ST1CC40

3 A monolithic step-down current source with synchronous rectification

Features
- 3.0 V to 18 V operating input voltage range
- 850 kHz fixed switching frequency
- 100 mV typ. current sense voltage drop
- 6 µA standby current in inhibit mode
- ± 7% output current accuracy
- Synchronous rectification
- 95 mΩ HS / 69 mΩ LS typical $R_{DS(on)}$
- Peak current mode architecture
- Embedded compensation network
- Internal current limiting
- Ceramic output capacitor compliant
- Thermal shutdown

Applications
- Battery charger
- Signage
- Emergency lighting
- High brightness LED driving
- General lighting

Description
The ST1CC40 device is an 850 kHz fixed switching frequency monolithic step-down DC-DC converter designed to operate as precise constant current source with an adjustable current capability up to 3 A DC. The regulated output current is set connecting a sensing resistor to the feedback pin. The embedded synchronous rectification and the 100 mV typical R_{SENSE} voltage drop enhance the efficiency performance. The size of the overall application is minimized thanks to the high switching frequency and ceramic output capacitor compatibility. The device is fully protected against thermal overheating, overcurrent and output short-circuit. Inhibit mode minimizes the current consumption in standby. The ST1CC40 is available in VFQFPN8 4 mm x 4 mm 8-lead, and standard SO8 package.

Figure 1. Typical application circuit
Table of contents

1 Pin settings .. 6
 1.1 Pin connection 6
 1.2 Pin description 6

2 Maximum ratings 7

3 Thermal data .. 7

4 Electrical characteristics 8

5 Functional description 9
 5.1 Power supply and voltage reference 10
 5.2 Voltage monitor 10
 5.3 Soft-start 10
 5.4 Error amplifier 10
 5.5 Inhibit ... 11
 5.6 Thermal shutdown 11

6 Application notes 12
 6.1 Closing the loop 12
 6.2 $G_{CO}(s)$ control to output transfer function 12
 6.3 Error amplifier compensation network 13
 6.4 LED small signal model 15
 6.5 Total loop gain 16
 Example ... 16
 6.6 eDesign studio software 18

7 Application information 19
 7.1 Component selection 19
 7.1.1 Sensing resistor 19
 7.1.2 Inductor and output capacitor selection ... 19
 7.1.3 Input capacitor 21
7.2 Layout considerations .. 22
7.3 Thermal considerations ... 23
7.4 Short-circuit protection ... 25
7.5 Application circuit .. 27

8 Typical characteristics .. 31
9 Package information ... 32
10 Ordering information .. 34
11 Revision history .. 35
List of tables

Table 1. Pin description ... 6
Table 2. Absolute maximum ratings ... 7
Table 3. Thermal data ... 7
Table 4. Electrical characteristics ... 8
Table 5. Uncompensated error amplifier characteristics 11
Table 6. Inductor selection ... 21
Table 7. List of ceramic capacitors for the ST1CC40 22
Table 8. Component list ... 28
Table 9. VFQFPN8 (4 x 4 x 1.08 mm) package mechanical data 32
Table 10. SO8-BW package mechanical data 33
Table 11. Ordering information ... 34
Table 12. Document revision history .. 35
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Typical application circuit</td>
<td>1</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Pin connection (top view)</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3</td>
<td>ST1CC40 block diagram</td>
<td>9</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Internal circuit</td>
<td>10</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Block diagram of the loop</td>
<td>12</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Transconductance embedded error amplifier</td>
<td>14</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Equivalent series resistor</td>
<td>15</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Load equivalent circuit</td>
<td>16</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Module plot</td>
<td>17</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Phase plot</td>
<td>17</td>
</tr>
<tr>
<td>Figure 11</td>
<td>eDesign studio screenshot</td>
<td>18</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Equivalent circuit</td>
<td>19</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Layout example</td>
<td>23</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Switching losses</td>
<td>24</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Constant current protection triggering hiccup mode</td>
<td>27</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Demonstration board application circuit</td>
<td>27</td>
</tr>
<tr>
<td>Figure 17</td>
<td>PCB layout (component side) VFQFPN8 package</td>
<td>28</td>
</tr>
<tr>
<td>Figure 18</td>
<td>PCB layout (bottom side) VFQFPN8 package</td>
<td>29</td>
</tr>
<tr>
<td>Figure 19</td>
<td>PCB layout (component side) SO8 package</td>
<td>29</td>
</tr>
<tr>
<td>Figure 20</td>
<td>PCB layout (bottom side) SO8 package</td>
<td>30</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Soft-start</td>
<td>31</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Inhibit operation</td>
<td>31</td>
</tr>
<tr>
<td>Figure 23</td>
<td>Thermal shutdown protection</td>
<td>31</td>
</tr>
<tr>
<td>Figure 24</td>
<td>Hiccup current protection</td>
<td>31</td>
</tr>
<tr>
<td>Figure 25</td>
<td>OCP blanking time</td>
<td>31</td>
</tr>
<tr>
<td>Figure 26</td>
<td>Current regulation</td>
<td>31</td>
</tr>
<tr>
<td>Figure 27</td>
<td>VFQFPN8 (4 x 4 x 1.08 mm) package outline</td>
<td>32</td>
</tr>
<tr>
<td>Figure 28</td>
<td>SO8-BW package outline</td>
<td>33</td>
</tr>
</tbody>
</table>
1 Pin settings

1.1 Pin connection

Figure 2. Pin connection (top view)

1.2 Pin description

Table 1. Pin description

<table>
<thead>
<tr>
<th>No.</th>
<th>VFQFPN8</th>
<th>S08-BW</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td></td>
<td>VIN_A</td>
<td>Analog circuitry power supply connection</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td>INH</td>
<td>Inhibit input pin. Low signal level disables the device. Leave this pin floating if not used</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td></td>
<td>FB</td>
<td>Feedback input. Connect a proper sensing resistor to set the LED current</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
<td>AGND</td>
<td>Analog circuitry ground connection</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td></td>
<td>NC</td>
<td>Not connected</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
<td>V_INSW</td>
<td>Power input voltage</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
<td>SW</td>
<td>Regulator switching pin</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td></td>
<td>PGND</td>
<td>Power ground</td>
</tr>
<tr>
<td>-</td>
<td>7</td>
<td></td>
<td>GND</td>
<td>Connect to AGND</td>
</tr>
</tbody>
</table>
2 Maximum ratings

Table 2. Absolute maximum ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{INSW}</td>
<td>Power input voltage</td>
<td>-0.3 to 20</td>
<td>V</td>
</tr>
<tr>
<td>V_{INA}</td>
<td>Input voltage</td>
<td>-0.3 to 20</td>
<td></td>
</tr>
<tr>
<td>V_{INH}</td>
<td>Inhibit voltage</td>
<td>-0.3 to V_{INA}</td>
<td></td>
</tr>
<tr>
<td>V_{SW}</td>
<td>Output switching voltage</td>
<td>-1 to V_{IN}</td>
<td></td>
</tr>
<tr>
<td>V_{PG}</td>
<td>Power Good</td>
<td>-0.3 to V_{IN}</td>
<td></td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback voltage</td>
<td>-0.3 to 2.5</td>
<td>mA</td>
</tr>
<tr>
<td>I_{FB}</td>
<td>FB current</td>
<td>-1 to +1 mA</td>
<td></td>
</tr>
<tr>
<td>P_{TOT}</td>
<td>Power dissipation at T_{A} < 60 °C</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>T_{OP}</td>
<td>Operating junction temperature range</td>
<td>-40 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage temperature range</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

3 Thermal data

Table 3. Thermal data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{thJA}</td>
<td>Maximum thermal resistance</td>
<td>VFQFPN8 40</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>junction-ambient(1)</td>
<td>SO8-BW 65</td>
<td></td>
</tr>
</tbody>
</table>

1. Package mounted on demonstration board.
Electrical characteristics

$T_J = 25 \, ^\circ \text{C}$, $V_{CC} = 12 \, \text{V}$, unless otherwise specified.

Table 4. Electrical characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Operating input voltage range</td>
<td>See$^{(1)}$</td>
<td>Min.</td>
<td>Typ.</td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback voltage</td>
<td>$T_J = 25 , ^\circ \text{C}$</td>
<td>90</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_J = 125 , ^\circ \text{C}$</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>I_{FB}</td>
<td>V_{FB} pin bias current</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_{DSON-P}</td>
<td>High-side switch on-resistance</td>
<td>$I_{SW} = 750 , \text{mA}$</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>R_{DSON-N}</td>
<td>Low-side switch on-resistance</td>
<td>$I_{SW} = 750 , \text{mA}$</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>I_{LIM}</td>
<td>Maximum limiting current</td>
<td>See$^{(2)}$</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Oscillator

- F_{SW}: Switching frequency
- D: Duty cycle

DC characteristics

- I_q: Quiescent current
- I_{QST-BY}: Total standby quiescent current

Inhibit

- V_{INH}: INH threshold voltage
- I_{INH}: INH current

Soft-start

- T_{SS}: Soft-start duration

Protection

- T_{SHDN}: Thermal shutdown
- Hysteresis

1. Specifications referred to T_J from -40 to +125 °C. Specifications in the -40 to +125 °C temperature range are assured by design, characterization and statistical correlation.

2. Guaranteed by design.
5 Functional description

The ST1CC40 device is based on a "peak current mode" architecture with fixed frequency control. As a consequence, the intersection between the error amplifier output and the sensed inductor current generates the control signal to drive the power switch.

The main internal blocks shown in the block diagram in Figure 3 are:

- High-side and low-side embedded power element for synchronous rectification
- A fully integrated sawtooth oscillator with a typical frequency of 850 kHz
- A transconductance error amplifier
- A high-side current sense amplifier to track the inductor current
- A pulse width modulator (PWM) comparator and the circuitry necessary to drive the internal power element
- The soft-start circuitry to decrease the inrush current at power-up
- The current limitation circuit based on the pulse-by-pulse current protection with frequency divider
- The inhibit circuitry
- The thermal protection function circuitry

Figure 3. ST1CC40 block diagram
5.1 Power supply and voltage reference

The internal regulator circuit consists of a startup circuit, an internal voltage pre-regulator, the BandGap voltage reference and the bias block that provides current to all the blocks. The starter supplies the startup current to the entire device when the input voltage goes high and the device is enabled (INHIBIT pin connected to ground). The pre-regulator block supplies the bandgap cell with a pre-regulated voltage that has a very low supply voltage noise sensitivity.

5.2 Voltage monitor

An internal block continuously senses the V_{cc}, V_{ref} and V_{bg}. If the monitored voltages are good, the regulator begins operating. There is also a hysteresis on the V_{CC} (UVLO).

5.3 Soft-start

The startup phase is implemented ramping the reference of the embedded error amplifier in 1 msec typ. time. It minimizes the inrush current and decreases the stress of the power components at power-up.

During normal operation a new soft-start cycle takes place in case of:

- Thermal shutdown event
- UVLO event.

5.4 Error amplifier

The voltage error amplifier is the core of the loop regulation. It is a transconductance operational amplifier whose non-inverting input is connected to the internal voltage reference (100 mV), while the inverting input (FB) is connected to the output current sensing resistor.

The error amplifier is internally compensated to minimize the size of the final application.
The error amplifier output is compared with the inductor current sense information to perform PWM control.

5.5 Inhibit

The inhibit block disables most of the circuitry when the INH input signal is low. The current drawn from the input voltage is 6 µA typical in inhibit mode.

5.6 Thermal shutdown

The shutdown block generates a signal that disables the power stage if the temperature of the chip goes higher than a fixed internal threshold (150 ± 10 °C typical). The sensing element of the chip is close to the PDMOS area, ensuring fast and accurate temperature detection. A 15 °C typical hysteresis prevents the device from turning ON and OFF continuously during the protection operation.
6 Application notes

6.1 Closing the loop

Figure 5. Block diagram of the loop

6.2 $G_{CO}(s)$ control to output transfer function

The accurate control to output transfer function for a buck peak current mode converter can be written as:

$$
G_{CO}(s) = \frac{R_0}{R_i} \cdot \frac{1}{1 + R_0 \cdot T_{SW} \cdot \left[m_c \cdot (1 - D) - 0.5 \right]} \cdot \frac{1 + \frac{s}{\omega_p}}{1 + \frac{s}{\omega_z}} \cdot F_H(s)
$$

where R_0 represents the load resistance, R_i the equivalent sensing resistor of the current sense circuitry, ω_p the single pole introduced by the LC filter and ω_z the zero given by the ESR of the output capacitor.

$F_H(s)$ accounts for the sampling effect performed by the PWM comparator on the output of the error amplifier that introduces a double pole at one half of the switching frequency.
Equation 2

\[\omega_Z = \frac{1}{ESR \cdot C_{OUT}} \]

Equation 3

\[\omega_p = \frac{1}{R_{LOAD} \cdot C_{OUT}} + \frac{m_c \cdot (1 - D) - 0.5}{L \cdot C_{OUT} \cdot f_{SW}} \]

where:

Equation 4

\[
\begin{aligned}
m_c &= 1 + \frac{S_e}{S_n} \\
S_e &= \frac{V_{pp} \cdot f_{SW}}{mC_1} \\
S_n &= \frac{V_{IN} - V_{OUT}}{L} \cdot R_i
\end{aligned}
\]

S_n represents the slope of the sensed inductor current, S_e the slope of the external ramp (V_{pp} peak-to-peak amplitude) that implements the slope compensation to avoid sub-harmonic oscillations at duty cycle over 50%.

The sampling effect contribution F_H(s) is:

Equation 5

\[F_H(s) = \frac{1}{1 + \frac{s}{\omega_n \cdot Q_p} + \frac{s^2}{\omega_n^2}} \]

where:

Equation 6

\[\omega_n = \pi \cdot f_{SW} \]

and

Equation 7

\[Q_p = \frac{1}{\pi \cdot [m_c \cdot (1 - D) - 0.5]} \]

6.3 Error amplifier compensation network

The ST1CC40 device embeds the error amplifier (see Figure 6) and a pre-defined compensation network which is effective in stabilizing the system in most of the application conditions.
R\textsubscript{C} and \(C\textsubscript{C} \) introduce a pole and a zero in the open loop gain. \(C\textsubscript{P} \) does not significantly affect system stability but it is useful to reduce the noise at the output of the error amplifier.

The transfer function of the error amplifier and its compensation network is:

Equation 8

\[
A_{0}(s) = \frac{A_{v0} \cdot (1 + s \cdot R\textsubscript{c} \cdot C\textsubscript{c})}{s^2 \cdot R\textsubscript{0} \cdot (C\textsubscript{0} + C\textsubscript{p}) \cdot R\textsubscript{c} \cdot C\textsubscript{c} + s \cdot (R\textsubscript{0} \cdot C\textsubscript{c} + R\textsubscript{c} \cdot (C\textsubscript{0} + C\textsubscript{p}) + R\textsubscript{c} \cdot C\textsubscript{c}) + 1}
\]

where \(A_{v0} = G\textsubscript{m} \cdot R\textsubscript{0} \).

The poles of this transfer function are (if \(C\textsubscript{c} \gg C\textsubscript{0} + C\textsubscript{p} \)):

Equation 9

\[
f_{PLF} = \frac{1}{2 \cdot \pi \cdot R\textsubscript{0} \cdot C\textsubscript{c}}
\]

Equation 10

\[
f_{PHP} = \frac{1}{2 \cdot \pi \cdot R\textsubscript{c} \cdot (C\textsubscript{0} + C\textsubscript{p})}
\]

whereas the zero is defined as:

Equation 11

\[
F_{Z} = \frac{1}{2 \cdot \pi \cdot R\textsubscript{c} \cdot C\textsubscript{c}}
\]
The embedded compensation network is \(R_C = 70 \, K \), \(C_C = 195 \, pF \), while \(C_P \) and \(C_O \) can be considered as negligible. The error amplifier output resistance is \(240 \, M\Omega \) so the relevant singularities are:

Equation 12

\[
f_Z = 11.6 \, kHz \quad f_{PLF} = 3.4 \, Hz
\]

6.4 LED small signal model

Once the system reaches the working condition the LEDs composing the row are biased and their equivalent circuit can be considered as a resistor for frequencies \(<< 1 \, MHz \).

The LED manufacturer typically provides the equivalent dynamic resistance of the LED biased at different DC current. This parameter is required to study the behavior of the system in the small signal analysis.

For instance, the equivalent dynamic resistance of Luxeon III Star from Lumiled measured with a different biasing current level is reported below:

\[
\begin{align*}
 r_{LED} &= 1.3 \, \Omega & I_{LED} &= 350 \, mA \\
 r_{LED} &= 0.9 \, \Omega & I_{LED} &= 700 \, mA
\end{align*}
\]

In case the LED datasheet doesn’t report the equivalent resistor value, it can be simply derived as the tangent to the diode I-V characteristic in the present working point (see **Figure 7**).

Figure 7. Equivalent series resistor

![Diagram of LED small signal model](image)
Figure 8 shows the equivalent circuit of the LED constant current generator.

As a consequence, the LED equivalent circuit gives the $\alpha_{LED}(s)$ term correlating the output voltage with the high impedance FB input:

Equation 13

$$\alpha_{LED}(n_{LED}) = \frac{R_{SENSE}}{n_{LED} \cdot r_{LED} + R_{SENSE}}$$

6.5 Total loop gain

In summary, the open loop gain can be expressed as:

Equation 14

$$G(s) = G_{CO}(s) \cdot A_{o}(s) \cdot \alpha_{LED}(n_{LED})$$

Example

Design specifications:

$V_{IN} = 12$ V, $V_{FW,LED} = 3.5$ V, $n_{LED} = 2$, $r_{LED} = 1.1$ Ω, $I_{LED} = 700$ mA, $I_{LED RIPPLE} = 2\%$

The inductor and capacitor value are dimensioned in order to meet the $I_{LED RIPPLE}$ specifications (see Section 7.1.2 for output capacitor and inductor selection guidelines):

$L = 10$ μH, $C_{OUT} = 2.2$ μF MLCC (negligible ESR)
Accordingly, with Section 7.1.1 the sensing resistor value is:

Equation 15

\[R_S = \frac{100\text{ mV}}{700\text{ mA}} \approx 140\text{ m}\Omega \]

Equation 16

\[\alpha_{LED(\ell_{LED})} = \frac{R_{SENSE}}{\ell_{LED} \cdot r_{LED} + R_{SENSE}} = \frac{140\text{ m}\Omega}{2 \cdot 1,1\Omega + 140\text{ m}\Omega} = 0,06 \]

The gain and phase margin Bode diagrams are plotted respectively in Figure 9 and Figure 10.
The cutoff frequency and the phase margin are:

Equation 17

\[f_c = 100 \text{ kHz} \quad \text{pm} = 47^\circ \]

6.6 eDesign studio software

The ST1CC40 device is supported by the eDesign software which can be seen online on the STMicroelectronics® home page (www.st.com).
The software easily supports the component sizing according to the technical information given in this datasheet (see Section 6).

The final user is requested to fill in the requested information such as the input voltage range, the selected LED parameters and the number of LEDs composing the row.

The software calculates external components according to the internal database. It is also possible to define new components and ask the software to have them used.

Bode plots, estimated efficiency and thermal performance are provided.

Finally, the user can save the design and print all the information including the bill of material of the board.
7 Application information

7.1 Component selection

7.1.1 Sensing resistor

In closed loop operation the ST1CC40 feedback pin voltage is 100 mV so the sensing resistor calculation is expressed as:

Equation 18

\[R_s = \frac{100 \text{ mV}}{I_{LED}} \]

Since the main loop (see Section 6.1) regulates the sensing resistor voltage drop, the average current is regulated into the LEDs. The integration period is at minimum 5 * T_{SW} since the system bandwidth can be dimensioned up to F_{SW}/5 at maximum.

The system performs the output current regulation over a period which is at least five times longer than the switching frequency. The output current regulation neglects the ripple current contribution and its reliance on external parameters like input voltage and output voltage variations (line transient and LED forward voltage spread). This performance cannot be achieved with simpler regulation loops like a hysteretic control.

For the same reason the switching frequency is constant over the application conditions, that helps to tune the EMI filtering and to guarantee the maximum LED current ripple specifications in the application range. This performance cannot be achieved using constant on/off-time architecture.

7.1.2 Inductor and output capacitor selection

The output capacitor filters the inductor current ripple that, given the application conditions, depends on the inductor value. As a consequence, the LED current ripple, that is the main specification for a switching current source, depends on the inductor and output capacitor selection.
The LED ripple current can be calculated as the inductor ripple current ratio flowing into the output impedance using the Laplace transform (see Figure 11):

Equation 19

$$\Delta I_{\text{RIPPLE}}(s) = \frac{8}{\pi^2} \cdot \Delta I_L \cdot (1 + s \cdot \text{ESR} \cdot C_{\text{OUT}}) \cdot \frac{1}{1 + s \cdot (R_s + \text{ESR} + n_{\text{LED}} \cdot R_{\text{LED}}) \cdot C_{\text{OUT}}}$$

where the term $8/\pi^2$ represents the main harmonic of the inductor current ripple (which has a triangular shape) and ΔI_L is the inductor current ripple.

Equation 20

$$\Delta I_L = \frac{V_{\text{OUT}}}{L} \cdot T_{\text{OFF}} = \frac{n_{\text{LED}} \cdot V_{\text{FW_LED}} + 100\text{mV}}{L} \cdot T_{\text{OFF}}$$

so L value can be calculated as:

Equation 21

$$L = \frac{n_{\text{LED}} \cdot V_{\text{FW_LED}} + 100\text{mV}}{\Delta I_L} \cdot T_{\text{OFF}} = \frac{n_{\text{LED}} \cdot V_{\text{FW_LED}} + 100\text{mV}}{\Delta I_L} \cdot \left(1 - \frac{n_{\text{LED}} \cdot V_{\text{FW_LED}} + 100\text{mV}}{V_{\text{IN}}}
ight)$$

where T_{OFF} is the off-time of the embedded high switch, given by 1-D.

As a consequence, the lower the inductor value (so the higher the current ripple), the higher the C_{OUT} value would be to meet the specifications.

A general rule to dimension L value is:

Equation 22

$$\frac{\Delta I_L}{I_{\text{LED}}} \leq 0.5$$

Finally the required output capacitor value can be calculated equalizing the LED current ripple specification with the module of the Fourier transformer (see **Equation 19**) calculated at F_{SW} frequency.

Equation 23

$$\left|\Delta I_{\text{RIPPLE}}(s=j \cdot \omega)\right| = \Delta I_{\text{RIPPLE SPEC}}$$

Example (see **Section : Example**):

$V_{\text{IN}} = 12\text{ V}, I_{\text{LED}} = 700\text{ mA}, \Delta I_{\text{LED}}/I_{\text{LED}} = 2\%, V_{\text{FW_LED}} = 3.5\text{ V}, n_{\text{LED}} = 2$

The output capacitor value must be dimensioned according to **Equation 23**.

Finally, given the selected inductor value, a 2.2 μF ceramic capacitor value keeps the LED current ripple ratio lower than 2% of the nominal current. An output ceramic capacitor type (negligible ESR) is suggested to minimize the ripple contribution given a fixed capacitor value.
7.1.3 Input capacitor

The input capacitor must be able to support the maximum input operating voltage and the maximum RMS input current.

Since step-down converters draw current from the input in pulses, the input current is squared and the height of each pulse is equal to the output current. The input capacitor must absorb all this switching current, whose RMS value can be up to the load current divided by two (worst case, with duty cycle of 50%). For this reason, the quality of these capacitors must be very high to minimize the power dissipation generated by the internal ESR, thereby improving system reliability and efficiency. The critical parameter is usually the RMS current rating, which must be higher than the RMS current flowing through the capacitor. The maximum RMS input current (flowing through the input capacitor) is:

Equation 24

\[I_{\text{RMS}} = I_O \cdot \sqrt{\frac{D - 2 \cdot D^2}{\eta}} + \frac{D^2}{\eta} \]

where \(\eta \) is the expected system efficiency, \(D \) is the duty cycle and \(I_O \) is the output DC current. Considering \(\eta = 1 \), this function reaches its maximum value at \(D = 0.5 \) and the equivalent RMS current is equal to \(I_O \) divided by 2. The maximum and minimum duty cycles are:

Equation 25

\[D_{\text{MAX}} = \frac{V_{\text{OUT}} + V_F}{V_{\text{INMIN}} - V_{\text{SW}}} \]

and

Equation 26

\[D_{\text{MIN}} = \frac{V_{\text{OUT}} + V_F}{V_{\text{INMAX}} - V_{\text{SW}}} \]
where V_F is the freewheeling diode forward voltage and V_{SW} the voltage drop across the internal PDMOS. Considering the range D_{MIN} to D_{MAX}, it is possible to determine the max. I_{RMS} going through the input capacitor. Capacitors that can be considered are:

Electrolytic capacitors:
These are widely used due to their low price and their availability in a wide range of RMS current ratings.

The only drawback is that, considering ripple current rating requirements, they are physically larger than other capacitors.

Ceramic capacitors:
If available for the required value and voltage rating, these capacitors usually have a higher RMS current rating for a given physical dimension (due to very low ESR). The drawback is the considerably high cost.

Tantalum capacitors:
Small tantalum capacitors with very low ESR are becoming more available. However, they can occasionally burn if subjected to very high current during charge.

Therefore, it is recommended to avoid this type of capacitor for the input filter of the device as they may be stressed by a high surge current when connected to the power supply.

In case the selected capacitor is ceramic (so neglecting the ESR contribution), the input voltage ripple can be calculated as:

Equation 27

$$V_{IN,PP} = \frac{I_o}{C_{IN} \cdot f_{SW}} \cdot \left[\left(1 - \frac{D}{\eta} \right) \cdot \frac{D}{\eta} + \frac{D}{\eta} \cdot (1 - D) \right]$$

7.2 Layout considerations

The layout of switching DC-DC converters is very important to minimize noise and interference. Power-generating portions of the layout are the main cause of noise and so high switching current loop areas should be kept as small as possible and lead lengths as short as possible.

High impedance paths (in particular the feedback connections) are susceptible to interference, so they should be as far as possible from the high current paths. A layout example is provided in Figure 13.

The input and output loops are minimized to avoid radiation and high frequency resonance problems. The feedback pin to the sensing resistor path must be designed as short as possible to avoid pick-up noise. Another important issue is the ground plane of the board. Since the package has an exposed pad, it is very important to connect it to an extended ground plane in order to reduce the thermal resistance junction-to-ambient.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Series</th>
<th>Capacitor value (µF)</th>
<th>Rated voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAIYO YUDEN</td>
<td>UMK325BJ106MM-T</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>MURATA</td>
<td>GRM42-2 X7R 475K 50</td>
<td>4.7</td>
<td>50</td>
</tr>
</tbody>
</table>
To increase the design noise immunity, different signal and power ground should be implemented in the layout (see Section 7.5: Application circuit). The signal ground serves the small signal components, the device analog ground pin, the exposed pad and a small filtering capacitor connected to the VINA pin. The power ground serves the device ground pin and the input filter. The different grounds are connected underneath the output capacitor. Neglecting the current ripple contribution, the current flowing through this component is constant during the switching activity and so this is the cleanest ground point of the buck application circuit.

![Layout example](image)

7.3 Thermal considerations

The dissipated power of the device is tied to three different sources:
- Conduction losses due to the $R_{DS(on)}$, which are equal to:

Equation 28

$$
P_{ON} = R_{RDSON_HS} \cdot (I_{OUT})^2 \cdot D$$

$$
P_{OFF} = R_{RDSON_LS} \cdot (I_{OUT})^2 \cdot (1 - D)$$

where D is the duty cycle of the application. Note that the duty cycle is theoretically given by the ratio between V_{OUT} ($n_{LED} \cdot V_{LED} + 100$ mV) and V_{IN}, but in practice it is substantially higher than this value to compensate for the losses in the overall application. For this reason, the conduction losses related to the $R_{DS(on)}$ increase compared to an ideal case.
- Switching losses due to turning ON and OFF. These are derived using *Equation 29*:

Equation 29

\[
P_{SW} = V_{IN} \cdot I_{OUT} \cdot \frac{(T_{RISE} + T_{FALL})}{2} \cdot F_{SW} = V_{IN} \cdot I_{OUT} \cdot T_{SW_EQ} \cdot F_{SW}
\]

where \(T_{RISE}\) and \(T_{FALL}\) represent the switching times of the power element that causes the switching losses when driving an inductive load (see *Figure 14*). \(T_{SW}\) is the equivalent switching time.

Figure 14. Switching losses

Quiescent current losses.

Equation 30

\[
P_{Q} = V_{IN} \cdot I_{Q}
\]

Example (see *Section : Example*):

\(V_{IN} = 12\, V\), \(V_{FW_LED} = 3.5\, V\), \(n_{LED} = 2\), \(I_{LED} = 700\, mA\)

The typical output voltage is:

Equation 31

\[
V_{OUT} = n_{LED} \cdot V_{FW_LED} + V_{FB} = 7.1V
\]

\(R_{DS(ON)_HS}\) has a typical value of 95 m\(\Omega\) and \(R_{DS(on)_LS}\) is 69 m\(\Omega\) at 25 °C.

For the calculation we can estimate \(R_{DS(ON)_HS} = 140 m\Omega\) and \(R_{DS(on)_LS} = 100 m\Omega\) as a consequence of \(T_J\) increase during the operation.

\(T_{SW_EQ}\) is approximately 12 ns.

\(I_{Q}\) has a typical value of 1.5 mA at \(V_{IN} = 12\, V\).
The overall losses are:

Equation 32

\[P_{TOT} = R_{DS(on)_HS} \cdot (I_{OUT})^2 \cdot D + R_{DS(on)_LS} \cdot (I_{OUT})^2 \cdot (1 - D) + V_{IN} \cdot I_{OUT} \cdot f_{SW} \cdot T_{SW} + V_{IN} \cdot I_{Q} \]

Equation 33

\[P_{TOT} = 0.14 \cdot 0.7^2 \cdot 0.6 + 0.1 \cdot 0.7^2 \cdot 0.4 + 12 \cdot 0.7 \cdot 12 \cdot 10^{-9} \cdot 850 \cdot 10^3 + 12 \cdot 1.5 \cdot 10^{-3} \approx 205\text{mW} \]

The junction temperature of the device is:

Equation 34

\[T_J = T_A + R_{thJ-A} \cdot P_{TOT} \]

where \(T_A \) is the ambient temperature and \(R_{thJ-A} \) is the thermal resistance junction-to-ambient. The junction-to-ambient (\(R_{thJ-A} \)) thermal resistance of the device assembled in HSO8 package and mounted on the board is about 40 °C/W.

Assuming the ambient temperature is around 40 °C, the estimated junction temperature is:

Equation 35

\[T_J = 60 + 0.205 \cdot 40 \approx 68°C \]

7.4 Short-circuit protection

In overcurrent protection mode, when the peak current reaches the current limit threshold, the device disables the power element and it is able to reduce the conduction time down to the minimum value (approximately 100 nsec typ.) to keep the inductor current limited. This is the pulse-by-pulse current limitation to implement the constant current protection feature.

In overcurrent condition, the duty cycle is strongly reduced and, in most applications, this is enough to limit the switch current to the current threshold.

The inductor current ripple during ON and OFF phases can be written as:

- **ON phase**

Equation 36

\[\Delta I_{L_TON} = \frac{V_{IN} - V_{OUT} - (DCR_L + R_{DS(on)_HS}) \cdot I}{L} \left(T_{ON} \right) \]

- **OFF phase**

Equation 37

\[\Delta I_{L_TOFF} = \frac{-(V_{OUT} + (DCR_L + R_{DS(on)_LS}) \cdot I)}{L} \left(T_{OFF} \right) \]

where DCR\(_L\) is the series resistance of the inductor.
The pulse-by-pulse current limitation is effective in implementing constant current protection when:

Equation 38

\[|\Delta I_{\text{TON}}| = |\Delta I_{\text{TOFF}}| \]

From **Equation 36** and **Equation 37** we can gather that the implementation of the constant current protection becomes more critical the lower the \(V_{\text{OUT}} \) is and the higher \(V_{\text{IN}} \) is.

In fact, in short-circuit condition the voltage applied to the inductor during the off-time becomes equal to the voltage drop across parasitic components (typically the DCR of the inductor and the \(R_{\text{DS(on)}} \) of the low-side switch) since \(V_{\text{OUT}} \) is negligible, while during \(T_{\text{ON}} \) the voltage applied at the inductor is maximized and it is approximately equal to \(V_{\text{IN}} \).

In general, the worst case scenario is heavy short-circuit at the output with maximum input voltage. **Equation 36** and **Equation 37** in overcurrent conditions can be simplified to:

Equation 39

\[\Delta I_{\text{TON}} = \frac{V_{\text{IN}}}{L} \left(DCR_L + R_{\text{DS(on)}}(\text{HS}) \right) \cdot \frac{I}{(T_{\text{ON MIN}}) \approx \frac{V_{\text{IN}}}{L} (90\text{ns})} \]

considering \(T_{\text{ON}} \) that has already been reduced to its minimum.

Equation 40

\[\Delta I_{\text{TOFF}} = \frac{-DCL_{L} + R_{\text{DS(on)}}(\text{LS})}{L} \cdot \frac{I}{(T_{\text{SW}} - 90\text{ns}) \approx \frac{-DCL_{L} + R_{\text{DS(on)}}(\text{LS})}{L} (1.18\mu\text{s})} \]

where \(T_{\text{SW}} = 1 / F_{\text{SW}} \) and considering the nominal \(F_{\text{SW}} \).

At higher input voltage, \(\Delta I_{\text{TON}} \) may be higher than \(\Delta I_{\text{TOFF}} \) and so the inductor current may escalate. As a consequence, the system typically meets **Equation 38** at a current level higher than the nominal value thanks to the increased voltage drop across stray components. In most of the application conditions the pulse-by-pulse current limitation is effective to limit the inductor current. Whenever the current escalates, a second level current protection called “Hiccup mode” is enabled. Hiccup protection offers an additional protection against heavy short-circuit condition at very high input voltage even considering the spread of the minimum conduction time of the power element. If the hiccup current level (6.2 A typ.) is triggered, the switching activity is prevented for 12 cycles.

Figure 15 shows the operation of the constant current protection when a short-circuit is applied at the output at the maximum input voltage.
7.5 Application circuit

Figure 16. Demonstration board application circuit
Table 8. Component list

<table>
<thead>
<tr>
<th>Reference</th>
<th>Part number</th>
<th>Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td>100 nF 50 V (size 0805)</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>GRM31CR61E106KA12L</td>
<td>10 µF 25 V (size 1206)</td>
<td>Murata</td>
</tr>
<tr>
<td>C3</td>
<td>GRM21BR71E225KA73L</td>
<td>2.2 µF 25 V (size 0805)</td>
<td>Murata</td>
</tr>
<tr>
<td>R1</td>
<td></td>
<td>4.7 KΩ 5% (size 0603)</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td>Not mounted</td>
<td></td>
</tr>
<tr>
<td>Rs</td>
<td>ERJ14BSFR15U</td>
<td>0.15 Ω 1% (size 1206)</td>
<td>Panasonic</td>
</tr>
<tr>
<td>L1</td>
<td>XAL6060-223ME</td>
<td>22 µH I_{SAT} = 5.6 A (30% drop) I_{RMS} = 6.9 A (40 °C rise) (size 6.36 x 6.56 x 6.1 mm)</td>
<td>Coilcraft</td>
</tr>
</tbody>
</table>

Figure 17. PCB layout (component side) VFQFPN8 package
It is strongly recommended that the input capacitors are to be put as close as possible to the relative pins, see C1 and C2.
Figure 20. PCB layout (bottom side) SO8 package
Typical characteristics

Figure 21. Soft-start
Figure 22. Inhibit operation

Figure 23. Thermal shutdown protection
Figure 24. Hiccup current protection

Figure 25. OCP blanking time
Figure 26. Current regulation
9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 27. VFQFPN8 (4 x 4 x 1.08 mm) package outline

Table 9. VFQFPN8 (4 x 4 x 1.08 mm) package mechanical data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>A</td>
<td>0.80</td>
</tr>
<tr>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.23</td>
</tr>
<tr>
<td>D</td>
<td>3.90</td>
</tr>
<tr>
<td>D2</td>
<td>2.82</td>
</tr>
<tr>
<td>E</td>
<td>3.90</td>
</tr>
<tr>
<td>E2</td>
<td>2.05</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Table 10. SO8-BW package mechanical data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>A</td>
<td>135</td>
</tr>
<tr>
<td>A1</td>
<td>0.10</td>
</tr>
<tr>
<td>A2</td>
<td>1.10</td>
</tr>
<tr>
<td>B</td>
<td>0.33</td>
</tr>
<tr>
<td>C</td>
<td>0.19</td>
</tr>
<tr>
<td>D(1)</td>
<td>4.80</td>
</tr>
<tr>
<td>E</td>
<td>3.80</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.80</td>
</tr>
<tr>
<td>h</td>
<td>0.25</td>
</tr>
<tr>
<td>L</td>
<td>0.40</td>
</tr>
<tr>
<td>k</td>
<td></td>
</tr>
<tr>
<td>ddd</td>
<td></td>
</tr>
</tbody>
</table>

1. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shouldn't exceed 0.15 mm (.006 inch) in total (both sides).
Ordering information

Table 11. Ordering information

<table>
<thead>
<tr>
<th>Order code</th>
<th>Package</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1CC40PUR</td>
<td>VFQFPN8 4 x 4 8L</td>
<td>Tape and reel</td>
</tr>
<tr>
<td>ST1CC40DR</td>
<td>SO8-BW</td>
<td>Tape and reel</td>
</tr>
</tbody>
</table>
11 Revision history

Table 12. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-Mar-2011</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>21-Jun-2011</td>
<td>2</td>
<td>Updated coverpage</td>
</tr>
<tr>
<td>18-Oct-2012</td>
<td>3</td>
<td>Pin 2 operation has been updated: Figure 1 and Table 1 have been updated accordingly. Figure 19 and Figure 20 have been added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor text changes to improve the readability.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status promoted from preliminary to production data.</td>
</tr>
<tr>
<td>04-Mar-2013</td>
<td>4</td>
<td>Updated Table 9: VFQFPN8 (4 x 4 x 1.08 mm) package mechanical data and Section 7.1.2: Inductor and output capacitor selection.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor text changes to improve the readability.</td>
</tr>
<tr>
<td>18-Jun-2013</td>
<td>5</td>
<td>Unified package names in the whole document.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Table 2 (changed “operating junction temperature range” from -40 to 125 °C to -40 to 150 °C).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Table 4 (updated data of IQST-BY symbol).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Section 7.2 (replaced VCC by VINA).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Section 9 (reversed order of Figure 27 and Table 9, Figure 28 and Table 10, minor modifications).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor corrections throughout document.</td>
</tr>
</tbody>
</table>