STF33N60DM2

N-channel 600 V, 0.110 Ω typ., 24 A MDmesh™ DM2 Power MOSFET in TO-220FP package

Datasheet - production data

Features

<table>
<thead>
<tr>
<th>Order code</th>
<th>V_DS @ T_Jmax.</th>
<th>R_DS(on) max.</th>
<th>I_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>STF33N60DM2</td>
<td>650 V</td>
<td>0.130 Ω</td>
<td>24 A</td>
</tr>
</tbody>
</table>

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

- Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh™ DM2 fast recovery diode series. It offers very low recovery charge (Q_rr) and time (t_rr) combined with low R_DS(on), rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

<table>
<thead>
<tr>
<th>Order code</th>
<th>Marking</th>
<th>Package</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>STF33N60DM2</td>
<td>33N60DM2</td>
<td>TO-220FP</td>
<td>Tube</td>
</tr>
</tbody>
</table>
Contents

1 Electrical ratings .. 3
2 Electrical characteristics .. 4
 2.1 Electrical characteristics (curves) ... 6
3 Test circuits .. 8
4 Package information ... 9
 4.1 TO-220FP package information .. 10
5 Revision history ... 12
Electrical ratings

Table 2: Absolute maximum ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{GS}</td>
<td>Gate-source voltage</td>
<td>±25</td>
<td>V</td>
</tr>
<tr>
<td>I_D</td>
<td>Drain current (continuous) at $T_{case} = 25, ^\circ C$</td>
<td>24</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Drain current (continuous) at $T_{case} = 100, ^\circ C$</td>
<td>15.5</td>
<td>A</td>
</tr>
<tr>
<td>$I_{DS(1)}$</td>
<td>Drain current (pulsed)</td>
<td>96</td>
<td>A</td>
</tr>
<tr>
<td>P_{TOT}</td>
<td>Total dissipation at $T_{case} = 25, ^\circ C$</td>
<td>35</td>
<td>W</td>
</tr>
<tr>
<td>$dv/dt^{(2)}$</td>
<td>Peak diode recovery voltage slope</td>
<td>50</td>
<td>V/ns</td>
</tr>
<tr>
<td>$dv/dt^{(3)}$</td>
<td>MOSFET dv/dt ruggedness</td>
<td>50</td>
<td>V/ns</td>
</tr>
<tr>
<td>V_{ISO}</td>
<td>Insulation withstand voltage (RMS) from all three leads to external heat sink ($t = 1, s; T_C = 25, ^\circ C$)</td>
<td>2500</td>
<td>V</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage temperature range</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>T_j</td>
<td>Operating junction temperature range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

(1) Pulse width is limited by safe operating area.

(2) $I_{SD} \leq 24\, A$, $di/dt=900\, A/\mu s$; $V_{DS(peak)} < V_{(BR)DSS}$, $V_{DD} = 400\, V$.

(3) $V_{DS} \leq 480\, V$.

Table 3: Thermal data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{thj-case}$</td>
<td>Thermal resistance junction-case</td>
<td>3.6</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{thj-amb}$</td>
<td>Thermal resistance junction-ambient</td>
<td>62.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Table 4: Avalanche characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{AR}</td>
<td>Avalanche current, repetitive or not repetitive (Pulse width limited by T_{max})</td>
<td>5.5</td>
<td>A</td>
</tr>
<tr>
<td>E_{AS}</td>
<td>Single pulse avalanche energy (starting $T_j = 25, ^\circ C$, $I_D = I_{AR}$, $V_{DD} = 50, V$)</td>
<td>570</td>
<td>mJ</td>
</tr>
</tbody>
</table>
2 Electrical characteristics

(T\text{case} = 25 \, ^\circ\text{C} \text{ unless otherwise specified})

<table>
<thead>
<tr>
<th>Table 5: Static</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>(V_{(BR)DSS})</td>
</tr>
<tr>
<td>(I_{DSS})</td>
</tr>
<tr>
<td>(I_{GSS})</td>
</tr>
<tr>
<td>(V_{GS(th)})</td>
</tr>
<tr>
<td>(R_{DS(on)})</td>
</tr>
</tbody>
</table>

Notes:
(1) Defined by design, not subject to production test.

<table>
<thead>
<tr>
<th>Table 6: Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>(C_{iss})</td>
</tr>
<tr>
<td>(C_{oss})</td>
</tr>
<tr>
<td>(C_{rss})</td>
</tr>
<tr>
<td>(C_{oss , eq}) (^{(1)})</td>
</tr>
<tr>
<td>(R_G)</td>
</tr>
<tr>
<td>(Q_g)</td>
</tr>
<tr>
<td>(Q_{gs})</td>
</tr>
<tr>
<td>(Q_{gd})</td>
</tr>
</tbody>
</table>

Notes:
(1) \(C_{oss \, eq} \) is defined as a constant equivalent capacitance giving the same charging time as \(C_{oss} \) when \(V_{DS} \) increases from 0 to 80\% \(V_{oss} \).

<table>
<thead>
<tr>
<th>Table 7: Switching times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>(t_{(on)})</td>
</tr>
<tr>
<td>(t_r)</td>
</tr>
<tr>
<td>(t_{(off)})</td>
</tr>
<tr>
<td>(t_f)</td>
</tr>
</tbody>
</table>

Notes:
Table 8: Source-drain diode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{SD}</td>
<td>Source-drain current</td>
<td>-</td>
<td>24</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SDM}<sup>(1)</sup></td>
<td>Source-drain current (pulsed)</td>
<td>-</td>
<td>96</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{SD}<sup>(2)</sup></td>
<td>Forward on voltage</td>
<td>$V_{GS} = 0$ V, $I_{SD} = 24$ A</td>
<td>-</td>
<td>1.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>t_{rr}</td>
<td>Reverse recovery time</td>
<td>$I_{SD} = 24$ A, $di/dt = 100$ A/µs, $V_{DD} = 60$ V (see Figure 16: "Test circuit for inductive load switching and diode recovery times")</td>
<td>-</td>
<td>120</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Q_{rr}</td>
<td>Reverse recovery charge</td>
<td>$V_{DD} = 60$ V</td>
<td>-</td>
<td>0.53</td>
<td>µC</td>
<td></td>
</tr>
<tr>
<td>I_{RRM}</td>
<td>Reverse recovery current</td>
<td>-</td>
<td>8.8</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{rr}</td>
<td>Reverse recovery time</td>
<td>$I_{SD} = 24$ A, $di/dt = 100$ A/µs, $V_{DD} = 60$ V, $T_j = 150$ °C (see Figure 16: "Test circuit for inductive load switching and diode recovery times")</td>
<td>-</td>
<td>316</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Q_{rr}</td>
<td>Reverse recovery charge</td>
<td>-</td>
<td>2.85</td>
<td>µC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{RRM}</td>
<td>Reverse recovery current</td>
<td>-</td>
<td>18</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

⁽¹⁾ Pulse width is limited by safe operating area.

⁽²⁾ Pulse test: pulse duration = 300 µs, duty cycle 1.5%.

Table 9: Gate-source Zener diode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{BR(GS)}$</td>
<td>Gate-source breakdown voltage</td>
<td>$I_{GS} = \pm 250$ µA, $I_{D} = 0$ A</td>
<td>±30</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
</tbody>
</table>

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.
2.1 Electrical characteristics (curves)

Figure 2: Safe operating area

Figure 3: Thermal impedance

Figure 4: Output characteristics

Figure 5: Transfer characteristics

Figure 6: Gate charge vs gate-source voltage

Figure 7: Static drain-source on-resistance
3 Test circuits

Figure 14: Test circuit for resistive load switching times

Figure 15: Test circuit for gate charge behavior

Figure 16: Test circuit for inductive load switching and diode recovery times

Figure 17: Unclamped inductive load test circuit

Figure 18: Unclamped inductive waveform

Figure 19: Switching time waveform
4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
 specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.
4.1 TO-220FP package information

Figure 20: TO-220FP package outline
Table 10: TO-220FP package mechanical data

<table>
<thead>
<tr>
<th>Dim.</th>
<th>mm</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>4.4</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>2.5</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>2.5</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>0.45</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>0.75</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td></td>
<td>1.15</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td></td>
<td>1.15</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>4.95</td>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td></td>
<td>2.4</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>10</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td>28.6</td>
<td>30.6</td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td>9.8</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td>2.9</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td></td>
<td>15.9</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>L7</td>
<td></td>
<td>9</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>Dia</td>
<td></td>
<td>3</td>
<td>3.2</td>
<td></td>
</tr>
</tbody>
</table>
5 Revision history

Table 11: Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-Sep-2014</td>
<td>1</td>
<td>First release.</td>
</tr>
<tr>
<td>05-Jul-2016</td>
<td>2</td>
<td>Document status promoted from preliminary to production data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated title and features in cover page.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Updated Section 1: “Electrical ratings” and Section 2: “Electrical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>characteristics”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Section 2.1: “Electrical characteristics (curves)”.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minor text changes.</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved