>X_WU</td>
<td>Wakeup event detection status on X-axis. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)</td>
</tr>
<tr>
<td>Y_WU</td>
<td>Wakeup event detection status on Y-axis. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)</td>
</tr>
<tr>
<td>Z_WU</td>
<td>Wakeup event detection status on Z-axis. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)</td>
</tr>
</tbody>
</table>
10.25 TAP_SRC (1Ch)

Tap source register (r).

Table 81. TAP_SRC register

<table>
<thead>
<tr>
<th></th>
<th>TAP_IA</th>
<th>SINGLE_TAP</th>
<th>DOUBLE_TAP</th>
<th>TAP_SIGN</th>
<th>X_TAP</th>
<th>Y_TAP</th>
<th>Z_TAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 82. TAP_SRC register description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAP_IA</td>
<td>Tap event detection status. Default: 0</td>
</tr>
<tr>
<td></td>
<td>(0: tap event not detected; 1: tap event detected)</td>
</tr>
<tr>
<td>SINGLE_TAP</td>
<td>Single-tap event status. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: single tap event not detected; 1: single tap event detected)</td>
</tr>
<tr>
<td>DOUBLE_TAP</td>
<td>Double-tap event detection status. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: double-tap event not detected; 1: double-tap event detected.)</td>
</tr>
<tr>
<td>TAP_SIGN</td>
<td>Sign of acceleration detected by tap event. Default: 0</td>
</tr>
<tr>
<td></td>
<td>(0: positive sign of acceleration detected by tap event;</td>
</tr>
<tr>
<td></td>
<td>1: negative sign of acceleration detected by tap event)</td>
</tr>
<tr>
<td>X_TAP</td>
<td>Tap event detection status on X-axis. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: tap event on X-axis not detected; 1: tap event on X-axis detected)</td>
</tr>
<tr>
<td>Y_TAP</td>
<td>Tap event detection status on Y-axis. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)</td>
</tr>
<tr>
<td>Z_TAP</td>
<td>Tap event detection status on Z-axis. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)</td>
</tr>
</tbody>
</table>
10.26 D6D_SRC (1Dh)
6D orientation source register (r)

Table 83. D6D_SRC register

<table>
<thead>
<tr>
<th>DEN_DRDY</th>
<th>D6D_IA</th>
<th>ZH</th>
<th>ZL</th>
<th>YH</th>
<th>YL</th>
<th>XH</th>
<th>XL</th>
</tr>
</thead>
</table>

Table 84. D6D_SRC register description

<table>
<thead>
<tr>
<th>DEN_DRDY</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEN data-ready signal. It is set high when data output is related to the data coming from a DEN active condition. (1)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D6D_IA</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZH</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-axis high event (over threshold). Default value: 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-axis low event (under threshold). Default value: 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YH</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-axis high event (over threshold). Default value: 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-axis low event (under threshold). Default value: 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XH</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-axis high event (over threshold). Default value: 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-axis low event (under threshold). Default value: 0</td>
<td></td>
</tr>
</tbody>
</table>

1. The DEN data-ready signal can be latched or pulsed depending on the value of the dataready_pulsed bit of the DRDY_PULSE_CFG (0Bh) register.

10.27 STATUS_REG/STATUS_SPIAux (1Eh)
The STATUS_REG register is read by the primary interface SPI/I²C (r).

Table 85. STATUS_REG register

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>TDA</th>
<th>GDA</th>
<th>XLDA</th>
</tr>
</thead>
</table>

Table 86. STATUS_REG register description

<table>
<thead>
<tr>
<th>TDA</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature new data available. Default: 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GDA</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gyroscope new data available. Default value: 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XLDA</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerometer new data available. Default value: 0</td>
<td></td>
</tr>
</tbody>
</table>
The STATUS_SPIAux register is read by the auxiliary SPI.

Table 87. STATUS_SPIAux register

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>GYRO_SETTLING</td>
<td>GDA</td>
<td>XLDA</td>
<td></td>
</tr>
</tbody>
</table>

Table 88. STATUS_SPIAux description

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GYRO_SETTLING</td>
<td>High when the gyroscope output is in the settling phase</td>
</tr>
<tr>
<td>GDA</td>
<td>Gyroscope data available (reset when one of the high parts of the output data is read)</td>
</tr>
<tr>
<td>XLDA</td>
<td>Accelerometer data available (reset when one of the high parts of the output data is read)</td>
</tr>
</tbody>
</table>

10.28 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 89. OUT_TEMP_L register

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp7</td>
<td>Temp6</td>
<td>Temp5</td>
<td>Temp4</td>
<td>Temp3</td>
<td>Temp2</td>
<td>Temp1</td>
<td>Temp0</td>
</tr>
</tbody>
</table>

Table 90. OUT_TEMP_H register

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp15</td>
<td>Temp14</td>
<td>Temp13</td>
<td>Temp12</td>
<td>Temp11</td>
<td>Temp10</td>
<td>Temp9</td>
<td>Temp8</td>
</tr>
</tbody>
</table>

Table 91. OUT_TEMP register description

<table>
<thead>
<tr>
<th>Bit [15:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp[15:0]</td>
<td>Temperature sensor output data
The value is expressed as two's complement sign extended on the MSB.</td>
</tr>
</tbody>
</table>

10.29 OUTX_L_G (22h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (**CTRL2_G (11h)**) of gyro general-purpose interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 92. OUTX_L_G register

<table>
<thead>
<tr>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>D7</td>
<td>D6</td>
<td>D5</td>
<td>D4</td>
<td>D3</td>
<td>D2</td>
<td>D1</td>
<td>D0</td>
</tr>
</tbody>
</table>

Table 93. OUTX_L_G register description

<table>
<thead>
<tr>
<th>Bit [7:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D[7:0]</td>
<td>Pitch axis (X) angular rate value (LSbyte)
D[15:0] expressed in two's complement and its value depends on the interface used:
SPI1/I²C: Gyro GP chain pitch axis output
SPI2: Gyro OIS chain pitch axis output</td>
</tr>
</tbody>
</table>
10.30 **OUTX_H_G (23h)**

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro general-purpose interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

<table>
<thead>
<tr>
<th>D15</th>
<th>D14</th>
<th>D13</th>
<th>D12</th>
<th>D11</th>
<th>D10</th>
<th>D9</th>
<th>D8</th>
</tr>
</thead>
</table>

Table 94. OUTX_H_G register

<table>
<thead>
<tr>
<th>D[15:8]</th>
<th>Pitch axis (X) angular rate value (MSbyte)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D[15:0] expressed in two’s complement and its value depends on the interface used:</td>
</tr>
<tr>
<td></td>
<td>SPI1/I²C: Gyro GP chain pitch axis output</td>
</tr>
<tr>
<td></td>
<td>SPI2: Gyro OIS chain pitch axis output</td>
</tr>
</tbody>
</table>

Table 95. OUTX_H_G register description

10.31 **OUTY_L_G (24h)**

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two’s complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro general-purpose interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
</table>

Table 96. OUTY_L_G register

<table>
<thead>
<tr>
<th>D[7:0]</th>
<th>Roll axis (Y) angular rate value (LSbyte)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D[15:0] expressed in two’s complement and its value depends on the interface used:</td>
</tr>
<tr>
<td></td>
<td>SPI1/I²C: Gyro GP chain roll axis output</td>
</tr>
<tr>
<td></td>
<td>SPI2: Gyro OIS chain roll axis output</td>
</tr>
</tbody>
</table>

Table 97. OUTY_L_G register description
10.32 OUTY_H_G (25h)
Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two’s complement.
If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro general-purpose interface.
If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

<table>
<thead>
<tr>
<th>D15</th>
<th>D14</th>
<th>D13</th>
<th>D12</th>
<th>D11</th>
<th>D10</th>
<th>D9</th>
<th>D8</th>
</tr>
</thead>
</table>

Table 99. OUTY_H_G register description

<table>
<thead>
<tr>
<th>D[15:8]</th>
<th>Roll axis (Y) angular rate value (MSbyte)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D[15:0] expressed in two’s complement and its value depends on the interface used:</td>
</tr>
<tr>
<td></td>
<td>SPI1/I²C: Gyro GP chain roll axis output</td>
</tr>
<tr>
<td></td>
<td>SPI2: Gyro OIS chain roll axis output</td>
</tr>
</tbody>
</table>

10.33 OUTZ_L_G (26h)
Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two’s complement.
If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro general-purpose interface.
If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
</table>

Table 101. OUTZ_L_G register description

<table>
<thead>
<tr>
<th>D[7:0]</th>
<th>Yaw axis (Z) angular rate value (LSbyte)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D[15:0] expressed in two’s complement and its value depends on the interface used:</td>
</tr>
<tr>
<td></td>
<td>SPI1/I²C: Gyro GP chain yaw axis output</td>
</tr>
<tr>
<td></td>
<td>SPI2: Gyro OIS chain yaw axis output</td>
</tr>
</tbody>
</table>
10.34 OUTZ_H_G (27h)
Angular rate sensor Yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two’s complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro general-purpose interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

<table>
<thead>
<tr>
<th>D15</th>
<th>D14</th>
<th>D13</th>
<th>D12</th>
<th>D11</th>
<th>D10</th>
<th>D9</th>
<th>D8</th>
</tr>
</thead>
</table>

Table 103. OUTZ_H_G register description

<table>
<thead>
<tr>
<th>D[15:8]</th>
<th>Yaw axis (Z) angular rate value (MSbyte)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D[15:0]</td>
<td>expressed in two’s complement and its value depends on the interface used:</td>
</tr>
<tr>
<td></td>
<td>SPI1/I²C: Gyro GP chain yaw axis output</td>
</tr>
<tr>
<td></td>
<td>SPI2: Gyro OIS chain yaw axis output</td>
</tr>
</tbody>
</table>

10.35 OUTX_L_XL (28h)
Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two’s complement.

Accelerometer data can be read also from AUX SPI @6.6 kHz.

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
</table>

Table 105. OUTX_L_XL register description

<table>
<thead>
<tr>
<th>D[7:0]</th>
<th>X-axis linear acceleration value (LSbyte)</th>
</tr>
</thead>
</table>

10.36 OUTX_H_XL (29h)
Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two’s complement.

Accelerometer data can be read also from AUX SPI @6.6 kHz.

<table>
<thead>
<tr>
<th>D15</th>
<th>D14</th>
<th>D13</th>
<th>D12</th>
<th>D11</th>
<th>D10</th>
<th>D9</th>
<th>D8</th>
</tr>
</thead>
</table>

Table 107. OUTX_H_XL register description

<table>
<thead>
<tr>
<th>D[15:8]</th>
<th>X-axis linear acceleration value (MSbyte)</th>
</tr>
</thead>
</table>
10.37 OUTY_L_XL (2Ah)
Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.
Accelerometer data can be read also from AUX SPI @6.6 kHz.

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
</table>

Table 108. OUTY_L_XL register

<table>
<thead>
<tr>
<th>D[7:0]</th>
<th>Y-axis linear acceleration value (LSbyte)</th>
</tr>
</thead>
</table>

10.38 OUTY_H_XL (2Bh)
Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.
Accelerometer data can be read also from AUX SPI @6.6 kHz.

<table>
<thead>
<tr>
<th>D15</th>
<th>D14</th>
<th>D13</th>
<th>D12</th>
<th>D11</th>
<th>D10</th>
<th>D9</th>
<th>D8</th>
</tr>
</thead>
</table>

Table 110. OUTY_H_XL register

<table>
<thead>
<tr>
<th>D[15:8]</th>
<th>Y-axis linear acceleration value (MSbyte)</th>
</tr>
</thead>
</table>

10.39 OUTZ_L_XL (2Ch)
Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two’s complement.
Accelerometer data can be read also from AUX SPI @6.6 kHz.

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
</table>

Table 112. OUTZ_L_XL register

<table>
<thead>
<tr>
<th>D[7:0]</th>
<th>Z-axis linear acceleration value (LSbyte)</th>
</tr>
</thead>
</table>
10.40 OUTZ_H_XL (2Dh)
Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two’s complement.
Accelerometer data can be read also from AUX SPI at 6.6 kHz.

<table>
<thead>
<tr>
<th>Table 114. OUTZ_H_XL register</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 115. OUTZ_H_XL register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D[15:8]</td>
</tr>
</tbody>
</table>

10.41 SENSORHUB1_REG (2Eh)
First byte associated to external sensors. The content of the register is consistent with the SLAVE_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>Table 116. SENSORHUB1_REG register</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHub1_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 117. SENSORHUB1_REG register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHub1_[7:0]</td>
</tr>
</tbody>
</table>

10.42 SENSORHUB2_REG (2Fh)
Second byte associated to external sensors. The content of the register is consistent with the SLAVE_CONFIG number of read operations configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>Table 118. SENSORHUB2_REG register</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHub2_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 119. SENSORHUB2_REG register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHub2_[7:0]</td>
</tr>
</tbody>
</table>

10.43 SENSORHUB3_REG (30h)
Third byte associated to external sensors. The content of the register is consistent with the SLAVE_CONFIG number of read operations configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>Table 120. SENSORHUB3_REG register</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHub3_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 121. SENSORHUB3_REG register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHub3_[7:0]</td>
</tr>
</tbody>
</table>
10.44 **SENSORHUB4_REG (31h)**
Fourth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>SHub4_7</th>
<th>SHub4_6</th>
<th>SHub4_5</th>
<th>SHub4_4</th>
<th>SHub4_3</th>
<th>SHub4_2</th>
<th>SHub4_1</th>
<th>SHub4_0</th>
</tr>
</thead>
</table>

Table 122. SENSORHUB4_REG register

<table>
<thead>
<tr>
<th>SHub4_[7:0]</th>
<th>Fourth byte associated to external sensors</th>
</tr>
</thead>
</table>

10.45 **SENSORHUB5_REG (32h)**
Fifth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>SHub5_7</th>
<th>SHub5_6</th>
<th>SHub5_5</th>
<th>SHub5_4</th>
<th>SHub5_3</th>
<th>SHub5_2</th>
<th>SHub5_1</th>
<th>SHub5_0</th>
</tr>
</thead>
</table>

Table 123. SENSORHUB4_REG register description

<table>
<thead>
<tr>
<th>SHub5_[7:0]</th>
<th>Fifth byte associated to external sensors</th>
</tr>
</thead>
</table>

10.46 **SENSORHUB6_REG (33h)**
Sixth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>SHub6_7</th>
<th>SHub6_6</th>
<th>SHub6_5</th>
<th>SHub6_4</th>
<th>SHub6_3</th>
<th>SHub6_2</th>
<th>SHub6_1</th>
<th>SHub6_0</th>
</tr>
</thead>
</table>

Table 124. SENSORHUB5_REG register

<table>
<thead>
<tr>
<th>SHub6_[7:0]</th>
<th>Sixth byte associated to external sensors</th>
</tr>
</thead>
</table>

10.47 **SENSORHUB7_REG (34h)**
Seventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>SHub7_7</th>
<th>SHub7_6</th>
<th>SHub7_5</th>
<th>SHub7_4</th>
<th>SHub7_3</th>
<th>SHub7_2</th>
<th>SHub7_1</th>
<th>SHub7_0</th>
</tr>
</thead>
</table>

Table 125. SENSORHUB5_REG register description

<table>
<thead>
<tr>
<th>SHub7_[7:0]</th>
<th>Seventh byte associated to external sensors</th>
</tr>
</thead>
</table>
10.48 **SENSORHUB8_REG (35h)**
Eighth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>SHub8_7</th>
<th>SHub8_6</th>
<th>SHub8_5</th>
<th>SHub8_4</th>
<th>SHub8_3</th>
<th>SHub8_2</th>
<th>SHub8_1</th>
<th>SHub8_0</th>
</tr>
</thead>
</table>

Table 130. SENSORHUB8_REG register

Table 131. SENSORHUB8_REG register description

<table>
<thead>
<tr>
<th>SHub8_[7:0]</th>
<th>Eighth byte associated to external sensors</th>
</tr>
</thead>
</table>

10.49 **SENSORHUB9_REG (36h)**
Ninth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>SHub9_7</th>
<th>SHub9_6</th>
<th>SHub9_5</th>
<th>SHub9_4</th>
<th>SHub9_3</th>
<th>SHub9_2</th>
<th>SHub9_1</th>
<th>SHub9_0</th>
</tr>
</thead>
</table>

Table 132. SENSORHUB9_REG register

Table 133. SENSORHUB9_REG register description

<table>
<thead>
<tr>
<th>SHub9_[7:0]</th>
<th>Ninth byte associated to external sensors</th>
</tr>
</thead>
</table>

10.50 **SENSORHUB10_REG (37h)**
Tenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>SHub10_7</th>
<th>SHub10_6</th>
<th>SHub10_5</th>
<th>SHub10_4</th>
<th>SHub10_3</th>
<th>SHub10_2</th>
<th>SHub10_1</th>
<th>SHub10_0</th>
</tr>
</thead>
</table>

Table 134. SENSORHUB10_REG register

Table 135. SENSORHUB10_REG register description

<table>
<thead>
<tr>
<th>SHub10_[7:0]</th>
<th>Tenth byte associated to external sensors</th>
</tr>
</thead>
</table>

10.51 **SENSORHUB11_REG (38h)**
Eleventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

|----------|----------|----------|----------|----------|----------|----------|----------|

Table 136. SENSORHUB11_REG register

Table 137. SENSORHUB11_REG register description

<table>
<thead>
<tr>
<th>SHub11_[7:0]</th>
<th>Eleventh byte associated to external sensors</th>
</tr>
</thead>
</table>
10.52 **SENSORHUB12_REG (39h)**
Twelfth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>Table 138. SENSORHUB12_REG register</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHub12_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 139. SENSORHUB12_REG register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHub12[7:0]</td>
</tr>
</tbody>
</table>

10.53 **FIFO_STATUS1 (3Ah)**
FIFO status control register (r). For a proper read of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

<table>
<thead>
<tr>
<th>Table 140. FIFO_STATUS1 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIFF_FIFO_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 141. FIFO_STATUS1 register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIFF_FIFO_[7:0]</td>
</tr>
</tbody>
</table>

10.54 **FIFO_STATUS2 (3Bh)**
FIFO status control register (r). For a proper read of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

<table>
<thead>
<tr>
<th>Table 142. FIFO_STATUS2 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>WaterM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 143. FIFO_STATUS2 register</th>
</tr>
</thead>
<tbody>
<tr>
<td>WaterM</td>
</tr>
<tr>
<td>(0: FIFO filling is lower than watermark level; 1: FIFO filling is equal to or higher than the watermark level)</td>
</tr>
<tr>
<td>OVER_RUN</td>
</tr>
<tr>
<td>(0: FIFO is not completely filled; 1: FIFO is completely filled)</td>
</tr>
<tr>
<td>FIFO_FULL_SMART</td>
</tr>
<tr>
<td>(0: FIFO is not full; 1: FIFO will be full at the next ODR)</td>
</tr>
<tr>
<td>FIFO_EMPTY</td>
</tr>
<tr>
<td>(0: FIFO contains data; 1: FIFO is empty)</td>
</tr>
<tr>
<td>DIFF_FIFO_[10:8]</td>
</tr>
</tbody>
</table>

1. FIFO watermark level is set in FTH_[7:0] in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)
2. For a complete number of unread samples, consider DIFF_FIFO [7:0] in FIFO_STATUS1 (3Ah)
10.55 **FIFO_STATUS3 (3Ch)**
FIFO status control register (r). For a proper read of the register, it is recommended to set the BDU bit in \texttt{CTRL3_C (12h)} to 1.

<table>
<thead>
<tr>
<th>\texttt{FIFO_PATTERN_7}</th>
<th>\texttt{FIFO_PATTERN_6}</th>
<th>\texttt{FIFO_PATTERN_5}</th>
<th>\texttt{FIFO_PATTERN_4}</th>
<th>\texttt{FIFO_PATTERN_3}</th>
<th>\texttt{FIFO_PATTERN_2}</th>
<th>\texttt{FIFO_PATTERN_1}</th>
<th>\texttt{FIFO_PATTERN_0}</th>
</tr>
</thead>
</table>

Table 144. FIFO_STATUS3 register

<table>
<thead>
<tr>
<th>\texttt{FIFO_PATTERN_7}</th>
<th>\texttt{FIFO_PATTERN_6}</th>
<th>\texttt{FIFO_PATTERN_5}</th>
<th>\texttt{FIFO_PATTERN_4}</th>
<th>\texttt{FIFO_PATTERN_3}</th>
<th>\texttt{FIFO_PATTERN_2}</th>
<th>\texttt{FIFO_PATTERN_1}</th>
<th>\texttt{FIFO_PATTERN_0}</th>
</tr>
</thead>
</table>

Table 145. FIFO_STATUS3 register description
FIFO_PATTERN_[7:0] Word of recursive pattern read at the next read.

10.56 **FIFO_STATUS4 (3Dh)**
FIFO status control register (r). For a proper read of the register, it is recommended to set the BDU bit in \texttt{CTRL3_C (12h)} to 1.

<table>
<thead>
<tr>
<th>\texttt{FIFO_PATTERN_9}</th>
<th>\texttt{FIFO_PATTERN_8}</th>
</tr>
</thead>
</table>

Table 146. FIFO_STATUS4 register

<table>
<thead>
<tr>
<th>\texttt{FIFO_PATTERN_9}</th>
<th>\texttt{FIFO_PATTERN_8}</th>
</tr>
</thead>
</table>

Table 147. FIFO_STATUS4 register description
FIFO_PATTERN_[9:8] Word of recursive pattern read at the next read.

10.57 **FIFO_DATA_OUT_L (3Eh)**
FIFO data output register (r). For a proper read of the register, it is recommended to set the BDU bit in \texttt{CTRL3_C (12h)} to 1.

<table>
<thead>
<tr>
<th>\texttt{DATA_OUT__FIFO_L_7}</th>
<th>\texttt{DATA_OUT__FIFO_L_6}</th>
<th>\texttt{DATA_OUT__FIFO_L_5}</th>
<th>\texttt{DATA_OUT__FIFO_L_4}</th>
<th>\texttt{DATA_OUT__FIFO_L_3}</th>
<th>\texttt{DATA_OUT__FIFO_L_2}</th>
<th>\texttt{DATA_OUT__FIFO_L_1}</th>
<th>\texttt{DATA_OUT__FIFO_L_0}</th>
</tr>
</thead>
</table>

Table 148. FIFO_DATA_OUT_L register

<table>
<thead>
<tr>
<th>\texttt{DATA_OUT__FIFO_L_7}</th>
<th>\texttt{DATA_OUT__FIFO_L_6}</th>
<th>\texttt{DATA_OUT__FIFO_L_5}</th>
<th>\texttt{DATA_OUT__FIFO_L_4}</th>
<th>\texttt{DATA_OUT__FIFO_L_3}</th>
<th>\texttt{DATA_OUT__FIFO_L_2}</th>
<th>\texttt{DATA_OUT__FIFO_L_1}</th>
<th>\texttt{DATA_OUT__FIFO_L_0}</th>
</tr>
</thead>
</table>

Table 149. FIFO_DATA_OUT_L register description
\texttt{DATA_OUT__FIFO_L_[7:0]} FIFO data output (first byte)
10.58 **FIFO_DATA_OUT_H (3Fh)**
FIFO data output register (r). For a proper read of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

<table>
<thead>
<tr>
<th>Table 150. FIFO_DATA_OUT_H register</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA_OUT_FIFO_H_7</td>
</tr>
</tbody>
</table>

Table 151. FIFO_DATA_OUT_H register description

| DATA_OUT_FIFO_H_[7:0] | FIFO data output (second byte) |

10.59 **TIMESTAMP0_REG (40h)**
Timestamp first (least significant) byte data output register (r). The value is expressed as a 24-bit word and the bit resolution is defined by setting the value in WAKE_UP_DUR (5Ch).

<table>
<thead>
<tr>
<th>Table 152. TIMESTAMP0_REG register</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME_STAMP0_7</td>
</tr>
</tbody>
</table>

Table 153. TIMESTAMP0_REG register description

| TIMESTAMP0_[7:0] | TIMESTAMP first byte data output |

10.60 **TIMESTAMP1_REG (41h)**
Timestamp second byte data output register (r). The value is expressed as a 24-bit word and the bit resolution is defined by setting value in WAKE_UP_DUR (5Ch).

<table>
<thead>
<tr>
<th>Table 154. TIMESTAMP1_REG register</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME_STAMP1_7</td>
</tr>
</tbody>
</table>

Table 155. TIMESTAMP1_REG register description

| TIMESTAMP1_[7:0] | TIMESTAMP second byte data output |
10.61 **TIMESTAMP2_REG (42h)**
Timestamp third (most significant) byte data output register (r/w). The value is expressed as a 24-bit word and the bit resolution is defined by setting the value in `WAKE_UP_DUR` (5Ch). To reset the timer, the AAh value has to be stored in this register.

<table>
<thead>
<tr>
<th>TIME</th>
<th>TIME</th>
<th>TIME</th>
<th>TIME</th>
<th>TIME</th>
<th>TIME</th>
<th>TIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAMP2_7</td>
<td>STAMP2_6</td>
<td>STAMP2_5</td>
<td>STAMP2_4</td>
<td>STAMP2_3</td>
<td>STAMP2_2</td>
<td>STAMP2_1</td>
<td>STAMP2_0</td>
</tr>
</tbody>
</table>

Table 156. TIMESTAMP2_REG register

<table>
<thead>
<tr>
<th>TIMESTAMP2_[7:0]</th>
<th>TIMESTAMP third byte data output</th>
</tr>
</thead>
</table>

10.62 **SENSORHUB13_REG (4Dh)**
Thirteenth byte associated to external sensors. The content of the register is consistent with the `SLAVEx_CONFIG` number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>SHub13_7</th>
<th>SHub13_6</th>
<th>SHub13_5</th>
<th>SHub13_4</th>
<th>SHub13_3</th>
<th>SHub13_2</th>
<th>SHub13_1</th>
<th>SHub13_0</th>
</tr>
</thead>
</table>

Table 158. SENSORHUB13_REG register

<table>
<thead>
<tr>
<th>SHub13_[7:0]</th>
<th>Thirteenth byte associated to external sensors</th>
</tr>
</thead>
</table>

10.63 **SENSORHUB14_REG (4Eh)**
Fourteenth byte associated to external sensors. The content of the register is consistent with the `SLAVEx_CONFIG` number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>SHub14_7</th>
<th>SHub14_6</th>
<th>SHub14_5</th>
<th>SHub14_4</th>
<th>SHub14_3</th>
<th>SHub14_2</th>
<th>SHub14_1</th>
<th>SHub14_0</th>
</tr>
</thead>
</table>

Table 160. SENSORHUB14_REG register

<table>
<thead>
<tr>
<th>SHub14_[7:0]</th>
<th>Fourteenth byte associated to external sensors</th>
</tr>
</thead>
</table>

10.64 **SENSORHUB15_REG (4Fh)**
Fifteenth byte associated to external sensors. The content of the register is consistent with the `SLAVEx_CONFIG` number of read operation configurations (for external sensors from x = 0 to x = 3).

<table>
<thead>
<tr>
<th>SHub15_7</th>
<th>SHub15_6</th>
<th>SHub15_5</th>
<th>SHub15_4</th>
<th>SHub15_3</th>
<th>SHub15_2</th>
<th>SHub15_1</th>
<th>SHub15_0</th>
</tr>
</thead>
</table>

Table 162. SENSORHUB15_REG register

<table>
<thead>
<tr>
<th>SHub15_[7:0]</th>
<th>Fifteenth byte associated to external sensors</th>
</tr>
</thead>
</table>
10.65 SENSORHUB16_REG (50h)
Sixteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 164. SENSORHUB16_REG register

<table>
<thead>
<tr>
<th>SHub16_7</th>
<th>SHub16_6</th>
<th>SHub16_5</th>
<th>SHub16_4</th>
<th>SHub16_3</th>
<th>SHub16_2</th>
<th>SHub16_1</th>
<th>SHub16_0</th>
</tr>
</thead>
</table>

Table 165. SENSORHUB16_REG register description

<table>
<thead>
<tr>
<th>SHub16_[7:0]</th>
<th>Sixteenth byte associated to external sensors</th>
</tr>
</thead>
</table>

10.66 SENSORHUB17_REG (51h)
Seventeenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 166. SENSORHUB17_REG register

<table>
<thead>
<tr>
<th>SHub17_7</th>
<th>SHub17_6</th>
<th>SHub17_5</th>
<th>SHub17_4</th>
<th>SHub17_3</th>
<th>SHub17_2</th>
<th>SHub17_1</th>
<th>SHub17_0</th>
</tr>
</thead>
</table>

Table 167. SENSORHUB17_REG register description

<table>
<thead>
<tr>
<th>SHub17_[7:0]</th>
<th>Seventeenth byte associated to external sensors</th>
</tr>
</thead>
</table>

10.67 SENSORHUB18_REG (52h)
Eighteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 168. SENSORHUB18_REG register

<table>
<thead>
<tr>
<th>SHub18_7</th>
<th>SHub18_6</th>
<th>SHub18_5</th>
<th>SHub18_4</th>
<th>SHub18_3</th>
<th>SHub18_2</th>
<th>SHub18_1</th>
<th>SHub18_0</th>
</tr>
</thead>
</table>

Table 169. SENSORHUB18_REG register description

<table>
<thead>
<tr>
<th>SHub18_[7:0]</th>
<th>Eighteenth byte associated to external sensors</th>
</tr>
</thead>
</table>
10.68 FUNC_SRC1 (53h)
Tilt, hard/soft-iron and sensor hub interrupt source register (r).

Table 170. FUNC_SRC1 register

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>TILT_IA</th>
<th></th>
<th></th>
<th>HI_FAIL</th>
<th>SI_END_OP</th>
<th>SENSOR HUB_END_OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 171. FUNC_SRC1 register description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILT_IA</td>
<td>Tilt event detection status. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: tilt event not detected; 1: tilt event detected)</td>
</tr>
<tr>
<td>HI_FAIL</td>
<td>Fail in hard/soft-ironing algorithm.</td>
</tr>
<tr>
<td>SI_END_OP</td>
<td>Hard/soft-iron calculation status. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: Hard/soft-iron calculation not concluded; 1: Hard/soft-iron calculation concluded)</td>
</tr>
<tr>
<td>SENSORHUB_END_OP</td>
<td>Sensor hub communication status. Default value: 0</td>
</tr>
<tr>
<td></td>
<td>(0: sensor hub communication not concluded; 1: sensor hub communication concluded)</td>
</tr>
</tbody>
</table>

10.69 FUNC_SRC2 (54h)
Slave communication register (r).

Table 172. FUNC_SRC2 register

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>SLAVE3_NACK</th>
<th>SLAVE2_NACK</th>
<th>SLAVE1_NACK</th>
<th>SLAVE0_NACK</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 173. FUNC_SRC2 register description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAVE3_NACK</td>
<td>This bit is set to 1 if Not Acknowledge occurs on slave 3 communication. Default value: 0</td>
</tr>
<tr>
<td>SLAVE2_NACK</td>
<td>This bit is set to 1 if Not Acknowledge occurs on slave 2 communication. Default value: 0</td>
</tr>
<tr>
<td>SLAVE1_NACK</td>
<td>This bit is set to 1 if Not Acknowledge occurs on slave 1 communication. Default value: 0</td>
</tr>
<tr>
<td>SLAVE0_NACK</td>
<td>This bit is set to 1 if Not Acknowledge occurs on slave 0 communication. Default value: 0</td>
</tr>
</tbody>
</table>
10.70 **TAP_CFG (58h)**
Enables interrupt and inactivity functions, configuration of filtering, and tap recognition functions (r/w).

<table>
<thead>
<tr>
<th>Table 174. TAP_CFG register</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERRUPTS_ENABLE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 175. TAP_CFG register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERRUPTS_ENABLE</td>
</tr>
<tr>
<td>INACT_EN[1:0]</td>
</tr>
<tr>
<td>SLOPE_FDS</td>
</tr>
<tr>
<td>TAP_X_EN</td>
</tr>
<tr>
<td>TAP_Y_EN</td>
</tr>
<tr>
<td>TAP_Z_EN</td>
</tr>
<tr>
<td>LIR</td>
</tr>
</tbody>
</table>

10.71 **TAP_THS_6D (59h)**
Portrait/landscape position and tap function threshold register (r/w).

<table>
<thead>
<tr>
<th>Table 176. TAP_THS_6D register</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4D_EN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 177. TAP_THS_6D register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4D_EN</td>
</tr>
<tr>
<td>SIXD_THS[1:0]</td>
</tr>
<tr>
<td>TAP_THS[4:0]</td>
</tr>
</tbody>
</table>
Table 178. Threshold for D4D/D6D function

<table>
<thead>
<tr>
<th>SIXD_THS[1:0]</th>
<th>Threshold value</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>80 degrees</td>
</tr>
<tr>
<td>01</td>
<td>70 degrees</td>
</tr>
<tr>
<td>10</td>
<td>60 degrees</td>
</tr>
<tr>
<td>11</td>
<td>50 degrees</td>
</tr>
</tbody>
</table>

10.72 INT_DUR2 (5Ah)
Tap recognition function setting register (r/w).

Table 179. INT_DUR2 register

<table>
<thead>
<tr>
<th>DUR3</th>
<th>DUR2</th>
<th>DUR1</th>
<th>DUR0</th>
<th>QUIET1</th>
<th>QUIET0</th>
<th>SHOCK1</th>
<th>SHOCK0</th>
</tr>
</thead>
</table>

Table 180. INT_DUR2 register description

- **DUR[3:0]**: Duration of maximum time gap for double tap recognition. Default: 0000
 - When double tap recognition is enabled, this register expresses the maximum time between two consecutive detected taps to determine a double tap event. The default value of these bits is 0000b which corresponds to 16*ODR_XL time. If the DUR[3:0] bits are set to a different value, 1LSB corresponds to 32*ODR_XL time.

- **QUIET[1:0]**: Expected quiet time after a tap detection. Default value: 00
 - Quiet time is the time after the first detected tap in which there must not be any overthreshold event. The default value of these bits is 00b which corresponds to 2*ODR_XL time. If the QUIET[1:0] bits are set to a different value, 1LSB corresponds to 4*ODR_XL time.

- **SHOCK[1:0]**: Maximum duration of overthreshold event. Default value: 00
 - Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event. The default value of these bits is 00b which corresponds to 4*ODR_XL time. If the SHOCK[1:0] bits are set to a different value, 1LSB corresponds to 8*ODR_XL time.

10.73 WAKE_UP_THS (5Bh)
Single and double-tap function threshold register (r/w).

Table 181. WAKE_UP_THS register

<table>
<thead>
<tr>
<th>SINGLE_DOUBLE_TAP</th>
<th>0</th>
<th>WK_THS5</th>
<th>WK_THS4</th>
<th>WK_THS3</th>
<th>WK_THS2</th>
<th>WK_THS1</th>
<th>WK_THS0</th>
</tr>
</thead>
</table>

Table 182. WAKE_UP_THS register description

- **SINGLE_DOUBLE_TAP**: Single/double-tap event enable. Default: 0
 - (0: only single-tap event enabled;
 - 1: both single and double-tap events enabled)

- **WK_THS[5:0]**: Threshold for wakeup. Default value: 000000
 - 1 LSb corresponds to FS_XL/2
10.74 **WAKE_UP_DUR (5Ch)**
Free-fall, wakeup, timestamp and sleep mode functions duration setting register (r/w).

Table 183. WAKE_UP_DUR register

<table>
<thead>
<tr>
<th>FF_DUR5</th>
<th>WAKE_DUR1</th>
<th>WAKE_DUR0</th>
<th>TIMER_HR</th>
<th>SLEEP_DUR3</th>
<th>SLEEP_DUR2</th>
<th>SLEEP_DUR1</th>
<th>SLEEP_DUR0</th>
</tr>
</thead>
</table>

Table 184. WAKE_UP_DUR register description

| FF_DUR5 | Free fall duration event. Default: 0
For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration.
1 LSB = 1 ODR_time |
|---------|--|
| WAKE_DUR[1:0] | Wake up duration event. Default: 00
1 LSB = 1 ODR_time |
| TIMER_HR | Timestamp register resolution setting (1). Default value: 0
(0: 1 LSB = 6.4 ms; 1: 1 LSB = 25 µs) |
| SLEEP_DUR[3:0] | Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR)
1 LSB = 512 ODR |

1. Configuration of this bit affects the TIMESTAMP0_REG (40h), TIMESTAMP1_REG (41h), and TIMESTAMP2_REG (42h) registers.

10.75 **FREE_FALL (5Dh)**
Free-fall function duration setting register (r/w).

Table 185. FREE_FALL register

<table>
<thead>
<tr>
<th>FF_DUR4</th>
<th>FF_DUR3</th>
<th>FF_DUR2</th>
<th>FF_DUR1</th>
<th>FF_DUR0</th>
<th>FF_THS2</th>
<th>FF_THS1</th>
<th>FF_THS0</th>
</tr>
</thead>
</table>

Table 186. FREE_FALL register description

| FF_DUR[4:0] | Free-fall duration event. Default: 0
For the complete configuration of the free fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch) configuration. |
|-------------|--|
| FF_THS[2:0] | Free fall threshold setting. Default: 000
For details refer to Table 187. |

Table 187. Threshold for free-fall function

<table>
<thead>
<tr>
<th>FF_THS[2:0]</th>
<th>Threshold value</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>156 mg</td>
</tr>
<tr>
<td>001</td>
<td>219 mg</td>
</tr>
<tr>
<td>010</td>
<td>250 mg</td>
</tr>
<tr>
<td>011</td>
<td>312 mg</td>
</tr>
<tr>
<td>100</td>
<td>344 mg</td>
</tr>
<tr>
<td>101</td>
<td>406 mg</td>
</tr>
<tr>
<td>110</td>
<td>469 mg</td>
</tr>
<tr>
<td>111</td>
<td>500 mg</td>
</tr>
</tbody>
</table>
MD1_CFG (5Eh)

Functions routing on INT1 register (r/w).

<table>
<thead>
<tr>
<th>INT1_INACT_STATE</th>
<th>INT1_SINGLE_TAP</th>
<th>INT1_WU</th>
<th>INT1_FF</th>
<th>INT1_DOUBLE_TAP</th>
<th>INT1_6D</th>
<th>INT1_TILT</th>
<th>INT1_TIMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing on INT1 of inactivity mode. Default: 0</td>
<td>Single-tap recognition routing on INT1. Default: 0</td>
<td>Routing of wakeup event on INT1. Default value: 0</td>
<td>Routing of free-fall event on INT1. Default value: 0</td>
<td>Routing of tap event on INT1. Default value: 0</td>
<td>Routing of 6D event on INT1. Default value: 0</td>
<td>Routing of tilt event on INT1. Default value: 0</td>
<td>Routing of end counter event of timer on INT1. Default value: 0</td>
</tr>
<tr>
<td>(0: routing on INT1 of inactivity disabled; 1: routing on INT1 of inactivity enabled)</td>
<td>(0: routing of single-tap event on INT1 disabled; 1: routing of single-tap event on INT1 enabled)</td>
<td>(0: routing of wakeup event on INT1 disabled; 1: routing of wakeup event on INT1 enabled)</td>
<td>(0: routing of free-fall event on INT1 disabled; 1: routing of free-fall event on INT1 enabled)</td>
<td>(0: routing of double-tap event on INT1 disabled; 1: routing of double-tap event on INT1 enabled)</td>
<td>(0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)</td>
<td>(0: routing of tilt event on INT1 disabled; 1: routing of tilt event on INT1 enabled)</td>
<td>(0: routing of end counter event of timer on INT1 disabled; 1: routing of end counter event of timer event on INT1 enabled)</td>
</tr>
</tbody>
</table>

Table 189. MD1_CFG register description

- **INT1_INACT_STATE**: Routing on INT1 of inactivity mode. Default: 0
 - (0: routing on INT1 of inactivity disabled; 1: routing on INT1 of inactivity enabled)
- **INT1_SINGLE_TAP**: Single-tap recognition routing on INT1. Default: 0
 - (0: routing of single-tap event on INT1 disabled; 1: routing of single-tap event on INT1 enabled)
- **INT1_WU**: Routing of wakeup event on INT1. Default value: 0
 - (0: routing of wakeup event on INT1 disabled; 1: routing of wakeup event on INT1 enabled)
- **INT1_FF**: Routing of free-fall event on INT1. Default value: 0
 - (0: routing of free-fall event on INT1 disabled; 1: routing of free-fall event on INT1 enabled)
- **INT1_DOUBLE_TAP**: Routing of tap event on INT1. Default value: 0
 - (0: routing of double-tap event on INT1 disabled; 1: routing of double-tap event on INT1 enabled)
- **INT1_6D**: Routing of 6D event on INT1. Default value: 0
 - (0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)
- **INT1_TILT**: Routing of tilt event on INT1. Default value: 0
 - (0: routing of tilt event on INT1 disabled; 1: routing of tilt event on INT1 enabled)
- **INT1_TIMER**: Routing of end counter event of timer on INT1. Default value: 0
 - (0: routing of end counter event of timer on INT1 disabled; 1: routing of end counter event of timer event on INT1 enabled)
Table 190. MD2_CFG register

<table>
<thead>
<tr>
<th>INT2_INACT_STATE</th>
<th>INT2_SINGLE_TAP</th>
<th>INT2_WU</th>
<th>INT2_FF</th>
<th>INT2_DOUBLE_TAP</th>
<th>INT2_6D</th>
<th>INT2_TILT</th>
<th>INT2_IRON</th>
</tr>
</thead>
</table>

Table 191. MD2_CFG register description

<table>
<thead>
<tr>
<th>INT2_INACT_STATE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing on INT2 of inactivity mode. Default: 0</td>
<td></td>
</tr>
<tr>
<td>(0: routing on INT2 of inactivity disabled; 1: routing on INT2 of inactivity enabled)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INT2_SINGLE_TAP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-tap recognition routing on INT2. Default: 0</td>
<td></td>
</tr>
<tr>
<td>(0: routing of single-tap event on INT2 disabled; 1: routing of single-tap event on INT2 enabled)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INT2_WU</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing of wakeup event on INT2. Default value: 0</td>
<td></td>
</tr>
<tr>
<td>(0: routing of wake-up event on INT2 disabled; 1: routing of wake-up event on INT2 enabled)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INT2_FF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing of free-fall event on INT2. Default value: 0</td>
<td></td>
</tr>
<tr>
<td>(0: routing of free-fall event on INT2 disabled; 1: routing of free-fall event on INT2 enabled)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INT2_DOUBLE_TAP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing of tap event on INT2. Default value: 0</td>
<td></td>
</tr>
<tr>
<td>(0: routing of double-tap event on INT2 disabled; 1: routing of double-tap event on INT2 enabled)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INT2_6D</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing of 6D event on INT2. Default value: 0</td>
<td></td>
</tr>
<tr>
<td>(0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INT2_TILT</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing of tilt event on INT2. Default value: 0</td>
<td></td>
</tr>
<tr>
<td>(0: routing of tilt event on INT2 disabled; 1: routing of tilt event on INT2 enabled)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INT2_IRON</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing of soft-iron/hard-iron algorithm end event on INT2. Default value: 0</td>
<td></td>
</tr>
<tr>
<td>(0: routing of soft-iron/hard-iron algorithm end event on INT2 disabled; 1: routing of soft-iron/hard-iron algorithm end event on INT2 enabled)</td>
<td></td>
</tr>
</tbody>
</table>

10.78 MASTER_CMD_CODE (60h)

Table 192. MASTER_CMD_CODE register

<table>
<thead>
<tr>
<th>MASTER_CMD_CODE7</th>
<th>MASTER_CMD_CODE6</th>
<th>MASTER_CMD_CODE5</th>
<th>MASTER_CMD_CODE4</th>
<th>MASTER_CMD_CODE3</th>
<th>MASTER_CMD_CODE2</th>
<th>MASTER_CMD_CODE1</th>
<th>MASTER_CMD_CODE0</th>
</tr>
</thead>
</table>

Table 193. MASTER_CMD_CODE register description

<table>
<thead>
<tr>
<th>MASTER_CMD_CODE[7:0]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master command code used for stamping for sensor sync. Default value: 0</td>
<td></td>
</tr>
</tbody>
</table>
10.79 **SENS_SYNC_SPI_ERROR_CODE (61h)**

Table 194. **SENS_SYNC_SPI_ERROR_CODE register**

<table>
<thead>
<tr>
<th>ERROR_CODE7</th>
<th>ERROR_CODE6</th>
<th>ERROR_CODE5</th>
<th>ERROR_CODE4</th>
<th>ERROR_CODE3</th>
<th>ERROR_CODE2</th>
<th>ERROR_CODE1</th>
<th>ERROR_CODE0</th>
</tr>
</thead>
</table>

Table 195. **SENS_SYNC_SPI_ERROR_CODE register description**

<table>
<thead>
<tr>
<th>ERROR_CODE[7:0]</th>
<th>Error code used for sensor synchronization. Default value: 0</th>
</tr>
</thead>
</table>

10.80 **OUT_MAG_RAW_X_L (66h)**

External magnetometer raw data (r).

Table 196. **OUT_MAG_RAW_X_L register**

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
</table>

Table 197. **OUT_MAG_RAW_X_L register description**

<table>
<thead>
<tr>
<th>D[7:0]</th>
<th>X-axis external magnetometer value (LSbyte)</th>
</tr>
</thead>
</table>

10.81 **OUT_MAG_RAW_X_H (67h)**

External magnetometer raw data (r).

Table 198. **OUT_MAG_RAW_X_H register**

<table>
<thead>
<tr>
<th>D15</th>
<th>D14</th>
<th>D13</th>
<th>D12</th>
<th>D11</th>
<th>D10</th>
<th>D9</th>
<th>D8</th>
</tr>
</thead>
</table>

Table 199. **OUT_MAG_RAW_X_H register description**

<table>
<thead>
<tr>
<th>D[15:8]</th>
<th>X-axis external magnetometer value (MSbyte)</th>
</tr>
</thead>
</table>

10.82 **OUT_MAG_RAW_Y_L (68h)**

External magnetometer raw data (r).

Table 200. **OUT_MAG_RAW_Y_L register**

<table>
<thead>
<tr>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
</table>

Table 201. **OUT_MAG_RAW_Y_L register description**

<table>
<thead>
<tr>
<th>D[7:0]</th>
<th>Y-axis external magnetometer value (LSbyte)</th>
</tr>
</thead>
</table>

ISM330DLC

SENS_SYNC_SPI_ERROR_CODE (61h)

DS12171 - Rev 3

page 80/116
10.83 OUT_MAG_RAW_Y_H (69h)
External magnetometer raw data (r).

Table 202. OUT_MAG_RAW_Y_H register

| D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 |

Table 203. OUT_MAG_RAW_Y_H register description

| D[15:8] | Y-axis external magnetometer value (MSbyte) |

10.84 OUT_MAG_RAW_Z_L (6Ah)
External magnetometer raw data (r).

Table 204. OUT_MAG_RAW_Z_L register

| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |

Table 205. OUT_MAG_RAW_Z_L register description

| D[7:0] | Z-axis external magnetometer value (LSbyte) |

10.85 OUT_MAG_RAW_Z_H (6Bh)
External magnetometer raw data (r).

Table 206. OUT_MAG_RAW_Z_H register

| D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 |

Table 207. OUT_MAG_RAW_Z_H register description

| D[15:8] | Z-axis external magnetometer value (MSbyte) |

10.86 INT_OIS (6Fh)
OIS interrupt configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 208. INT_OIS register

<table>
<thead>
<tr>
<th>INT2_DRDY_OIS</th>
<th>LVL2_OIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 209. INT_OIS register description

<table>
<thead>
<tr>
<th>INT2_DRDY_OIS</th>
<th>Enables the OIS chain DRDY on the INT2 pad. This setting has priority over all other INT2 settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVL2_OIS</td>
<td>Enables level-sensitive latched mode on the OIS chain. Default value: 0</td>
</tr>
</tbody>
</table>
CTRL1_OIS (70h)
OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 210. CTRL1_OIS register

<table>
<thead>
<tr>
<th>BLE_OIS</th>
<th>LVL1_OIS</th>
<th>SIM_OIS</th>
<th>MODE4_EN</th>
<th>FS1_G_OIS</th>
<th>FS0_G_OIS</th>
<th>FS_125_OIS</th>
<th>OIS_EN_SPI2</th>
</tr>
</thead>
</table>

Table 211. CTRL1_OIS register description

- **BLE_OIS**: Big/Little Endian data selection. Default value: 0

 (0: output LSbyte at lower register address; 1: output LSbyte at higher register address)

- **LVL1_OIS**: Enables level-sensitive trigger mode on OIS chain. Default value: 0

- **SIM_OIS**: SPI2 3- or 4-wire mode. Default value: 0

 (0: 4-wire SPI2; 1: 3-wire SPI2)

- **MODE4_EN**: Enables accelerometer OIS chain if OIS_EN_SPI2 = 1. Default value: 0

 (0: disable; 1: enable)

- **FS[1:0]_G_OIS**: Gyroscope OIS chain full-scale selection.

 (00: ±250 dps; 01: ±500 dps; 10: ±1000 dps; 11: ±2000 dps)

- **FS_125_OIS**: Selects gyroscope OIS chain full scale ±125 dps

 (0: FS selected through bits FS[1:0]_G_OIS; 1 = ±125 dps)

- **OIS_EN_SPI2**: Enables OIS chain data processing for gyro in Mode 3 and Mode 4 (mode4_en = 1) and accelerometer data in and Mode 4 (mode4_en = 1).

 When the OIS chain is enabled, the OIS outputs are available through the SPI2 in registers OUTX_L_G (22h) through OUTZ_H_G (27h) and STATUS_REG/STATUS_SPIAux (1Eh), and LPF1 is dedicated to this chain.

Table 212. DEN mode selection

<table>
<thead>
<tr>
<th>LVL1_OIS, LVL2_OIS</th>
<th>DEN mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Level-sensitive trigger mode is selected</td>
</tr>
<tr>
<td>11</td>
<td>Level-sensitive latched mode is selected</td>
</tr>
</tbody>
</table>

DEN mode selection can be done using the LVL1_OIS bit of register CTRL1_OIS (70h) and the LVL2_OIS bit of register INT_OIS (6Fh).
DEN mode on the OIS path is active in the gyroscope only.
10.88 **CTRL2_OIS (71h)**

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

<table>
<thead>
<tr>
<th>Table 213. CTRL2_OIS register</th>
</tr>
</thead>
<tbody>
<tr>
<td>0(1)</td>
</tr>
</tbody>
</table>

1. This bit must be set to ‘0’ for the correct operation of the device.

<table>
<thead>
<tr>
<th>Table 214. CTRL2_OIS register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPM[1:0]_OIS</td>
</tr>
<tr>
<td>FTYPE_[1:0]_OIS</td>
</tr>
<tr>
<td>HP_EN_OIS</td>
</tr>
</tbody>
</table>

1. HP_EN_OIS is active to select HPF on the auxiliary SPI chain only if HPF is not already used in the primary interface.

<table>
<thead>
<tr>
<th>Table 215. Gyroscope OIS chain LPF1 bandwidth selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTYPE_[1:0]_OIS</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>00</td>
</tr>
<tr>
<td>01</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

Sampling data with frequency equal or higher to 3.3 kHz is recommended.
If data is down-sampled @ 1 kHz, it is recommended to use a cutoff @ 173 Hz.
If data is down-sampled @ 2 kHz, it is recommended to use a cutoff @ 237 Hz.

10.89 **CTRL3_OIS (72h)**

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

<table>
<thead>
<tr>
<th>Table 216. CTRL3_OIS register</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEN_LH_OIS</td>
</tr>
</tbody>
</table>
Table 217. CTRL3_OIS register description

<table>
<thead>
<tr>
<th>Register</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEN_LH_OIS</td>
<td>Polarity of DEN signal on OIS chain
 (0: DEN pin is active-low;
 1: DEN pin is active-high)</td>
</tr>
<tr>
<td>FS[1:0]_XL_OIS</td>
<td>Accelerometer OIS channel full-scale selection. Default value: 00
 (00: ±2 g;
 01: ±16 g;
 10: ±4 g;
 11: ±8 g)
 These two bits act only when the accelerometer GP chain is in power-down, otherwise the accelerometer FS value is selected only from the GP side (but it is readable also from the OIS side).</td>
</tr>
<tr>
<td>FILTER_XL_CONF_OIS</td>
<td>Accelerometer OIS channel bandwidth selection (see Table 215)</td>
</tr>
<tr>
<td>ST[1:0]_OIS</td>
<td>Gyroscope OIS chain self-test selection
 Table 219 lists the output variation when the self-test is enabled and ST_OIS_CLAMPDIS = '1'. Default value: 00
 (00: Normal mode;
 01: Positive sign self-test;
 10: Normal mode;
 11: Negative sign self-test)</td>
</tr>
<tr>
<td>ST_OIS_CLAMPDIS</td>
<td>Gyro OIS chain clamp disable
 (0: All gyro OIS chain outputs = 8000h during self-test applied from primary interface;
 1: OIS chain self-test outputs as shown in Table 219. Self-test nominal output variation if self-test applied from primary or auxiliary interfaces)</td>
</tr>
</tbody>
</table>

Table 218. Accelerometer OIS channel bandwidth selection

<table>
<thead>
<tr>
<th>FILTER_XL_CONF_OIS [1:0]</th>
<th>ODR_GP = 0 ODR GP ≥ 1600 Hz</th>
<th>ODR GP ≤ 800 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BW</td>
<td>Phase delay (1)</td>
</tr>
<tr>
<td>00</td>
<td>140 Hz</td>
<td>9.39°</td>
</tr>
<tr>
<td>01</td>
<td>68.2 Hz</td>
<td>17.6°</td>
</tr>
<tr>
<td>10</td>
<td>636 Hz</td>
<td>2.96°</td>
</tr>
<tr>
<td>11</td>
<td>295 Hz</td>
<td>5.12°</td>
</tr>
</tbody>
</table>

1. Phase delay @ 20 Hz

Table 219. Self-test nominal output variation

<table>
<thead>
<tr>
<th>Full scale</th>
<th>Output variation [dps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>±2000</td>
<td>400</td>
</tr>
<tr>
<td>±1000</td>
<td>200</td>
</tr>
<tr>
<td>±500</td>
<td>100</td>
</tr>
<tr>
<td>±250</td>
<td>50</td>
</tr>
<tr>
<td>±125</td>
<td>25</td>
</tr>
</tbody>
</table>
10.90 **X_OFS_USR (73h)**
Accelerometer X-axis user offset correction (r/w). The offset value set in the X_OFS_USR offset register is internally added to the acceleration value measured on the X-axis.

<table>
<thead>
<tr>
<th>X_OFS_USR_7</th>
<th>X_OFS_USR_6</th>
<th>X_OFS_USR_5</th>
<th>X_OFS_USR_4</th>
<th>X_OFS_USR_3</th>
<th>X_OFS_USR_2</th>
<th>X_OFS_USR_1</th>
<th>X_OFS_USR_0</th>
</tr>
</thead>
</table>

Table 220. X_OFS_USR register

<table>
<thead>
<tr>
<th>X_OFS_USR_[7:0]</th>
<th>Accelerometer X-axis user offset correction expressed in two’s complement, weight depends on the CTRL6_C(4) bit. The value must be in the range [-127 127].</th>
</tr>
</thead>
</table>

10.91 **Y_OFS_USR (74h)**
Accelerometer Y-axis user offset correction (r/w). The offset value set in the Y_OFS_USR offset register is internally added to the acceleration value measured on the Y-axis.

<table>
<thead>
<tr>
<th>Y_OFS_USR_7</th>
<th>Y_OFS_USR_6</th>
<th>Y_OFS_USR_5</th>
<th>Y_OFS_USR_4</th>
<th>Y_OFS_USR_3</th>
<th>Y_OFS_USR_2</th>
<th>Y_OFS_USR_1</th>
<th>Y_OFS_USR_0</th>
</tr>
</thead>
</table>

Table 222. Y_OFS_USR register

<table>
<thead>
<tr>
<th>Y_OFS_USR_[7:0]</th>
<th>Accelerometer Y-axis user offset correction expressed in two’s complement, weight depends on the CTRL6_C(4) bit. The value must be in the range [-127 127].</th>
</tr>
</thead>
</table>

10.92 **Z_OFS_USR (75h)**
Accelerometer Z-axis user offset correction (r/w). The offset value set in the Z_OFS_USR offset register is internally subtracted from the acceleration value measured on the Z-axis.

<table>
<thead>
<tr>
<th>Z_OFS_USR_7</th>
<th>Z_OFS_USR_6</th>
<th>Z_OFS_USR_5</th>
<th>Z_OFS_USR_4</th>
<th>Z_OFS_USR_3</th>
<th>Z_OFS_USR_2</th>
<th>Z_OFS_USR_1</th>
<th>Z_OFS_USR_0</th>
</tr>
</thead>
</table>

Table 224. Z_OFS_USR register

<table>
<thead>
<tr>
<th>Z_OFS_USR_[7:0]</th>
<th>Accelerometer Z-axis user offset correction expressed in two’s complement, weight depends on the CTRL6_C(4) bit. The value must be in the range [-127 127].</th>
</tr>
</thead>
</table>
Embedded functions register mapping

The tables given below provide a list of registers related to the embedded functions available in the device and the corresponding addresses. The embedded functions registers are accessible when FUNC_CFG_EN is set to ‘1’ in FUNC_CFG_ACCESS (01h).

Note: All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

Table 226. Register address map embedded functions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Register address</th>
<th>Default</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLV0_ADD</td>
<td>r/w</td>
<td>02</td>
<td>00000010</td>
<td>00000000</td>
</tr>
<tr>
<td>SLV0_SUBADD</td>
<td>r/w</td>
<td>03</td>
<td>00000011</td>
<td>00000000</td>
</tr>
<tr>
<td>SLAVE0_CONFIG</td>
<td>r/w</td>
<td>04</td>
<td>00000100</td>
<td>00000000</td>
</tr>
<tr>
<td>SLV1_ADD</td>
<td>r/w</td>
<td>05</td>
<td>00000101</td>
<td>00000000</td>
</tr>
<tr>
<td>SLV1_SUBADD</td>
<td>r/w</td>
<td>06</td>
<td>00000110</td>
<td>00000000</td>
</tr>
<tr>
<td>SLAVE1_CONFIG</td>
<td>r/w</td>
<td>07</td>
<td>00000111</td>
<td>00000000</td>
</tr>
<tr>
<td>SLV2_ADD</td>
<td>r/w</td>
<td>08</td>
<td>00001000</td>
<td>00000000</td>
</tr>
<tr>
<td>SLV2_SUBADD</td>
<td>r/w</td>
<td>09</td>
<td>00001001</td>
<td>00000000</td>
</tr>
<tr>
<td>SLAVE2_CONFIG</td>
<td>r/w</td>
<td>0A</td>
<td>00001010</td>
<td>00000000</td>
</tr>
<tr>
<td>SLV3_ADD</td>
<td>r/w</td>
<td>0B</td>
<td>00001011</td>
<td>00000000</td>
</tr>
<tr>
<td>SLV3_SUBADD</td>
<td>r/w</td>
<td>0C</td>
<td>00001100</td>
<td>00000000</td>
</tr>
<tr>
<td>SLAVE3_CONFIG</td>
<td>r/w</td>
<td>0D</td>
<td>00001101</td>
<td>00000000</td>
</tr>
<tr>
<td>DATAWRITE_SRC_MODE_SUB_SLV0</td>
<td>r/w</td>
<td>0E</td>
<td>00001110</td>
<td>00000000</td>
</tr>
<tr>
<td>RESERVED</td>
<td>-</td>
<td>0F-15</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>MAG_SI_XX</td>
<td>r/w</td>
<td>24</td>
<td>00100100</td>
<td>00001000</td>
</tr>
<tr>
<td>MAG_SI_XY</td>
<td>r/w</td>
<td>25</td>
<td>00100101</td>
<td>00000000</td>
</tr>
<tr>
<td>MAG_SI_XZ</td>
<td>r/w</td>
<td>26</td>
<td>00100110</td>
<td>00000000</td>
</tr>
<tr>
<td>MAG_SI_YX</td>
<td>r/w</td>
<td>27</td>
<td>00100111</td>
<td>00000000</td>
</tr>
<tr>
<td>MAG_SI_YY</td>
<td>r/w</td>
<td>28</td>
<td>00101000</td>
<td>00001000</td>
</tr>
<tr>
<td>MAG_SI_YZ</td>
<td>r/w</td>
<td>29</td>
<td>00101001</td>
<td>00000000</td>
</tr>
<tr>
<td>MAG_SI_ZX</td>
<td>r/w</td>
<td>2A</td>
<td>00101010</td>
<td>00000000</td>
</tr>
<tr>
<td>MAG_SI_ZY</td>
<td>r/w</td>
<td>2B</td>
<td>00101011</td>
<td>00000000</td>
</tr>
<tr>
<td>MAG_SI_ZZ</td>
<td>r/w</td>
<td>2C</td>
<td>00101100</td>
<td>00001000</td>
</tr>
<tr>
<td>MAG_OFFX_L</td>
<td>r/w</td>
<td>2D</td>
<td>00101101</td>
<td>00000000</td>
</tr>
<tr>
<td>MAG_OFFX_H</td>
<td>r/w</td>
<td>2E</td>
<td>00101110</td>
<td>00000000</td>
</tr>
<tr>
<td>MAG_OFFY_L</td>
<td>r/w</td>
<td>2F</td>
<td>00101111</td>
<td>00000000</td>
</tr>
<tr>
<td>MAG_OFFY_H</td>
<td>r/w</td>
<td>30</td>
<td>00110000</td>
<td>00000000</td>
</tr>
<tr>
<td>MAG_OFFZ_L</td>
<td>r/w</td>
<td>31</td>
<td>00110001</td>
<td>00000000</td>
</tr>
<tr>
<td>MAG_OFFZ_H</td>
<td>r/w</td>
<td>32</td>
<td>00110010</td>
<td>00000000</td>
</tr>
</tbody>
</table>
Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.
12 Embedded functions registers description

Note: All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

12.1 SLV0_ADD (02h)
I²C slave address of the first external sensor (Sensor1) register (r/w).

Table 227. SLV0_ADD register

<table>
<thead>
<tr>
<th>Slave0_add6</th>
<th>Slave0_add5</th>
<th>Slave0_add4</th>
<th>Slave0_add3</th>
<th>Slave0_add2</th>
<th>Slave0_add1</th>
<th>Slave0_add0</th>
<th>rw_0</th>
</tr>
</thead>
</table>

Table 228. SLV0_ADD register description

<table>
<thead>
<tr>
<th>Slave0_add[6:0]</th>
<th>I²C slave address of Sensor1 that can be read by sensor hub.</th>
<th>Default value: 0000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>rw_0</td>
<td>Read/write operation on Sensor1. Default value: 0</td>
<td>(0: write operation; 1: read operation)</td>
</tr>
</tbody>
</table>

12.2 SLV0_SUBADD (03h)
Address of register on the first external sensor (Sensor1) register (r/w).

Table 229. SLV0_SUBADD register

<table>
<thead>
<tr>
<th>Slave0_reg7</th>
<th>Slave0_reg6</th>
<th>Slave0_reg5</th>
<th>Slave0_reg4</th>
<th>Slave0_reg3</th>
<th>Slave0_reg2</th>
<th>Slave0_reg1</th>
<th>Slave0_reg0</th>
</tr>
</thead>
</table>

Table 230. SLV0_SUBADD register description

<table>
<thead>
<tr>
<th>Slave0_reg[7:0]</th>
<th>Address of register on Sensor1 that has to be read/write according to the rw_0 bit value in SLV0_ADD (02h).</th>
<th>Default value: 00000000</th>
</tr>
</thead>
</table>
12.3 SLAVE0_CONFIG (04h)
First external sensor (Sensor1) configuration and sensor hub settings register (r/w).

Table 231. SLAVE0_CONFIG register

<table>
<thead>
<tr>
<th>Slave0_rate1</th>
<th>Slave0_rate0</th>
<th>Aux_sens_on1</th>
<th>Aux_sens_on0</th>
<th>Src_mode</th>
<th>Slave0_numop2</th>
<th>Slave0_numop1</th>
<th>Slave0_numop0</th>
</tr>
</thead>
</table>

Table 232. SLAVE0_CONFIG register description

Slave0_rate[1:0] Decimation of read operation on Sensor1 starting from the sensor hub trigger. Default value: 00 (00: no decimation; 01: update every 2 samples; 10: update every 4 samples; 11: update every 8 samples.)

Aux_sens_on[1:0] Number of external sensors to be read by sensor hub. Default value: 00 (00: one sensor; 01: two sensors; 10: three sensors; 11: four sensors.)

Src_mode Source mode conditioned read. Default value: 0 (0: source mode read disabled; 1: source mode read enabled)

Slave0_numop[2:0] Number of read operations on Sensor1.

1. Read conditioned by the content of the register at address specified in the DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh) register. If the content is non-zero, the operation continues with the reading of the address specified in the SLV0_SUBADD (03h) register, else the operation is interrupted.

12.4 SLV1_ADD (05h)
I²C slave address of the second external sensor (Sensor2) register (r/w).

Table 233. SLV1_ADD register

<table>
<thead>
<tr>
<th>Slave1_add6</th>
<th>Slave1_add5</th>
<th>Slave1_add4</th>
<th>Slave1_add3</th>
<th>Slave1_add2</th>
<th>Slave1_add1</th>
<th>Slave1_add0</th>
<th>r_1</th>
</tr>
</thead>
</table>

Table 234. SLV1_ADD register description

Slave1_add[6:0] I²C slave address of Sensor2 that can be read by sensor hub. Default value: 0000000

r_1 Read operation on Sensor2 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)
12.5 **SLV1_SUBADD (06h)**
Address of register on the second external sensor (Sensor2) register (r/w).

Table 235. SLV1_SUBADD register

<table>
<thead>
<tr>
<th>Slave1_reg7</th>
<th>Slave1_reg6</th>
<th>Slave1_reg5</th>
<th>Slave1_reg4</th>
<th>Slave1_reg3</th>
<th>Slave1_reg2</th>
<th>Slave1_reg1</th>
<th>Slave1_reg0</th>
</tr>
</thead>
</table>

Table 236. SLV1_SUBADD register description

<table>
<thead>
<tr>
<th>Slave1_reg[7:0]</th>
<th>Address of register on Sensor2 that has to be read according to the r_1 bit value in SLV1_ADD (05h). Default value: 00000000</th>
</tr>
</thead>
</table>

12.6 **SLAVE1_CONFIG (07h)**
Second external sensor (Sensor2) configuration register (r/w).

Table 237. SLAVE1_CONFIG register

<table>
<thead>
<tr>
<th>Slave1_rate1</th>
<th>Slave1_rate0</th>
<th>write_once</th>
<th>0 (1)</th>
<th>0 (1)</th>
<th>Slave1_numop2</th>
<th>Slave1_numop1</th>
<th>Slave1_numop0</th>
</tr>
</thead>
</table>

1. **Table 238. SLAVE1_CONFIG register description**

<table>
<thead>
<tr>
<th>Slave1_rate[1:0]</th>
<th>Decimation of read operation on Sensor2 starting from the sensor hub trigger. Default value: 00 (00: no decimation; 01: update every 2 samples; 10: update every 4 samples; 11: update every 8 samples.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>write_once</td>
<td>Slave 0 write operation is performed only at the first sensor hub cycle. (1) Default value: 0 (0: write operation for each sensor hub cycle; 1: write operation only for the first sensor hub cycle)</td>
</tr>
</tbody>
</table>

1. **Table 249. SLAVE1_CONFIG register description**

<table>
<thead>
<tr>
<th>Slave1_numop[2:0]</th>
<th>Number of read operations on Sensor2.</th>
</tr>
</thead>
</table>

1. **This bit must be set to ‘0’ for the correct operation of the device.**
12.7 **SLV2_ADD (08h)**
I²C slave address of the third external sensor (Sensor3) register (r/w).

<table>
<thead>
<tr>
<th></th>
<th>Slave2_add6</th>
<th>Slave2_add5</th>
<th>Slave2_add4</th>
<th>Slave2_add3</th>
<th>Slave2_add2</th>
<th>Slave2_add1</th>
<th>Slave2_add0</th>
<th>r_2</th>
</tr>
</thead>
</table>

Table 239. SLV2_ADD register

<table>
<thead>
<tr>
<th></th>
<th>Slave2_add[6:0]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I²C slave address of Sensor3 that can be read by sensor hub. Default value: 0000000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r_2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Read operation on Sensor3 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)</td>
<td></td>
</tr>
</tbody>
</table>

12.8 **SLV2_SUBADD (09h)**
Address of register on the third external sensor (Sensor3) register (r/w).

<table>
<thead>
<tr>
<th></th>
<th>Slave2_reg7</th>
<th>Slave2_reg6</th>
<th>Slave2_reg5</th>
<th>Slave2_reg4</th>
<th>Slave2_reg3</th>
<th>Slave2_reg2</th>
<th>Slave2_reg1</th>
<th>Slave2_reg0</th>
</tr>
</thead>
</table>

Table 240. SLV2_SUBADD register description

<table>
<thead>
<tr>
<th></th>
<th>Slave2_reg[7:0]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Address of register on Sensor3 that has to be read according to the r_2 bit value in SLV2_ADD (08h). Default value: 00000000</td>
<td></td>
</tr>
</tbody>
</table>

12.9 **SLAVE2_CONFIG (0Ah)**
Third external sensor (Sensor3) configuration register (r/w).

<table>
<thead>
<tr>
<th></th>
<th>Slave2_rate1</th>
<th>Slave2_rate0</th>
<th>0<sup>(1)</sup></th>
<th>0<sup>(1)</sup></th>
<th>0<sup>(1)</sup></th>
<th>Slave2_numop2</th>
<th>Slave2_numop1</th>
<th>Slave2_numop0</th>
</tr>
</thead>
</table>

1. This bit must be set to ‘0’ for the correct operation of the device.

<table>
<thead>
<tr>
<th></th>
<th>Slave2_rate[1:0]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Decimation of read operation on Sensor3 starting from the sensor hub trigger. Default value: 00 (00: no decimation; 01: update every 2 samples; 10: update every 4 samples; 11: update every 8 samples.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slave2_numop[2:0]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of read operations on Sensor3.</td>
<td></td>
</tr>
</tbody>
</table>
12.10 **SLV3_ADD (0Bh)**

I²C slave address of the fourth external sensor (Sensor4) register (r/w).

<table>
<thead>
<tr>
<th>Slave3_add6</th>
<th>Slave3_add5</th>
<th>Slave3_add4</th>
<th>Slave3_add3</th>
<th>Slave3_add2</th>
<th>Slave3_add1</th>
<th>Slave3_add0</th>
<th>r_3</th>
</tr>
</thead>
</table>

Table 245. SLV3_ADD register

Table 246. SLV3_ADD register description

<table>
<thead>
<tr>
<th>Slave3_add[6:0]</th>
<th>I²C slave address of Sensor4 that can be read by the sensor hub. Default value: 0000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_3</td>
<td>Read operation on Sensor4 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)</td>
</tr>
</tbody>
</table>

12.11 **SLV3_SUBADD (0Ch)**

Address of register on the fourth external sensor (Sensor4) register (r/w).

<table>
<thead>
<tr>
<th>Slave3_reg7</th>
<th>Slave3_reg6</th>
<th>Slave3_reg5</th>
<th>Slave3_reg4</th>
<th>Slave3_reg3</th>
<th>Slave3_reg2</th>
<th>Slave3_reg1</th>
<th>Slave3_reg0</th>
</tr>
</thead>
</table>

Table 247. SLV3_SUBADD register

Table 248. SLV3_SUBADD register description

| Slave3_reg[7:0] | Address of register on Sensor4 that has to be read according to the r_3 bit value in SLV3_ADD (0Bh). Default value: 00000000 |

12.12 **SLAVE3_CONFIG (0Dh)**

Fourth external sensor (Sensor4) configuration register (r/w).

<table>
<thead>
<tr>
<th>Slave3_rate1</th>
<th>Slave3_rate0</th>
<th>0[1]</th>
<th>0[1]</th>
<th>0[1]</th>
<th>Slave3_numop2</th>
<th>Slave3_numop1</th>
<th>Slave3_numop0</th>
</tr>
</thead>
</table>

1. *This bit must be set to '0' for the correct operation of the device.*

Table 249. SLAVE3_CONFIG register

Table 250. SLAVE3_CONFIG register description

<table>
<thead>
<tr>
<th>Slave3_rate[1:0]</th>
<th>Decimation of read operation on Sensor4 starting from the sensor hub trigger. Default value: 00 (00: no decimation; 01: update every 2 samples; 10: update every 4 samples; 11: update every 8 samples.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave3_numop[2:0]</td>
<td>Number of read operations on Sensor4.</td>
</tr>
</tbody>
</table>
12.13 DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh)
Data to be written into the slave device register (r/w).

Table 251. DATAWRITE_SRC_MODE_SUB_SLV0 register

<table>
<thead>
<tr>
<th>Slave_dataw7</th>
<th>Slave_dataw6</th>
<th>Slave_dataw5</th>
<th>Slave_dataw4</th>
<th>Slave_dataw3</th>
<th>Slave_dataw2</th>
<th>Slave_dataw1</th>
<th>Slave_dataw0</th>
</tr>
</thead>
</table>

Table 252. DATAWRITE_SRC_MODE_SUB_SLV0 register description

<table>
<thead>
<tr>
<th>Slave_dataw[7:0]</th>
<th>Data to be written into the slave device according to the rw_0 bit in SLV0_ADD (02h) register or address to be read in source mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Default value: 00000000</td>
</tr>
</tbody>
</table>

12.14 MAG_SI_XX (24h)
Soft-iron matrix correction register (r/w).

Table 253. MAG_SI_XX register

<table>
<thead>
<tr>
<th>MAG_SI_XX_7</th>
<th>MAG_SI_XX_6</th>
<th>MAG_SI_XX_5</th>
<th>MAG_SI_XX_4</th>
<th>MAG_SI_XX_3</th>
<th>MAG_SI_XX_2</th>
<th>MAG_SI_XX_1</th>
<th>MAG_SI_XX_0</th>
</tr>
</thead>
</table>

Table 254. MAG_SI_XX register description

<table>
<thead>
<tr>
<th>MAG_SI_XX_[7:0]</th>
<th>Soft-iron correction row1 col1 coefficient(1). Default value: 00001000</th>
</tr>
</thead>
</table>

1. Value is expressed in sign-module format.

12.15 MAG_SI_XY (25h)
Soft-iron matrix correction register (r/w).

Table 255. MAG_SI_XY register

<table>
<thead>
<tr>
<th>MAG_SI_XY_7</th>
<th>MAG_SI_XY_6</th>
<th>MAG_SI_XY_5</th>
<th>MAG_SI_XY_4</th>
<th>MAG_SI_XY_3</th>
<th>MAG_SI_XY_2</th>
<th>MAG_SI_XY_1</th>
<th>MAG_SI_XY_0</th>
</tr>
</thead>
</table>

Table 256. MAG_SI_XY register description

<table>
<thead>
<tr>
<th>MAG_SI_XY_[7:0]</th>
<th>Soft-iron correction row1 col2 coefficient(1). Default value: 00000000</th>
</tr>
</thead>
</table>

1. Value is expressed in sign-module format.

12.16 MAG_SI_XZ (26h)
Soft-iron matrix correction register (r/w).

Table 257. MAG_SI_XZ register

<table>
<thead>
<tr>
<th>MAG_SI_XZ_7</th>
<th>MAG_SI_XZ_6</th>
<th>MAG_SI_XZ_5</th>
<th>MAG_SI_XZ_4</th>
<th>MAG_SI_XZ_3</th>
<th>MAG_SI_XZ_2</th>
<th>MAG_SI_XZ_1</th>
<th>MAG_SI_XZ_0</th>
</tr>
</thead>
</table>

Table 258. MAG_SI_XZ register description

<table>
<thead>
<tr>
<th>MAG_SI_XZ_[7:0]</th>
<th>Soft-iron correction row1 col3 coefficient(1). Default value: 00000000</th>
</tr>
</thead>
</table>

1. Value is expressed in sign-module format.
12.17 **MAG_SI_YX (27h)**
Soft-iron matrix correction register (r/w).

<table>
<thead>
<tr>
<th>Table 259. MAG_SI_YX register</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_SI_YX_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 260. MAG_SI_YX register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_SI_YX_[7:0]</td>
</tr>
</tbody>
</table>

1. Value is expressed in sign-module format.

12.18 **MAG_SI_YY (28h)**
Soft-iron matrix correction register (r/w).

<table>
<thead>
<tr>
<th>Table 261. MAG_SI_YY register</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_SI_YY_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 262. MAG_SI_YY register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_SI_YY_[7:0]</td>
</tr>
</tbody>
</table>

1. Value is expressed in sign-module format.

12.19 **MAG_SI_YZ (29h)**
Soft-iron matrix correction register (r/w).

<table>
<thead>
<tr>
<th>Table 263. MAG_SI_YZ register</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_SI_YZ_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 264. MAG_SI_YZ register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_SI_YZ_[7:0]</td>
</tr>
</tbody>
</table>

1. Value is expressed in sign-module format.

12.20 **MAG_SI_ZX (2Ah)**
Soft-iron matrix correction register (r/w).

<table>
<thead>
<tr>
<th>Table 265. MAG_SI_ZX register</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_SI_ZX_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 266. MAG_SI_ZX register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_SI_ZX_[7:0]</td>
</tr>
</tbody>
</table>

1. Value is expressed in sign-module format.
12.21 **MAG_SI_ZY (2Bh)**
Soft-iron matrix correction register (r/w).

| Table 267. MAG_SI_ZY register |
|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| MAG_SI_ZY_7 | MAG_SI_ZY_6 | MAG_SI_ZY_5 | MAG_SI_ZY_4 | MAG_SI_ZY_3 | MAG_SI_ZY_2 | MAG_SI_ZY_1 |
| MAG_SI_ZY_0 | | | | | | |

<table>
<thead>
<tr>
<th>Table 268. MAG_SI_ZY register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_SI_ZY_[7:0]</td>
</tr>
</tbody>
</table>

1. Value is expressed in sign-module format.

12.22 **MAG_SI ZZ (2Ch)**
Soft-iron matrix correction register (r/w).

| Table 269. MAG_SI_ZZ register |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| MAG_SI_ZZ_7 | MAG_SI_ZZ_6 | MAG_SI_ZZ_5 | MAG_SI_ZZ_4 | MAG_SI_ZZ_3 | MAG_SI_ZZ_2 |
| MAG_SI_ZZ_1 | MAG_SI_ZZ_0 | | | | |

<table>
<thead>
<tr>
<th>Table 270. MAG_SI_ZZ register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_SI_ZZ_[7:0]</td>
</tr>
</tbody>
</table>

1. Value is expressed in sign-module format.

12.23 **MAG_OFFX_L (2Dh)**
Offset for X-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two’s complement.

| Table 271. MAG_OFFX_L register |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| MAG_OFFX_L_7 | MAG_OFFX_L_6 | MAG_OFFX_L_5 | MAG_OFFX_L_4 | MAG_OFFX_L_3 | MAG_OFFX_L_2 |
| MAG_OFFX_L_1 | MAG_OFFX_L_0 | | | | |

<table>
<thead>
<tr>
<th>Table 272. MAG_OFFX_L register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_OFFX_L_[7:0]</td>
</tr>
</tbody>
</table>

12.24 **MAG_OFFX_H (2Eh)**
Offset for X-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two’s complement.

| Table 273. MAG_OFFX_H register |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| MAG_OFFX_H_7 | MAG_OFFX_H_6 | MAG_OFFX_H_5 | MAG_OFFX_H_4 | MAG_OFFX_H_3 | MAG_OFFX_H_2 |
| MAG_OFFX_H_1 | MAG_OFFX_H_0 | | | | |

<table>
<thead>
<tr>
<th>Table 274. MAG_OFFX_H register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_OFFX_H_[7:0]</td>
</tr>
</tbody>
</table>
12.25 **MAG_OFFY_L (2Fh)**
Offset for Y-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

<table>
<thead>
<tr>
<th>Table 275. MAG_OFFY_L register</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_OFFY_L_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 276. MAG_OFFY_L register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_OFFY_L_[7:0] Offset for Y-axis hard-iron compensation. Default value: 00000000</td>
</tr>
</tbody>
</table>

12.26 **MAG_OFFY_H (30h)**
Offset for Y-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

<table>
<thead>
<tr>
<th>Table 277. MAG_OFFY_H register</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_OFFY_H_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 278. MAG_OFFY_H register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_OFFY_H_[7:0] Offset for Y-axis hard-iron compensation. Default value: 00000000</td>
</tr>
</tbody>
</table>

12.27 **MAG_OFFZ_L (31h)**
Offset for Z-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

<table>
<thead>
<tr>
<th>Table 279. MAG_OFFZ_L register</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_OFFZ_L_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 280. MAG_OFFZ_L register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_OFFZ_L_[7:0] Offset for Z-axis hard-iron compensation. Default value: 00000000</td>
</tr>
</tbody>
</table>

12.28 **MAG_OFFZ_H (32h)**
Offset for Z-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

<table>
<thead>
<tr>
<th>Table 281. MAG_OFFZ_H register</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_OFFZ_H_7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 282. MAG_OFFZ_H register description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAG_OFFZ_H_[7:0] Offset for Z-axis hard-iron compensation. Default value: 00000000</td>
</tr>
</tbody>
</table>
The LGA package is compliant with the ECOPACK®, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Land pattern and soldering recommendations are available at www.st.com/mems.
14 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

14.1 LGA-14L package information

Figure 23. LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DIMENSION [mm]</th>
<th>TOLERANCE [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length L</td>
<td>2.50</td>
<td>±0.1</td>
</tr>
<tr>
<td>Width W</td>
<td>3.00</td>
<td>±0.1</td>
</tr>
<tr>
<td>Height H</td>
<td>0.86</td>
<td>MAX</td>
</tr>
</tbody>
</table>

Dimensions are in millimeter unless otherwise specified.
General tolerance is +/-0.1mm unless otherwise specified.
14.2 LGA-14 packing information

Figure 24. Carrier tape information for LGA-14 package

<table>
<thead>
<tr>
<th>Ao</th>
<th>2.80</th>
<th>± 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bo</td>
<td>3.30</td>
<td>± 0.05</td>
</tr>
<tr>
<td>Ko</td>
<td>1.00</td>
<td>± 0.10</td>
</tr>
<tr>
<td>F</td>
<td>5.50</td>
<td>± 0.05</td>
</tr>
<tr>
<td>PI</td>
<td>8.00</td>
<td>± 0.10</td>
</tr>
<tr>
<td>W</td>
<td>12.00</td>
<td>± 0.20</td>
</tr>
</tbody>
</table>

Note: All dimensions in millimeters unless otherwise stated.

Figure 25. LGA-14 package orientation in carrier tape
Figure 26. Reel information for carrier tape of LGA-14 package

Table 283. Reel dimensions for carrier tape of LGA-14 package

<table>
<thead>
<tr>
<th>Reel dimensions (mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A (max)</td>
<td>330</td>
</tr>
<tr>
<td>B (min)</td>
<td>1.5</td>
</tr>
<tr>
<td>C</td>
<td>13 ±0.25</td>
</tr>
<tr>
<td>D (min)</td>
<td>20.2</td>
</tr>
<tr>
<td>N (min)</td>
<td>60</td>
</tr>
<tr>
<td>G</td>
<td>12.4 +2/-0</td>
</tr>
<tr>
<td>T (max)</td>
<td>18.4</td>
</tr>
</tbody>
</table>
Revision history

Table 284. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-Jun-2017</td>
<td>1</td>
<td>Initial release</td>
</tr>
<tr>
<td>24-Nov-2017</td>
<td>2</td>
<td>Updated Table 3: Mechanical characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated footnote 1 of Table 41: FIFO ODR selection</td>
</tr>
<tr>
<td>13-Nov-2018</td>
<td>3</td>
<td>Added product label indicating ST's 10-year longevity commitment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added sensor resonant frequency to Table 2. Mechanical characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated bit 7 in Section 10.5 FIFO_CTRL2 (07h)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated bit 0 in Section 10.76 MD1_CFG (5Eh)</td>
</tr>
</tbody>
</table>
Contents

1 Overview ... 3

2 Embedded smart features .. 4
 2.1 Tilt detection ... 4

3 Pin description .. 5
 3.1 Pin connections .. 6

4 Module specifications ... 8
 4.1 Mechanical characteristics .. 8
 4.2 Electrical characteristics ... 11
 4.3 Temperature sensor characteristics 11
 4.4 Communication interface characteristics 12
 4.4.1 SPI - serial peripheral interface 12
 4.4.2 I²C- inter-IC control interface 13
 4.5 Absolute maximum ratings 15
 4.6 Terminology ... 16
 4.6.1 Sensitivity .. 16
 4.6.2 Zero-g and zero-rate level 16

5 Functionality .. 17
 5.1 Operating modes ... 17
 5.2 Gyroscope power modes .. 17
 5.3 Accelerometer power modes 17
 5.4 Block diagram of filters .. 17
 5.4.1 Block diagrams of the gyroscope filters 17
 5.4.2 Block diagrams of the accelerometer filters 18
 5.5 FIFO ... 22
 5.5.1 Bypass mode .. 22
 5.5.2 FIFO mode .. 22
 5.5.3 Continuous mode ... 23
 5.5.4 Continuous-to-FIFO mode 23
 5.5.5 Bypass-to-Continuous mode 23
 5.5.6 FIFO reading procedure 23
Digital interfaces

- **6.1 I²C/SPI interface** .. 24
- **6.2 Master I²C** ... 24
- **6.3 Auxiliary SPI** ... 24
- **6.4 I²C serial interface** ... 25
 - **6.4.1 I²C operation** .. 25
- **6.5 SPI bus interface** .. 27
 - **6.5.1 SPI read** ... 28
 - **6.5.2 SPI write** ... 29
 - **6.5.3 SPI read in 3-wire mode** 29

Application hints

- **7.1 electrical connections in Mode 1** 30
- **7.2 electrical connections in Mode 2** 30
- **7.3 electrical connections in Mode 3 and Mode 4** 31
 - **7.3.1 @NA** .. 34

Auxiliary SPI configurations

- **8.1 Gyroscope filtering** ... 36
- **8.2 Accelerometer filtering** ... 37
 - **8.2.1 Accelerometer full scale set from primary interface** 37
 - **8.2.2 Accelerometer full scale set from auxiliary SPI** 37

Register mapping

- **9.1 FUNC_CFG_ACCESS (01h)** ... 41
- **9.2 SENSOR_SYNC_TIME_FRAME (04h)** 41
- **9.3 SENSOR_SYNC_RES_RATIO (05h)** 41
- **9.4 FIFO_CTRL1 (06h)** ... 42
- **9.5 FIFO_CTRL2 (07h)** ... 42
- **9.6 FIFO_CTRL3 (08h)** ... 43
- **9.7 FIFO_CTRL4 (09h)** ... 44
- **9.8 FIFO_CTRL5 (0Ah)** ... 45
- **9.9 DRDY_PULSE_CFG (0Bh)** ... 45
10.10 INT1_CTRL (0Dh) ... 46
10.11 INT2_CTRL (0Eh) ... 47
10.12 WHO_AM_I (0Fh) ... 47
10.13 CTRL1_XL (10h) .. 48
10.14 CTRL2_G (11h) ... 49
10.15 CTRL3_C (12h) ... 50
10.16 CTRL4_C (13h) ... 51
10.17 CTRL5_C (14h) ... 51
10.18 CTRL6_C (15h) ... 53
10.19 CTRL7_G (16h) ... 54
10.20 CTRL8_XL (17h) .. 55
10.21 CTRL9_XL (18h) .. 56
10.22 CTRL10_C (19h) .. 56
10.23 MASTER_CONFIG (1Ah)... 57
10.24 WAKE_UP_SRC (1Bh)... 58
10.25 TAP_SRC (1Ch) ... 59
10.26 D6D_SRC (1Dh) ... 60
10.27 STATUS_REG/STATUS_SPIAux (1Eh) ... 60
10.28 OUT_TEMP_L (20h), OUT_TEMP_H (21h). 61
10.29 OUTX_L_G (22h) ... 61
10.30 OUTX_H_G (23h) ... 61
10.31 OUTY_L_G (24h) ... 62
10.32 OUTY_H_G (25h) ... 63
10.33 OUTZ_L_G (26h) ... 63
10.34 OUTZ_H_G (27h) ... 64
10.35 OUTX_L_XL (28h) ... 64
10.36 OUTX_H_XL (29h) ... 64
10.37 OUTY_L_XL (2Ah) ... 65
10.38 OUTY_H_XL (2Bh) ... 65
10.39 OUTZ_L_XL (2Ch) ... 65
10.40 OUTZ_H_XL (2Dh) .. 66
10.41 SENSORHUB1_REG (2Eh) ... 66
10.42 SENSORHUB2_REG (2Fh) ... 66
10.43 SENSORHUB3_REG (30h) ... 66
10.44 SENSORHUB4_REG (31h) ... 66
10.45 SENSORHUB5_REG (32h) ... 67
10.46 SENSORHUB6_REG (33h) ... 67
10.47 SENSORHUB7_REG (34h) ... 67
10.48 SENSORHUB8_REG (35h) ... 67
10.49 SENSORHUB9_REG (36h) ... 68
10.50 SENSORHUB10_REG (37h) ... 68
10.51 SENSORHUB11_REG (38h) ... 68
10.52 SENSORHUB12_REG (39h) ... 68
10.53 FIFO_STATUS1 (3Ah) ... 69
10.54 FIFO_STATUS2 (3Bh) ... 69
10.55 FIFO_STATUS3 (3Ch) ... 69
10.56 FIFO_STATUS4 (3Dh) .. 70
10.57 FIFO_DATA_OUT_L (3Eh) ... 70
10.58 FIFO_DATA_OUT_H (3Fh) ... 71
10.59 TIMESTAMP0_REG (40h) .. 71
10.60 TIMESTAMP1_REG (41h) .. 71
10.61 TIMESTAMP2_REG (42h) .. 72
10.62 SENSORHUB13_REG (4Dh) ... 72
10.63 SENSORHUB14_REG (4Eh) ... 72
10.64 SENSORHUB15_REG (4Fh) ... 72
10.65 SENSORHUB16_REG (50h) ... 73
10.66 SENSORHUB17_REG (51h) ... 73
10.67 SENSORHUB18_REG (52h) ... 73
10.68 FUNC_SRC1 (53h) .. 74
10.69 FUNC_SRC2 (54h) .. 74
10.70 TAP_CFG (58h) ... 75
10.71 TAP_THS_6D (59h) ... 75
10.72 INT_DUR2 (5Ah) .. 76
10.73 WAKE_UP_THS (5Bh) ... 76
10.74 WAKE_UP_DUR (5Ch) .. 77
10.75 FREE_FALL (5Dh) .. 77
10.76 MD1_CFG (5Eh) .. 77
10.77 MD2_CFG (5Fh) .. 79
10.78 MASTER_CMD_CODE (60h) ... 79
10.79 SENS_SYNC_SPI_ERROR_CODE (61h) ... 79
10.80 OUT_MAG_RAW_X_L (66h) .. 80
10.81 OUT_MAG_RAW_X_H (67h) ... 80
10.82 OUT_MAG_RAW_Y_L (68h) ... 80
10.83 OUT_MAG_RAW_Y_H (69h) ... 81
10.84 OUT_MAG_RAW_Z_L (6Ah) .. 81
10.85 OUT_MAG_RAW_Z_H (6Bh) .. 81
10.86 INT_OIS (6Fh) .. 81
10.87 CTRL1_OIS (70h) ... 82
10.88 CTRL2_OIS (71h) ... 83
10.89 CTRL3_OIS (72h) ... 83
10.90 X_OFS_USR (73h) .. 84
10.91 Y_OFS_USR (74h) .. 85
10.92 Z_OFS_USR (75h) .. 85

11 Embedded functions register mapping .. 86

12 Embedded functions registers description .. 88
 12.1 SLV0_ADD (02h) .. 88
 12.2 SLV0_SUBADD (03h) .. 88
 12.3 SLAVE0_CONFIG (04h) ... 89
 12.4 SLV1_ADD (05h) .. 89
 12.5 SLV1_SUBADD (06h) .. 90
List of figures.. 115
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Pin description</td>
<td>6</td>
</tr>
<tr>
<td>Table 2</td>
<td>Mechanical characteristics</td>
<td>8</td>
</tr>
<tr>
<td>Table 3</td>
<td>Electrical characteristics</td>
<td>11</td>
</tr>
<tr>
<td>Table 4</td>
<td>Temperature sensor characteristics</td>
<td>11</td>
</tr>
<tr>
<td>Table 5</td>
<td>SPI slave timing values</td>
<td>12</td>
</tr>
<tr>
<td>Table 6</td>
<td>I²C slave timing values</td>
<td>13</td>
</tr>
<tr>
<td>Table 7</td>
<td>I²C slave timing values</td>
<td>14</td>
</tr>
<tr>
<td>Table 8</td>
<td>Absolute maximum ratings</td>
<td>15</td>
</tr>
<tr>
<td>Table 9</td>
<td>Serial interface pin description</td>
<td>24</td>
</tr>
<tr>
<td>Table 10</td>
<td>Master I²C pin details</td>
<td>24</td>
</tr>
<tr>
<td>Table 11</td>
<td>Auxiliary SPI pin details</td>
<td>24</td>
</tr>
<tr>
<td>Table 12</td>
<td>I²C terminology</td>
<td>25</td>
</tr>
<tr>
<td>Table 13</td>
<td>SAD_Read/Write patterns</td>
<td>25</td>
</tr>
<tr>
<td>Table 14</td>
<td>Transfer when master is writing one byte to slave</td>
<td>26</td>
</tr>
<tr>
<td>Table 15</td>
<td>Transfer when master is writing multiple bytes to slave</td>
<td>26</td>
</tr>
<tr>
<td>Table 16</td>
<td>Transfer when master is receiving (reading) one byte of data from slave</td>
<td>26</td>
</tr>
<tr>
<td>Table 17</td>
<td>Transfer when master is receiving (reading) multiple bytes of data from slave</td>
<td>26</td>
</tr>
<tr>
<td>Table 18</td>
<td>Internal pin status</td>
<td>34</td>
</tr>
<tr>
<td>Table 19</td>
<td>Registers address map</td>
<td>38</td>
</tr>
<tr>
<td>Table 20</td>
<td>FUNC_CFG_ACCESS register</td>
<td>41</td>
</tr>
<tr>
<td>Table 21</td>
<td>FUNC_CFG_ACCESS register description</td>
<td>41</td>
</tr>
<tr>
<td>Table 22</td>
<td>SENSOR_SYNC_TIME_FRAME register</td>
<td>41</td>
</tr>
<tr>
<td>Table 23</td>
<td>SENSOR_SYNC_TIME_FRAME register description</td>
<td>41</td>
</tr>
<tr>
<td>Table 24</td>
<td>SENSOR_SYNC_RES_RATIO register</td>
<td>41</td>
</tr>
<tr>
<td>Table 25</td>
<td>SENSOR_SYNC_RES_RATIO register description</td>
<td>42</td>
</tr>
<tr>
<td>Table 26</td>
<td>FIFO_CTRL1 register</td>
<td>42</td>
</tr>
<tr>
<td>Table 27</td>
<td>FIFO_CTRL1 register description</td>
<td>42</td>
</tr>
<tr>
<td>Table 28</td>
<td>FIFO_CTRL2 register</td>
<td>42</td>
</tr>
<tr>
<td>Table 29</td>
<td>FIFO_CTRL2 register description</td>
<td>42</td>
</tr>
<tr>
<td>Table 30</td>
<td>FIFO_CTRL3 register</td>
<td>43</td>
</tr>
<tr>
<td>Table 31</td>
<td>FIFO_CTRL3 register description</td>
<td>43</td>
</tr>
<tr>
<td>Table 32</td>
<td>FIFO_CTRL4 register</td>
<td>43</td>
</tr>
<tr>
<td>Table 33</td>
<td>FIFO_CTRL4 register description</td>
<td>43</td>
</tr>
<tr>
<td>Table 34</td>
<td>Accelerometer FIFO decimation setting</td>
<td>44</td>
</tr>
<tr>
<td>Table 35</td>
<td>Accelerometer FIFO decimation setting</td>
<td>44</td>
</tr>
<tr>
<td>Table 36</td>
<td>Fourth FIFO data set decimation setting</td>
<td>44</td>
</tr>
<tr>
<td>Table 37</td>
<td>Third FIFO data set decimation setting</td>
<td>44</td>
</tr>
<tr>
<td>Table 38</td>
<td>FIFO_CTRL5 register</td>
<td>45</td>
</tr>
<tr>
<td>Table 39</td>
<td>FIFO_CTRL5 register description</td>
<td>45</td>
</tr>
<tr>
<td>Table 40</td>
<td>FIFO ODR selection</td>
<td>45</td>
</tr>
<tr>
<td>Table 41</td>
<td>FIFO mode selection</td>
<td>45</td>
</tr>
<tr>
<td>Table 42</td>
<td>DRDY_PULSE_CFG register</td>
<td>46</td>
</tr>
<tr>
<td>Table 43</td>
<td>DRDY_PULSE_CFG register</td>
<td>46</td>
</tr>
<tr>
<td>Table 44</td>
<td>INT1_CTRL register</td>
<td>46</td>
</tr>
<tr>
<td>Table 45</td>
<td>INT1_CTRL register description</td>
<td>46</td>
</tr>
<tr>
<td>Table 46</td>
<td>INT2_CTRL register</td>
<td>47</td>
</tr>
<tr>
<td>Table 47</td>
<td>INT2_CTRL register description</td>
<td>47</td>
</tr>
<tr>
<td>Table 48</td>
<td>WHO_AM_I register</td>
<td>47</td>
</tr>
<tr>
<td>Table 49</td>
<td>CTRL1_XL register</td>
<td>48</td>
</tr>
<tr>
<td>Table 50</td>
<td>CTRL1_XL register description</td>
<td>48</td>
</tr>
<tr>
<td>Table 51</td>
<td>Accelerometer ODR register setting</td>
<td>48</td>
</tr>
<tr>
<td>Table 52</td>
<td>CTRL2_G register</td>
<td>49</td>
</tr>
</tbody>
</table>
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 53</td>
<td>CTRL2_C register description</td>
<td>49</td>
</tr>
<tr>
<td>Table 54</td>
<td>Gyroscope ODR configuration setting</td>
<td>49</td>
</tr>
<tr>
<td>Table 55</td>
<td>CTRL3_C register</td>
<td>50</td>
</tr>
<tr>
<td>Table 56</td>
<td>CTRL3_C register description</td>
<td>50</td>
</tr>
<tr>
<td>Table 57</td>
<td>CTRL4_C register</td>
<td>51</td>
</tr>
<tr>
<td>Table 58</td>
<td>CTRL4_C register description</td>
<td>51</td>
</tr>
<tr>
<td>Table 59</td>
<td>CTRL5_C register</td>
<td>51</td>
</tr>
<tr>
<td>Table 60</td>
<td>CTRL5_C register description</td>
<td>51</td>
</tr>
<tr>
<td>Table 61</td>
<td>Output registers rounding pattern</td>
<td>52</td>
</tr>
<tr>
<td>Table 62</td>
<td>Angular rate sensor self-test mode selection</td>
<td>52</td>
</tr>
<tr>
<td>Table 63</td>
<td>Linear acceleration sensor self-test mode selection</td>
<td>52</td>
</tr>
<tr>
<td>Table 64</td>
<td>CTRL6_C register</td>
<td>53</td>
</tr>
<tr>
<td>Table 65</td>
<td>CTRL6_C register description</td>
<td>53</td>
</tr>
<tr>
<td>Table 66</td>
<td>Trigger mode selection</td>
<td>53</td>
</tr>
<tr>
<td>Table 67</td>
<td>Gyroscope LPF1 bandwidth selection</td>
<td>53</td>
</tr>
<tr>
<td>Table 68</td>
<td>CTRL7_G register</td>
<td>54</td>
</tr>
<tr>
<td>Table 69</td>
<td>CTRL7_G register description</td>
<td>54</td>
</tr>
<tr>
<td>Table 70</td>
<td>CTRL8_XL register</td>
<td>55</td>
</tr>
<tr>
<td>Table 71</td>
<td>CTRL8_XL register description</td>
<td>55</td>
</tr>
<tr>
<td>Table 72</td>
<td>Accelerometer bandwidth selection</td>
<td>55</td>
</tr>
<tr>
<td>Table 73</td>
<td>CTRL9_XL register</td>
<td>56</td>
</tr>
<tr>
<td>Table 74</td>
<td>CTRL9_XL register description</td>
<td>56</td>
</tr>
<tr>
<td>Table 75</td>
<td>CTRL10_C register</td>
<td>56</td>
</tr>
<tr>
<td>Table 76</td>
<td>CTRL10_C register description</td>
<td>56</td>
</tr>
<tr>
<td>Table 77</td>
<td>MASTER_CONFIG register</td>
<td>57</td>
</tr>
<tr>
<td>Table 78</td>
<td>MASTER_CONFIG register description</td>
<td>57</td>
</tr>
<tr>
<td>Table 79</td>
<td>WAKE_UP_SRC register</td>
<td>58</td>
</tr>
<tr>
<td>Table 80</td>
<td>WAKE_UP_SRC register description</td>
<td>58</td>
</tr>
<tr>
<td>Table 81</td>
<td>TAP_SRC register</td>
<td>59</td>
</tr>
<tr>
<td>Table 82</td>
<td>TAP_SRC register description</td>
<td>59</td>
</tr>
<tr>
<td>Table 83</td>
<td>D6D_SRC register</td>
<td>60</td>
</tr>
<tr>
<td>Table 84</td>
<td>D6D_SRC register description</td>
<td>60</td>
</tr>
<tr>
<td>Table 85</td>
<td>STATUS_REG register</td>
<td>60</td>
</tr>
<tr>
<td>Table 86</td>
<td>STATUS_REG register description</td>
<td>60</td>
</tr>
<tr>
<td>Table 87</td>
<td>STATUS_SPIAux register</td>
<td>61</td>
</tr>
<tr>
<td>Table 88</td>
<td>STATUS_SPIAux register</td>
<td>61</td>
</tr>
<tr>
<td>Table 89</td>
<td>OUT_TEMP_L register</td>
<td>61</td>
</tr>
<tr>
<td>Table 90</td>
<td>OUT_TEMP_H register</td>
<td>61</td>
</tr>
<tr>
<td>Table 91</td>
<td>OUT_TEMP_register description</td>
<td>61</td>
</tr>
<tr>
<td>Table 92</td>
<td>OUTX_L_G register</td>
<td>61</td>
</tr>
<tr>
<td>Table 93</td>
<td>OUTX_L_G register description</td>
<td>61</td>
</tr>
<tr>
<td>Table 94</td>
<td>OUTX_H_G register</td>
<td>62</td>
</tr>
<tr>
<td>Table 95</td>
<td>OUTX_H_G register description</td>
<td>62</td>
</tr>
<tr>
<td>Table 96</td>
<td>OUTY_L_G register</td>
<td>62</td>
</tr>
<tr>
<td>Table 97</td>
<td>OUTY_L_G register description</td>
<td>62</td>
</tr>
<tr>
<td>Table 98</td>
<td>OUTY_H_G register</td>
<td>63</td>
</tr>
<tr>
<td>Table 99</td>
<td>OUTY_H_G register description</td>
<td>63</td>
</tr>
<tr>
<td>Table 100</td>
<td>OUTZ_L_G register</td>
<td>63</td>
</tr>
<tr>
<td>Table 101</td>
<td>OUTZ_L_G register description</td>
<td>63</td>
</tr>
<tr>
<td>Table 102</td>
<td>OUTZ_H_G register</td>
<td>64</td>
</tr>
<tr>
<td>Table 103</td>
<td>OUTZ_H_G register description</td>
<td>64</td>
</tr>
<tr>
<td>Table 104</td>
<td>OUTX_L_XL register</td>
<td>64</td>
</tr>
<tr>
<td>Table 105</td>
<td>OUTX_L_XL register description</td>
<td>64</td>
</tr>
<tr>
<td>Table 106</td>
<td>OUTX_H_XL register</td>
<td>64</td>
</tr>
</tbody>
</table>
Table 107. OUTX_H_XL register description ... 64
Table 108. OUTY_L_XL register ... 65
Table 109. OUTY_L_XL register description .. 65
Table 110. OUTX_H_XL register ... 65
Table 111. OUTX_H_XL register description .. 65
Table 112. OUTZ_L_XL register ... 65
Table 113. OUTZ_L_XL register description .. 65
Table 114. OUTX_H_XL register ... 66
Table 115. OUTZ_H_XL register description .. 66
Table 116. SENSORHUB1_REG register .. 66
Table 117. SENSORHUB1_REG register description 66
Table 118. SENSORHUB2_REG register .. 66
Table 119. SENSORHUB2_REG register description 66
Table 120. SENSORHUB3_REG register .. 66
Table 121. SENSORHUB3_REG register description 66
Table 122. SENSORHUB4_REG register .. 67
Table 123. SENSORHUB4_REG register description 67
Table 124. SENSORHUB5_REG register .. 67
Table 125. SENSORHUB5_REG register description 67
Table 126. SENSORHUB6_REG register .. 67
Table 127. SENSORHUB6_REG register description 67
Table 128. SENSORHUB7_REG register .. 67
Table 129. SENSORHUB7_REG register description 67
Table 130. SENSORHUB8_REG register .. 68
Table 131. SENSORHUB8_REG register description 68
Table 132. SENSORHUB9_REG register .. 68
Table 133. SENSORHUB9_REG register description 68
Table 134. SENSORHUB10_REG register ... 68
Table 135. SENSORHUB10_REG register description 68
Table 136. SENSORHUB11_REG register ... 68
Table 137. SENSORHUB11_REG register description 68
Table 138. SENSORHUB12_REG register ... 69
Table 139. SENSORHUB12_REG register description 69
Table 140. FIFO_STATUS1 register ... 69
Table 141. FIFO_STATUS1 register description 69
Table 142. FIFO_STATUS2 register ... 69
Table 143. FIFO_STATUS2 register description 69
Table 144. FIFO_STATUS3 register ... 70
Table 145. FIFO_STATUS3 register description 70
Table 146. FIFO_STATUS4 register ... 70
Table 147. FIFO_STATUS4 register description 70
Table 148. FIFO_DATA_OUT_L register .. 70
Table 149. FIFO_DATA_OUT_L register description 70
Table 150. FIFO_DATA_OUT_H register .. 71
Table 151. FIFO_DATA_OUT_H register description 71
Table 152. TIMESTAMP0_REG register .. 71
Table 153. TIMESTAMP0_REG register description 71
Table 154. TIMESTAMP1_REG register .. 71
Table 155. TIMESTAMP1_REG register description 71
Table 156. TIMESTAMP2_REG register .. 72
Table 157. TIMESTAMP2_REG register description 72
Table 158. SENSORHUB13_REG register .. 72
Table 159. SENSORHUB13_REG register description 72
Table 160. SENSORHUB14_REG register .. 72
Table 161. SENSORHUB14_REG register description .. 72
Table 162. SENSORHUB15_REG register .. 72
Table 163. SENSORHUB15_REG register description .. 72
Table 164. SENSORHUB16_REG register .. 73
Table 165. SENSORHUB16_REG register description .. 73
Table 166. SENSORHUB17_REG register ... 73
Table 167. SENSORHUB17_REG register description .. 73
Table 168. SENSORHUB18_REG register .. 73
Table 169. SENSORHUB18_REG register description ... 73
Table 170. FUNC_SRC1 register ... 74
Table 171. FUNC_SRC1 register description .. 74
Table 172. FUNC_SRC2 register ... 74
Table 173. FUNC_SRC2 register description .. 74
Table 174. TAP_CFG register ... 75
Table 175. TAP_CFG register description ... 75
Table 176. TAP_THS_6D register ... 75
Table 177. TAP_THS_6D register description .. 75
Table 178. Threshold for D4D/D6D function .. 76
Table 179. INT_DUR2 register ... 76
Table 180. INT_DUR2 register description ... 76
Table 181. WAKE_UP_THS register .. 76
Table 182. WAKE_UP_THS register description ... 76
Table 183. WAKE_UP_DUR register ... 77
Table 184. WAKE_UP_DUR register description .. 77
Table 185. FREE_FALL register ... 77
Table 186. FREE_FALL register description ... 77
Table 187. Threshold for free-fall function ... 77
Table 188. MD1_CFG register ... 78
Table 189. MD1_CFG register description ... 78
Table 190. MD2_CFG register ... 79
Table 191. MD2_CFG register description ... 79
Table 192. MASTER_CMD_CODE register .. 79
Table 193. MASTER_CMD_CODE register description ... 79
Table 194. SENS_SYNC_SPI_ERROR_CODE register ... 80
Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80
Table 196. OUT_MAG_RAW_X_L register .. 80
Table 197. OUT_MAG_RAW_X_L register description ... 80
Table 198. OUT_MAG_RAW_X_H register .. 80
Table 199. OUT_MAG_RAW_X_H register description ... 80
Table 200. OUT_MAG_RAW_Y_L register .. 80
Table 201. OUT_MAG_RAW_Y_L register description ... 80
Table 202. OUT_MAG_RAW_Y_H register .. 81
Table 203. OUT_MAG_RAW_Y_H register description ... 81
Table 204. OUT_MAG_RAW_Z_L register .. 81
Table 205. OUT_MAG_RAW_Z_L register description ... 81
Table 206. OUT_MAG_RAW_Z_H register .. 81
Table 207. OUT_MAG_RAW_Z_H register description ... 81
Table 208. INT_OIS register ... 81
Table 209. INT_OIS register description .. 81
Table 210. CTRL1_OIS register ... 82
Table 211. CTRL1_OIS register description ... 82
Table 212. DEN mode selection .. 82
Table 213. CTRL2_OIS register ... 83
Table 214. CTRL2_OIS register description ... 83
Table 215. Gyroscope OIS chain LPF1 bandwidth selection ... 83
Table 216. CTRL3_OIS register .. 83
Table 217. CTRL3_OIS register description .. 84
Table 218. Accelerometer OIS channel bandwidth selection .. 84
Table 219. Self-test nominal output variation ... 84
Table 220. X_OFS_USR register .. 85
Table 221. X_OFS_USR register description .. 85
Table 222. Y_OFS_USR register .. 85
Table 223. Y_OFS_USR register description .. 85
Table 224. Z_OFS_USR register .. 85
Table 225. Z_OFS_USR register description .. 85
Table 226. Register address map embedded functions .. 86
Table 227. SLV0_ADD register .. 88
Table 228. SLV0_ADD register description ... 88
Table 229. SLV0_SUBADD register .. 88
Table 230. SLV0_SUBADD register description ... 88
Table 231. SLAVE0_CONFIG register ... 89
Table 232. SLAVE0_CONFIG register description ... 89
Table 233. SLV1_ADD register .. 89
Table 234. SLV1_ADD register description ... 89
Table 235. SLV1_SUBADD register .. 90
Table 236. SLV1_SUBADD register description ... 90
Table 237. SLAVE1_CONFIG register ... 90
Table 238. SLAVE1_CONFIG register description ... 90
Table 239. SLV2_ADD register .. 91
Table 240. SLV2_ADD register description ... 91
Table 241. SLV2_SUBADD register .. 91
Table 242. SLV2_SUBADD register description ... 91
Table 243. SLAVE2_CONFIG register ... 91
Table 244. SLAVE2_CONFIG register description ... 91
Table 245. SLV3_ADD register .. 92
Table 246. SLV3_ADD register description ... 92
Table 247. SLV3_SUBADD register .. 92
Table 248. SLV3_SUBADD register description ... 92
Table 249. SLAVE3_CONFIG register ... 92
Table 250. SLAVE3_CONFIG register description ... 92
Table 251. DATWRITE_SRC_MODE_SUB_SLV0 register ... 93
Table 252. DATWRITE_SRC_MODE_SUB_SLV0 register description .. 93
Table 253. MAG_SI_XX register ... 93
Table 254. MAG_SI_XX register description .. 93
Table 255. MAG_SI_XY register ... 93
Table 256. MAG_SI_XY register description .. 93
Table 257. MAG_SI_XZ register ... 93
Table 258. MAG_SI_XZ register description .. 93
Table 259. MAG_SI_YX register ... 94
Table 260. MAG_SI_YX register description .. 94
Table 261. MAG_SI_YY register ... 94
Table 262. MAG_SI_YY register description .. 94
Table 263. MAG_SI_YZ register ... 94
Table 264. MAG_SI_YZ register description .. 94
Table 265. MAG_SI_ZX register ... 94
Table 266. MAG_SI_ZX register description .. 94
Table 267. MAG_SI_ZY register ... 95
Table 268. MAG_SI_ZY register description .. 95
Table 269. MAG_SI ZZ register ... 95
Table 270. MAG_SI ZZ register description .. 95
Table 271. MAG_OFFX_L register ... 95
Table 272. MAG_OFFX_L register description .. 95
Table 273. MAG_OFFX_H register ... 95
Table 274. MAG_OFFX_H register description .. 95
Table 275. MAG_OFFY_L register ... 96
Table 276. MAG_OFFY_L register description .. 96
Table 277. MAG_OFFY_H register ... 96
Table 278. MAG_OFFY_H register description .. 96
Table 279. MAG_OFFZ_L register ... 96
Table 280. MAG_OFFZ_L register description .. 96
Table 281. MAG_OFFZ_H register ... 96
Table 282. MAG_OFFZ_H register description .. 96
Table 283. Reel dimensions for carrier tape of LGA-14 package 100
Table 284. Document revision history .. 101
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Pin connections</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2</td>
<td>ISM330DLC connection modes</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3</td>
<td>SPI slave timing diagram</td>
<td>12</td>
</tr>
<tr>
<td>Figure 4</td>
<td>I²C timing diagram</td>
<td>13</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Block diagram of filters</td>
<td>17</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Gyroscope digital chain - Mode 1 (GP) and Mode 2</td>
<td>18</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Gyroscope digital chain - Mode 3 / Mode 4 (OIS)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Accelerometer chain</td>
<td>19</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Accelerometer composite filter (for Modes 1/2 and Mode 3*)</td>
<td>20</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Accelerometer composite filter (Mode 4 only*)</td>
<td>21</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Read and write protocol</td>
<td>27</td>
</tr>
<tr>
<td>Figure 12</td>
<td>SPI read protocol</td>
<td>28</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Multiple byte SPI read protocol (2-byte example)</td>
<td>28</td>
</tr>
<tr>
<td>Figure 14</td>
<td>SPI write protocol</td>
<td>29</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Multiple byte SPI write protocol (2-byte example)</td>
<td>29</td>
</tr>
<tr>
<td>Figure 16</td>
<td>SPI read protocol in 3-wire mode</td>
<td>29</td>
</tr>
<tr>
<td>Figure 17</td>
<td>ISM330DLC electrical connections in Mode 1</td>
<td>30</td>
</tr>
<tr>
<td>Figure 18</td>
<td>ISM330DLC electrical connections in Mode 2</td>
<td>31</td>
</tr>
<tr>
<td>Figure 19</td>
<td>ISM330DLC electrical connections in Mode 3 and Mode 4 (auxiliary 3-wire SPI)</td>
<td>32</td>
</tr>
<tr>
<td>Figure 20</td>
<td>ISM330DLC electrical connections in Mode 3 and Mode 4 (auxiliary 4-wire SPI)</td>
<td>33</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Gyroscope chain</td>
<td>36</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Accelerometer chain (available only in Mode 4)</td>
<td>37</td>
</tr>
<tr>
<td>Figure 23</td>
<td>LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data</td>
<td>98</td>
</tr>
<tr>
<td>Figure 24</td>
<td>Carrier tape information for LGA-14 package</td>
<td>99</td>
</tr>
<tr>
<td>Figure 25</td>
<td>LGA-14 package orientation in carrier tape</td>
<td>99</td>
</tr>
<tr>
<td>Figure 26</td>
<td>Reel information for carrier tape of LGA-14 package</td>
<td>100</td>
</tr>
</tbody>
</table>