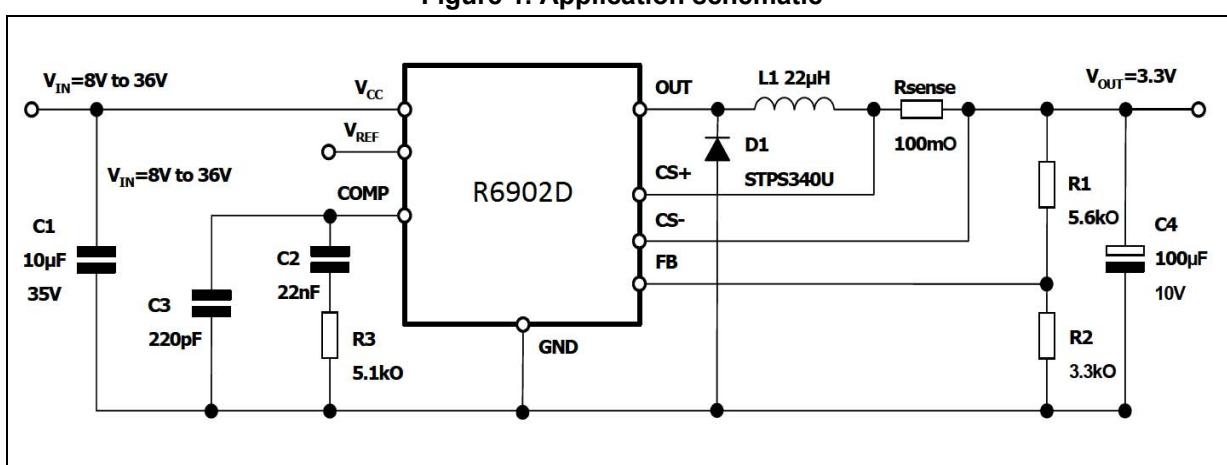


Up to 1 A step-down switching regulator with adjustable current limit for aerospace applications

Datasheet - preliminary data

Features


- General features
 - Up to 1 A DC output current
 - Operating input voltage from 8 V to 36 V
 - Output voltage adjustable from 1.235 V to 35 V
 - Precise 3.3 V ($\pm 2\%$) reference voltage
 - 250 kHz internally fixed frequency
 - Voltage feedforward
 - Zero load current operation
 - Internal current limiting
 - Protection against feedback disconnection
 - Thermal shutdown

- Aerospace and defense features
 - Suitable for use in aerospace and defense applications
 - Dedicated traceability and part marking
 - Production parts approval documents available
 - Adapted extended life time and obsolescence management
 - Extended product change notification process
 - Designed and manufactured to meet sub-ppm quality goals
 - Advanced mold and frame designs for superior resilience in harsh environments (acceleration, EMI, thermal, humidity)
 - Extended screening capability on request

Applications

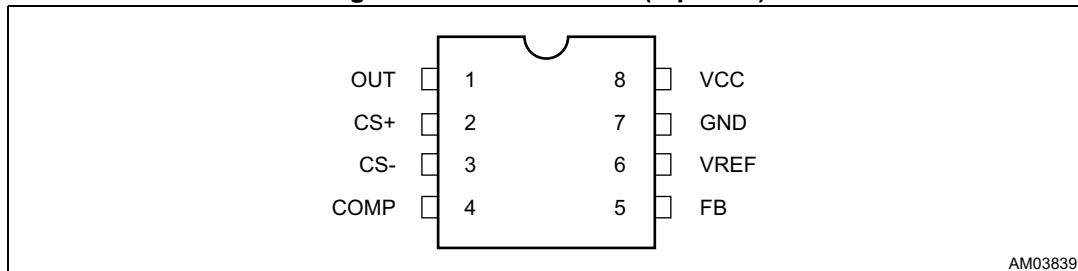
- Aerospace applications
- Adjustable current generator
- Simple step-down converters with adjustable current limit

Figure 1. Application schematic

Contents

1	Description	3
2	Pin connection	4
2.1	Pin connection	4
2.2	Pin description	4
3	Electrical data	5
3.1	Maximum ratings	5
3.2	Thermal data	5
4	Electrical characteristics	6
5	Package information	7
6	Order codes	9
7	Revision history	9

1 Description


The R6902D is a complete and simple step-down switching regulator with an adjustable current limit. Based on a voltage mode structure it integrates a current error amplifier to have a constant voltage and constant current control. By means of an on-board current sense resistor and the availability of the current sense pins (both compatible to Vcc and for Cs- compatible with GND too) current limit programming is very simple and accurate. Moreover constant current control can be used to charge NiMH and NiCd batteries. The device can be used as a standard DC/DC converter with the adjustable current limit (set by using the external sense resistor). The internal robust P-channel DMOS transistor with a typical of 250 mΩ assures high efficiency and a minimum dropout even at a high output current level. The internal limiting current (latched function) of typical value of 2.5 A protects the device from an accidental output short-circuit avoiding dangerous loads damage. If the temperature of the chip goes higher than a fixed internal threshold (150 °C with 20 °C hysteresis), the power stage is turned off. The large ambient temperature range makes it ideal for aerospace and defense applications.

Other protections beside the thermal shutdown complete the device for a safe and reliable application: overvoltage protection, frequency foldback overcurrent protection and protection vs. feedback disconnection. The internal fixed switching frequency of 250 kHz, and the SO-8 package pin allow to built an ultra compact DC/DC converter with a minimum board space.

2 Pin connection

2.1 Pin connection

Figure 2. Pin connection (top view)

2.2 Pin description

Table 1. Pin description

No.	Pin	Description
1	OUT	Regulator output.
2	CS+	Current error amplifier input (current sense at higher voltage)
3	CS-	Current error amplifier input (current sense at lower voltage)
4	COMP	E/A output for frequency compensation.
5	FB	Feedback input. Connecting directly to this pin results in an output voltage of 1.23 V. An external resistive divider is required for higher output voltages.
6	V _{REF}	3.3 V reference voltage. No cap is need for stability.
7	GND	Ground.
8	VCC	Unregulated DC input voltage.

3 Electrical data

3.1 Maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_8	Input voltage	40	V
V_1	OUT pin DC voltage OUT pin peak voltage at $\Delta t = 0.1 \mu s$	-1 to 40 -5 to 40	V V
I_1	Maximum output current	Int. limit.	
V_4, V_5	Analog pins	4	V
V_2, V_3	Analog pins	-0.3 to V_{CC}	V
P_{TOT}	Power dissipation at $T_A \leq 70 \text{ }^{\circ}\text{C}$	0.7	W
T_J	Operating junction temperature range	-40 to 150	$^{\circ}\text{C}$
T_{STG}	Storage temperature range	-55 to 150	$^{\circ}\text{C}$

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	SO-8	Unit
R_{thJA}	Maximum thermal resistance junction ambient	110 ⁽¹⁾	$^{\circ}\text{C/W}$

1. Package mounted on board.

4 Electrical characteristics

$T_J = -40$ to 125 °C, $V_{CC} = 12$ V, unless otherwise specified.

Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{CC}	Operating input voltage range	$V_0 = 1.235$ V; $I_0 = 2$ A	8		36	V
$R_{DS(on)}$	MOSFET on resistance			0.250	0.5	Ω
I_L	Maximum limiting current ⁽¹⁾	$V_{CC} = 8.5$ V	1.8	2.5	3.2	A
		$V_{CC} = 8.5$ V, $T_J = 25$ °C	2	2.5	3.2	
f_{sw}	Switching frequency		212	250	280	kHz
	Duty cycle		0		100	%
Dynamic characteristics						
V_5	Voltage feedback	8 V < V_{CC} < 36 V, 20 mA < I_0 < 1 A	1.198	1.235	1.272	V
η	Efficiency	$V_0 = 5$ V, $V_{CC} = 12$ V		90		%
DC characteristics						
I_{qop}	Total operating quiescent current			3	5	mA
I_q	Quiescent current	Duty cycle = 0; $V_{FB} = 1.5$ V			2.7	mA
Error amplifier						
V_{OH}	High level output voltage	$V_{FB}=1$ V	3.6			V
V_{OL}	Low level output voltage	$V_{FB}=1.5$ V			0.4	V
I_o source	Source output current	$V_{COMP} = 1.9$ V; $V_{FB} = 1$ V	160	300		μA
I_o sink	Sink output current	$V_{COMP} = 1.9$ V; $V_{FB} = 1.5$ V	1	1.5		mA
I_b	Source bias current			2.5	4	μA
	DC open loop gain	$R_L = \infty$	50	58		dB
gm	Transconductance	$I_{COMP} = -0.1$ mA to 0.1 mA; $V_{COMP} = 1.9$ V		2.3		mS
V_{OFFS}	Input offset voltage	$V_{CS-} = 1.8$ V; $V_{CS+} = V_{comp}$	90	100	110	mV
I_{CS+}	CS+ output current	$I_0 = 1$ A; $R_{SENSE} = 100$ mΩ; $V_{OUT} < V_{CC} - 2$ V		1.5	3	μA
I_{CS-}	CS- output current	$I_0 = 1$ A; $R_{SENSE} = 100$ mΩ; $V_{OUT} < V_{CC} - 2$ V		1.5	3	μA
Reference section						
	Reference voltage	$I_{REF} = 0$ to 5 mA, $V_{CC} = 8$ V to 36 V	3.2	3.3	3.399	V
	Line regulation	$I_{REF} = 0$ mA, $V_{CC} = 8$ V to 36 V		5	10	mV
	Load regulation	$I_{REF} = 0$ to 5 mA		8	15	mV
	Short-circuit current		5	18	35	mA

1. With $T_J = 85$ °C, $I_{lim_min} = 2$ A, assured by design, characterization and statistical correlation.

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.

Figure 3. SO-8 package outline

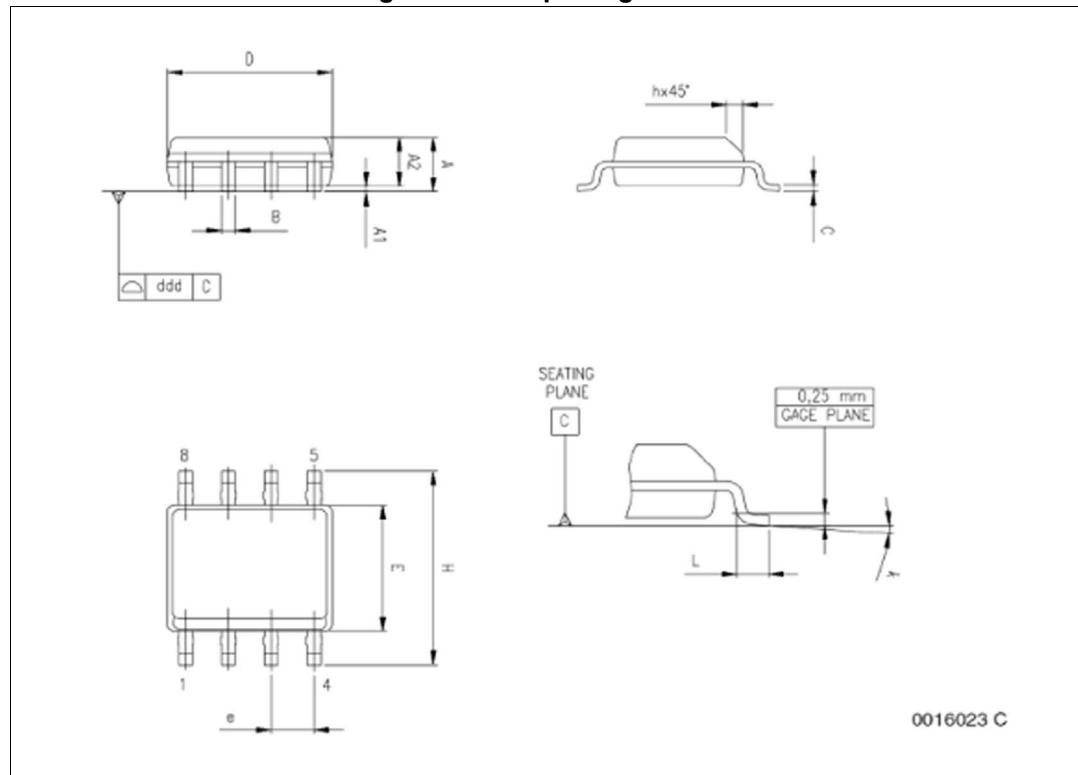


Table 5. SO-8 package mechanical data

Symbol	Dimensions (mm)			Dimensions (inch)		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.004		0.010
A2	1.10		1.65	0.043		0.065
B	0.33		0.51	0.013		0.020
C	0.19		0.25	0.007		0.010
D ⁽¹⁾	4.80		5.00	0.189		0.197
E	3.80		4.00	0.15		0.157
e		1.27			0.050	
H	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	0° (min), 8° (max)					
ddd			0.10			0.004

1. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm (0.006 inch) in total (both sides).

6 Order codes

Table 6. Ordering information

Order codes	Package	Packaging
R6902D	SO-8	Tube
R6902D13TR		Tape and reel

7 Revision history

Table 7. Document revision history

Date	Revision	Changes
06-Oct-2014	1	Initial release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved