

Automotive-grade 650 V, 200 A trench gate field-stop M series low-loss IGBT die in D11 packing

Features

- AEC-Q101 qualified
- Low-loss series IGBT
- Low $V_{CE(sat)} = 1.55 \text{ V (typ.)}$ at $I_C = 200 \text{ A}$
- Positive V_{CE(sat)} temperature coefficient
- Tight parameter distribution
- Maximum junction temperature: T_J = 175 °C
- 6 μ s minimum short-circuit withstanding time at T_J = 150 °C

Applications

Main inverter (electric traction)

Description

EGCD

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where the low-loss and the short-circuit functionality is essential. Furthermore, the positive $V_{\text{CE(sat)}}$ temperature coefficient and the tight parameter distribution result in safer paralleling operation.

Product status link

STG200M65F2D11AG

Product summary		
Order code	STG200M65F2D11AG	
V _{CE}	650 V	
I _{CN} 200 A		
Die size	9.73 x 10.23 mm	
Packing D11		

Mechanical parameters

Table 1. Mechanical parameters

Parameter		Value	Unit
Die size including scribe line)	9.73 x 10.23	mm
Die thickness		70	μm
Front side passivation		Silicon	nitride
Emitter pad size	x4	4.26 x 1.94	mm
Emilier pau size	including gate pad (x4)	4.26 x 2.18	mm
Gate pad size		1.66 x 0.83	mm
Front side metallization	Composition	Al	Cu
Tront side metalization	Thickness	4.5	μm
Back side metallization	Composition	AI/Ti/N	NiV/Ag
Back Side Metallization	Thickness	0.80	μm
Die bond		Electrically conductive	ve glue or soft solder
Recommended wire bonding		≤ 500	μm

DS14547 - Rev 1 page 2/11

2 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0 V)	650	V
V _{GE}	Gate-emitter voltage	±20	V
I _{CN}	Continuous collector current at T = 100 °C	200	Α
I _{CP} ⁽¹⁾⁽²⁾	Pulsed collector current	600	Α
t _{sc} (3)	Short-circuit withstand time V_{CC} = 360 V, V_{GE} = 15 V, V_{CE} (peak) ≤ 650 V, T_{Jstart} ≤ 150 °C	6	μs
TJ	Operating junction temperature range	-40 to 175	°C

- 1. Depending on thermal properties of assembly.
- 2. Pulse width limited by maximum junction temperature.
- 3. Not tested at chip level, verified by design/characterization. Allowed number of short-circuits < 1000; time between short-circuits > 1 s.

DS14547 - Rev 1 page 3/11

3 Electrical characteristics

 T_J = 25 °C unless otherwise specified.

Table 3. Static characteristics (tested on wafer unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-emitter breakdown voltage	I _C = 250 μA, V _{GE} = 0 V	650			V
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 200 A		1.55		V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 3 \text{ mA}$	5	6	7	V
I _{CES}	Collector cut-off current	V _{CE} = 650 V, V _{GE} = 0 V			100	μA
I _{GES}	Gate-emitter leakage current	V _{GE} = ±20 V, V _{CE} = 0 V			±600	nA
R _G	Intrinsic gate resistance	f = 1 MHz		2.5		Ω

Table 4. Electrical characteristics (specified by design and evaluated by characterization, not tested in production)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{\text{CE(sat)}}$	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 200 A	-	1.55	2.3	V
		V _{GE} = 15 V, I _C = 200 A T _J = 175 °C	-	1.95		V
C _{ies}	Input capacitance		-	17.8		nF
C _{oes}	Output capacitance $V_{CE} = 25 \text{ V}, f = 1 \text{ MHz } V_{GE} = 0 \text{ V}$		-	0.7		nF
C _{res}	Reverse transfer capacitance		-	0.37		nF
Qg	Total gate charge		-	650		nC
Q _{ge}	Gate-emitter charge	V_{CC} = 400 V, I_{C} = 200 A, V_{GE} = 0 to 15 V	-	130		nC
Q _{gc}	Gate collector charge		-	240		nC

DS14547 - Rev 1 page 4/11

Table 5. Switching characteristics on inductive load (specified by design and evaluated by characterization, not tested in production)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	134	-	ns
t _r	Current rise time	$V_{CC} = 300 \text{ V}, I_{C} = 200 \text{ A},$ $V_{GF} = -15 \text{ to } 15 \text{ V}, R_{G} = 2 \Omega$	-	41	-	ns
t _{d(off)}	Turn-off delay time		-	151	_	ns
t _f	Current fall time	VGE13 to 13 V, NG - 2 M	-	88	-	ns
E _{off} (1)	Turn-off switching energy		-	5.5	-	mJ
t _{d(on)}	Turn-on delay time		-	173	_	ns
t _f	Current rise time	V = 200 V L = 200 A	-	32	-	ns
t _{d(off)}	Turn-off delay time	V_{CC} = 300 V, I_{C} = 200 A, V_{GE} = -15 to 15 V, R_{G} = 2 Ω , T_{J} = 175 °C	-	58	-	ns
t _f	Current fall time		-	110	-	ns
E _{off} (1)	Turn-off switching energy		-	7.0	-	mJ

^{1.} Including the tail of the collector current.

Note:

Switching characteristics and thermal properties are strongly dependent on module design and mounting technology. These results are obtained using an ST custom package.

DS14547 - Rev 1 page 5/11

4 Die layout

9.73
4.26

1.94

1.59

2.18

0.40

0.40

10.23

Folitter

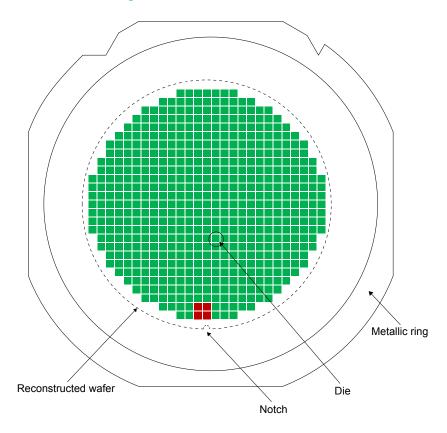
Figure 1. Die drawing (dimensions are in mm)

4.1 Packing information

Table 6. Die delivery

Package option	Description	Picture
D11	Known good dice (KGD) 100% tested in UV cured reconstructed wafer, supported by metallic ring frame. Reconstructed wafers are packed into a black box sealed under vacuum in a moisture barrier bag, with oxygen absorber, oxygen indicator, desiccant dry and HIC card. Some inked dice can be present after final QA visual inspection.	

The wafers on frames are shipped inside a black box containing 25 wafers maximum.


DS14547 - Rev 1 page 6/11

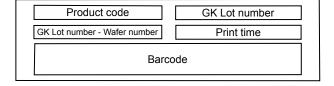

Figure 2. Black box wafers

Figure 3. Notch orientation and label

Label

Picture not in scale, used for demonstration purposes only.

GADG051220231242GT

DS14547 - Rev 1 page 7/11

5 Additional information

5.1 Handling

- Products should only be handled in ESD-safe workstations. Standard ESD precautions and safe work environments are defined in MIL-HDBK-263.
- Products must be handled in a class 1000 clean room or higher.
- The single die should not be handled with tweezers. A vacuum wand with a non-metallic tip protected against electrostatic discharge must be used.

5.2 Wafer storage

To avoid contamination and/or degradation of the product after shipment, proper storage conditions are required.

- The recommended storage temperature is between 15 °C and 35 °C maximum.
- The recommended ambient humidity is between 10% and 70% maximum.
- The maximum storage time after the date of shipment from ST is 6 months.

DS14547 - Rev 1 page 8/11

Revision history

Table 7. Document revision history

Date	Revision	Changes
07-Dec-2023	1	First release.

DS14547 - Rev 1 page 9/11

Contents

2 Electrical ratings 3 Electrical characteristics. 4 Die layout	1	Mech	nanical parameters	. 2
3 Electrical characteristics. 4 Die layout 4.1 Packing information 5 Additional information 5.1 Handling 5.2 Wafer storage	2	Elect	rical ratings	.3
4.1 Packing information 5 Additional information 5.1 Handling 5.2 Wafer storage	3		-	
5 Additional information	4	Die la	ayout	. 6
5.1 Handling		4.1	Packing information	. 6
5.2 Wafer storage	5	Addi	tional information	. 8
-		5.1	Handling	. 8
Revision history		5.2	Wafer storage	. 8
	Rev	ision l	history	.9

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved

DS14547 - Rev 1 page 11/11