STL8DN4LLF6

Dual N-channel 40 V, 0.025 Ωtyp., 8 A STripFETTM VI DeepGATETM Power MOSFET in a PowerFLATTM 5x6 double island package

Datasheet - target specification

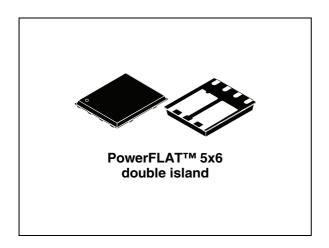
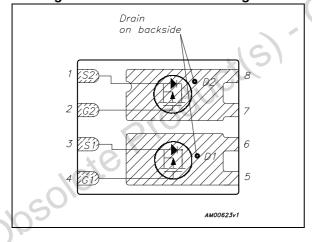



Figure 1. Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)max}	I _D
STL8DN4LLF6	40 V	$0.03 \Omega (V_{GS}=10 \text{ V})$ $0.05 \Omega (V_{GS}=4.5 \text{ V})$	8 A

- Very low on-resistance
- High avalanche ruggedness

Applications

· Switching applications

Description

This device is an N-channel Power MOSFET developed using the 6th generation of STripFETTM DeepGATETM technology, with a new gate structure. The resulting Power MOSFET exhibits the lowest $R_{DS(on)}$ in all packages.

Table 1. Device summary

Order code	Marking	Package	Packaging
STL8DN4LLF6	8DN4LLF6	PowerFLAT™ 5x6 double island	Tape and reel

Contents STL8DN4LLF6

Contents

1	Electrical ratings 3
2	Electrical characteristics 4
3	Test circuits 6
4	Package mechanical data7
5	Packaging mechanical data11
6	Revision history
005	Electrical ratings

STL8DN4LLF6 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	40	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	34	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	21	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 25 °C	8	Α
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 100 °C	5.3	Α
I _{DM} (2)(3)	Drain current (pulsed)	32	Α
P _{TOT} (1)	Total dissipation at T _c = 25 °C	62.5	W
P _{TOT} (2)	Total dissipation at T _{pcb} = 25 °C	4	W
	Derating factor (2)	0.032	°C
T _j	Operating junction temperature	- 55 to 150	Ŝ

- 1. This value is rated according to R_{thj-c}
- 2. This value is rated according to $R_{\mbox{\scriptsize thj-pcb}}$
- 3. Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	2	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	32	°C/W

1. When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 sec

Electrical characteristics STL8DN4LLF6

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0$, $I_D = 1$ mA	40			٧
	Zero gate voltage	$V_{GS} = 0, V_{DS} = 20 \text{ V}$			1	μΑ
I _{DSS}	drain current	V _{GS} = 0, V _{DS} = 20 V, T _C =125 °C			10	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0, V_{GS} = \pm 20 \text{ V}$.0	900	±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$) [٧
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, I_D = 4 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 4 \text{ A}$		0.025 0.04	0.03 0.05	Ω Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	300	-	pF
C _{oss}	Output capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$	-	55	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	30	-	pF
Qg	Total gate charge	V _{DD} = 10 V, I _D = 8 A,	-	4	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 4.5 V	-	TBD	-	nC
Q_gd	Gate-drain charge	(see <i>Figure 3</i>)	-	TBD	-	nC

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	TBD	-	ns
t _r	Voltage rise time	$V_{DD} = 10 \text{ V}, I_{D} = 4 \text{ A},$	-	TBD	-	ns
t _{d(off)}	Turn-off delay time	$R_G = 4.7 \Omega$, $V_{GS} = 4.5 V$	-	TBD	-	ns
t _f	Current fall time		-	TBD	-	ns

Table 7. Source drain diode

		labic 1.	Source drain diode	1	ı		
	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	I _{SD}	Source-drain current		-		8	Α
	I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				32	Α
	V _{SD} (2)	Forward on voltage	I _{SD} = 8 A, V _{GS} = 0	-		1.1	V
	t _{rr}	Reverse recovery time	0.4 17/11 400.47	-	TBD		ns
	Q _{rr}	Reverse recovery charge	I _{SD} = 8 A, di/dt = 100 A/μs V _{DD} = 25 V, T _j =150 °C	-	TBD		nC
	I _{RRM}	Reverse recovery current	1 ₀₀ = 20 1, 1 _j =100 0	-	TBD	/	Α
Opsole	1. The value 2. Pulsed: p	Reverse recovery current e is rated according to R _{thj-case} and I sulse duration = 300 µs, duty cycle 1	limited by package5%	00			

Test circuits STL8DN4LLF6

Test circuits 3

Figure 2. Switching times test circuit for resistive load

Figure 3. Gate charge test circuit

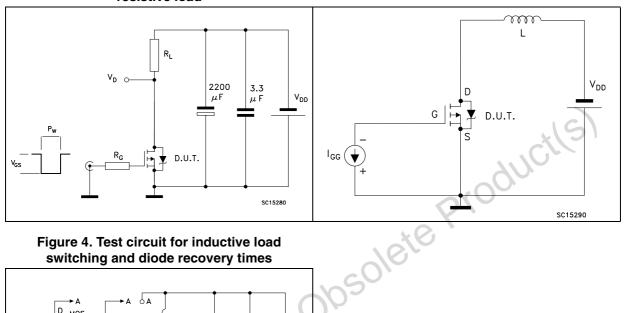
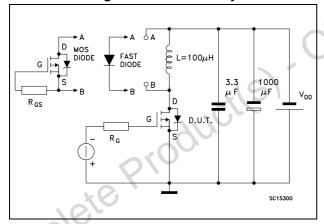



Figure 4. Test circuit for inductive load switching and diode recovery times

6/14 DocID024377 Rev 1

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Obsolete Product(s). Obsolete Product(s)

Table 8. PowerFLAT™ 5x6 - double island mechanical data

	Ref.		Dimensions (mm)	
	nei.	Min.	Тур.	Max.
	Α	0.80		1.00
	A1	0.02		0.05
	A2		0.25	
	b	0.30		0.50
	D		5.20	
	Е		6.15	.151
	D2	1.68		1.88
	E2	3.50		3.70
	D3	1.68		1.88
	E3	3.50		3.70
	E4	0.55		0.75
	е		1.27	
	L	0.50	MS	0.80
	K	1.275) (1.575
	re Pr	oduci(s)		
Obsole				

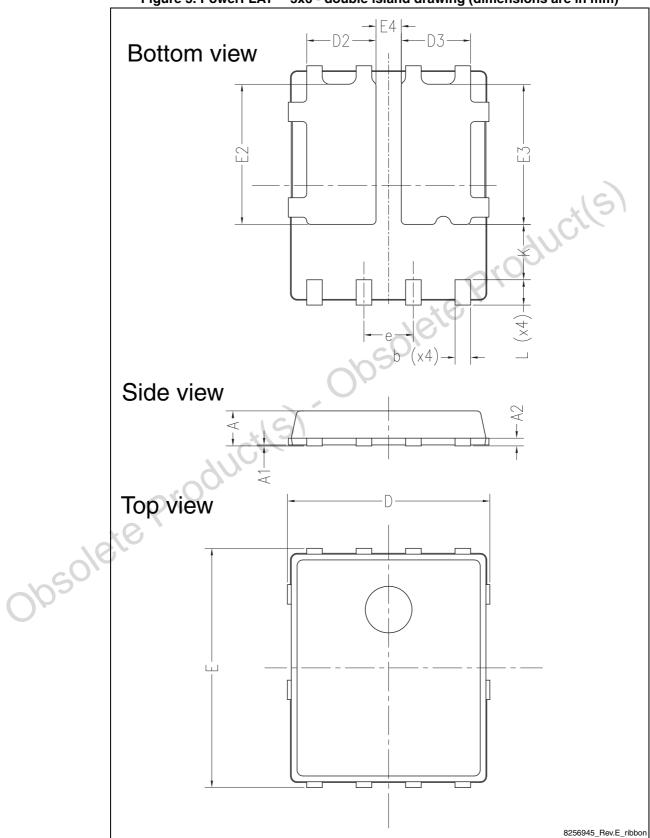


Figure 5. PowerFLAT™ 5x6 - double island drawing (dimensions are in mm)

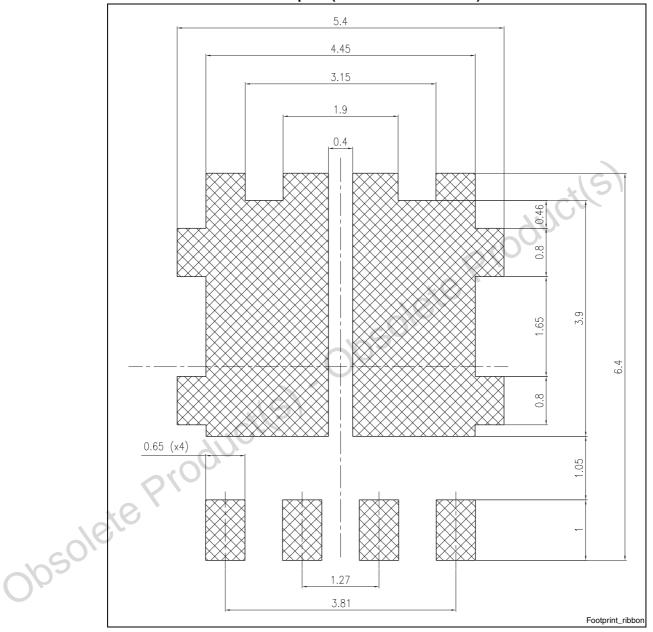


Figure 6. PowerFLAT[™] 5x6 - 8 leads dual pad (ribbon) drawing recommended footprint (dimensions are in mm)

10/14 DocID024377 Rev 1

5 Packaging mechanical data

Figure 7. PowerFLAT™ 5x6 tape^(a)

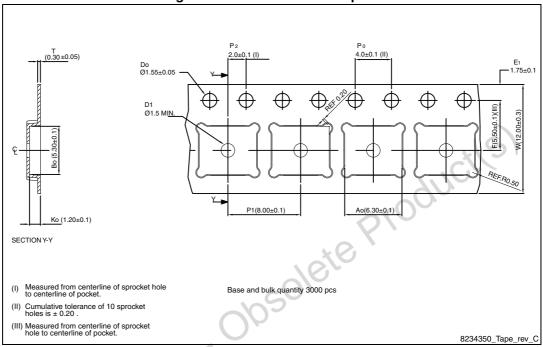
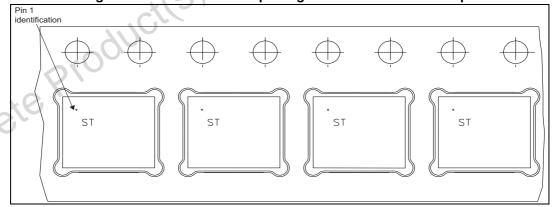



Figure 8. PowerFLAT™ 5x6 package orientation in carrier tape

a. All dimensions are in millimeters.

A 330 (+0/-4.0) All dimensions are in millimeters Obsolete Product(s). Oly 8234350_Reel_rev_C

Figure 9. PowerFLAT™ 5x6 reel

STL8DN4LLF6 Revision history

6 Revision history

Table 9. Document revision history

Date	Revision	Changes
13-Mar-2013	1	First release.

Obsolete Product(s). Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING. ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14 DocID024377 Rev 1

