

Rad-Hard 100 V, 34 A P-channel Power MOSFET

	D(1) O
G(3) O—	

Features

V _{DS}	I _D	R _{DS(on)} typ.	Qg
100 V	34 A	60 mΩ	162 nC

- Fast switching
- 100% avalanche tested
- Hermetic package
- 100 krad
- SEE radiation hardened

Description

The STRH40P10 is a P-channel Power MOSFET developed with the Rad-Hard STripFET technology in TO-254AA hermetic package and qualified as per ESCC detail specification No. 5205/025.

Designed for satellite application, it sustains high level of total ionized dose (TID) and immunity to heavy ions effects. In case of discrepancies between this datasheet and the relevant agency specification, the latter takes precedence.

Device summary

Product summary					
Part number	Quality level	ESCC part number	Package	Lead finish	Radiation level
STRH40P10HY1	Engineering model	-		Gold	-
STRH40P10HYG	ESCC		TO-254AA		100 krad
STRH40P10HYT	flight	ESCC 5205/025 flight		Solder dip	100 krad

Note: See Table 8. Ordering information.

Product status link

STRH40P10

1 Electrical ratings

Note: For P-channel MOSFET voltage and current polarity is reversed.

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS} ⁽¹⁾	Drain-source voltage (V _{GS} = 0)	100	V
V _{GS} ⁽²⁾	Gate-source voltage	±20	V
I _D (3)	Drain current (continuous) at T _{case} = 25 °C	34	Α
ID.	Drain current (continuous) at T _{case} = 100 °C	21	Α
I _{DM} ⁽⁴⁾	Drain current (pulsed)	136	Α
P _{TOT} ⁽³⁾	Total power dissipation at T _{case} = 25 °C	176	W
dv/dt ⁽⁵⁾	Peak diode recovery voltage slope	2.5	V/ns
T _{op}	Operating temperature range	-55 to 150	°C
Tj	Max. operating junction temperature range	150	°C

- 1. This rating is guaranteed at $T_J \ge 25$ °C (see Figure 9. Normalized $V_{(BR)DSS}$ vs temperature).
- 2. This value is guaranteed over the full range of temperature.
- 3. Rated according to the $R_{thj\text{-case}} + R_{thc\text{-s}}$
- 4. Pulse width limited by safe operating area.
- 5. $I_{SD} \le 40~A$, $di/dt \le 100~A/\mu s$, $V_{DD} = 80~\% V_{(BR)DSS}$.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case (maximum)	0.71	°C/W
R _{thc-s}	Thermal resistance case-sink (typical)	0.21	°C/W

Table 3. Avalanche data

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	17	А
E _{AS} ⁽¹⁾	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = 17$ A, $V_{DD} = 50$ V)	1133	mJ
E _{AS}	Single pulse avalanche energy (starting T_j = 110 °C, I_D = 17 A, V_{DD} = 50 V)	332	mJ
E _{AR}	Repetitive pulse avalanche energy $(V_{DD} = 50 \text{ V}, I_{AR} = 24 \text{ A}, f = 100 \text{ KHz},$ $T_{J} = 25 ^{\circ}\text{C}, \text{ duty cycle} = 10\%)$	25	mJ
⊢AR	Repetitive pulse avalanche energy $(V_{DD} = 50 \text{ V}, I_{AR} = 17 \text{ A}, f = 100 \text{ KHz},$ $T_J = 110 ^{\circ}\text{C}, \text{ duty cycle} = 10\%)$	8	IIIJ

1. Maximum rating value.

DS7072 - Rev 18 page 2/15

2 Electrical characteristics

Note: For the P-channel MOSFET actual polarity of voltages and current has to be reversed.

Table 4. Electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Max.	Uni
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	80% BV _{Dss}		10	μΑ
		V _{GS} = 20 V		100	
Land	Cata hady laakaga ayrrant	V _{GS} = -20 V	-100		
I _{GSS}	Gate body leakage current	V _{GS} = 20 V, T _C = 125 °C		200	n/
		V _{GS} = -20 V, T _C = 125 °C	-200		
V _{(BR)DSS} ⁽¹⁾	Drain-to-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	100		V
		$V_{DS} = V_{GS}$, $I_D = 1$ mA, $T_C = -55$ °C	2.3	5.2	
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	2.0	4.5	V
		$V_{DS} = V_{GS}$, $I_{D} = 1$ mA, $T_{C} = 125$ °C	1.6	3.7	
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 12 V, I _D = 17 A		0.075	Ω
C _{iss}	Input capacitance		3710	5570	pl
C _{oss} (2)	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V	510	760	pl
C _{rss}	Reverse transfer capacitance		204	306	pl
Qg	Total gate charge		130	194	n(
Q _{gs}	Gate-to-source charge	V _{DD} = 50 V, I _D = 34 A, V _{GS} = 12 V	14	22	n(
Q _{gd}	Gate-to-drain ("Miller") charge		32	48	n(
t _{d(on)}	Turn-on delay time		15	33	ns
t _r	Rise time	$V_{DD} = 50 \text{ V}, I_D = 17 \text{ A}, R_G = 4.7 \Omega,$	19	43	ns
t _{d(off)}	Turn-off delay time	V _{GS} = 12 V	98	147	ns
t _f	Fall time		34	58	ns
I _{SDM} ⁽³⁾	Source-drain current (pulsed)	I _{SD} = 34 A, V _{GS} = 0 V		136	А
		I _{SD} = 34 A, V _{GS} = 0 V		1.5	V
V _{SD} ⁽⁴⁾	Forward on voltage	I _{SD} = 34 A, V _{GS} = 0 V, T _c = 125 °C		1.25	V
t _{rr} ⁽²⁾	Reverse recovery time	I _{SD} = 34 A, di/dt = 40 A/µs, V _{DD} = 12 V, TJ = 25 °C	276	414	ns

- 1. This rating is guaranteed at $T_J \ge 25$ °C (see Figure 9. Normalized $V_{(BR)DSS}$ vs temperature).
- 2. Not tested in production, guaranteed by process.
- 3. Pulse width limited by safe operating area
- 4. Pulsed: pulse duration = 300 μs, duty cycle ≤ 1.52%

DS7072 - Rev 18 page 3/15

3 Radiation characteristics

This products is guaranteed in radiation as per ESCC 5205/025 and ESCC 22900 specification at 100 krad. Each lot tested in radiation is accepted according to the characteristics as per Table 5.

3.1 Total dose radiation (TID) testing

The bias with V_{GS} = + 15 V and V_{DS} = 0 V is applied during irradiation exposure.

The parameters listed in Table 5 are measured:

- · Before irradiation
- After irradiation
- After 24 hrs at room temperature
- after 168 hrs at 100 °C anneal

Table 5. Post-irradiation electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

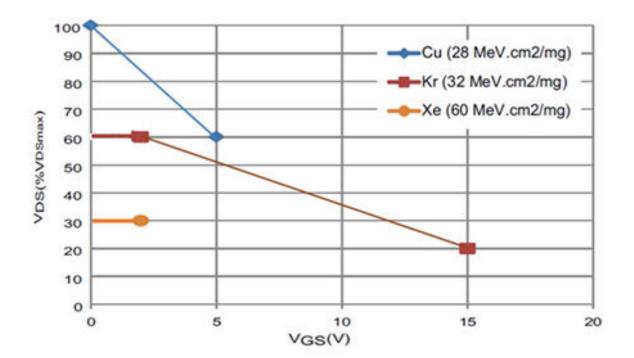
Symbol	Parameter	Test conditions	Drift values Δ	Unit	
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	80% V _{(BR)DSS}	+1	μA	
lana	Cata hady lookage gurrant	V _{GS} = 20 V	1.5	n A	
I _{GSS}	Gate body leakage current	V _{GS} = -20 V	-1.5	– nA	
V _{(BR)DSS}	Drain-to-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	-15%	V	
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	+150%	V	
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 12 V, I _D = 17 A	-4% / +35%	Ω	
Qg	Total gate charge		-15% / +5%		
Q _{gs}	Gate-to-source charge	$V_{DS} = 50 \text{ V}, I_{G} = 1 \text{ mA}, V_{GS} = 12$ V, $I_{DS} = 34 \text{ A}$	-5% / +200%	nC	
Q _{gd}	Gate-to-drain charge		-10% / +100%		
V _{SD} ⁽¹⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 34 A	±5%	V	

^{1.} Pulsed: pulse duration = 300 μs, duty cycle 1.5%

DS7072 - Rev 18 page 4/15

3.2 Single event effect RBSOA

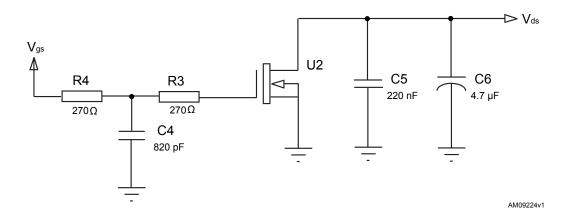
The STRH40P10 is extremely resistant under heavy ions exposure as per MIL-STD-750E, test method 1080, bias circuit of Figure 2.


SEB and SEGR tests are performed with a fluence of 3e+5 ions/cm² with the following acceptance criteria:

- SEB test: drain voltage checked, trigger level is set to V_{DS} = - 5 V. Stop condition: as soon as a SEB occurs or if the fluence reaches 3e+5 ions/cm².
- SEGR test: the gate current is monitored every 200 ms. A gate stress is performed before and after irradiation. Stop condition: as soon as the gate current reaches 100 nA (during irradiation or during PIGS test) or if the fluence reaches 3e+5 ions/cm².

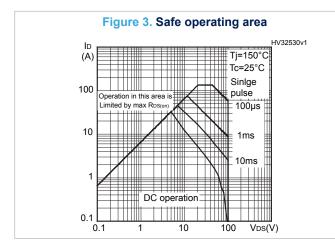
Table 6. Single Event Effects (SEB and SEGR) RBSOA

lon	Let (Mev/(mg/cm²)	Energy (MeV)	Range (μm)
Kr	32	768	94
NI NI	32	756	92
Cu	28	285	43
Xe	60	1217	89

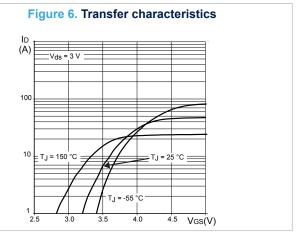

Figure 1. Single event effect, SOA

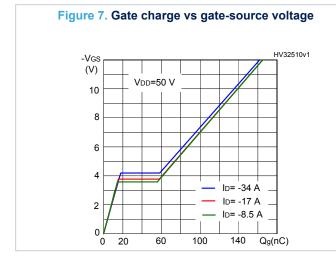
DS7072 - Rev 18 page 5/15

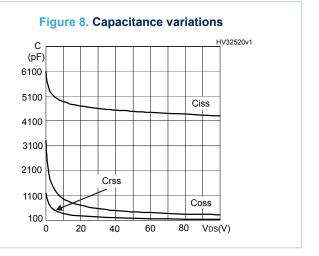
Figure 2. Single event effect, bias circuit




Note: Bias condition during radiation refer to Table 6. Single Event Effects (SEB and SEGR) RBSOA.


DS7072 - Rev 18 page 6/15




4 Electrical characteristics (curves)

DS7072 - Rev 18 page 7/15

Figure 9. Normalized V_{(BR)DSS} vs temperature

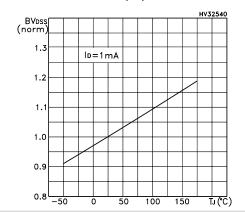


Figure 10. Static drain-source on-resistance

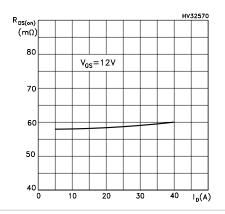


Figure 11. Normalized gate threshold voltage vs temperature

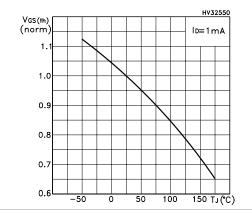


Figure 12. Normalized on-resistance vs temperature

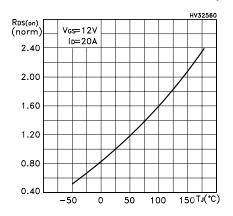
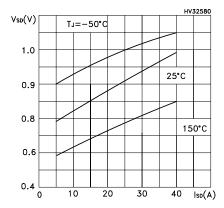
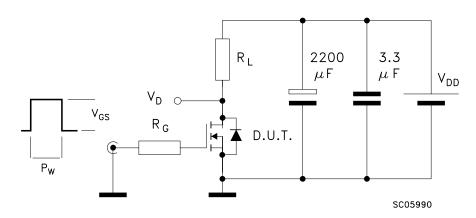



Figure 13. Source drain-diode forward characteristics



DS7072 - Rev 18 page 8/15

5 Test circuits

Figure 14. Switching times test circuit for resistive load

Note: $Max driver V_{GS} slope = 1V/ns (no DUT)$

Figure 15. Source drain diode waveform

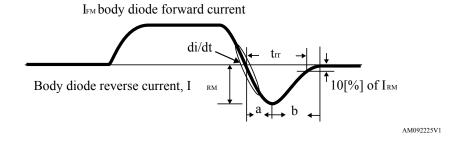
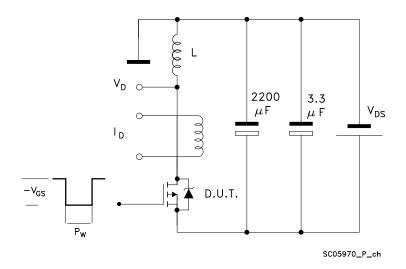



Figure 16. Unclamped inductive load test circuit (single pulse and repetitive)

DS7072 - Rev 18 page 9/15

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 TO-254AA package information

R1 H G QF QF QM QM

Figure 17. TO-254AA package outline

The TO-254-AA is a metallic package. It is not connected to any pin nor to the inside die. 000582

0005824 rev13

Ø١

DS7072 - Rev 18 page 10/15

Table 7. TO-254AA package mechanical data

Symbols	Dimensions (mm)			Dimension (inches)		
Symbols	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	13.59		13.84	0.535		0.545
В	13.59		13.84	0.535		0.545
С	20.07		20.32	0.790		0.800
D	6.30		6.70	0.248		0.264
E	1.00		1.35	0.039		0.054
ØF	3.50		3.90	0.137		0.154
G	16.89		17.40	0.665		0.685
Н		6.86			0.270	
ØI	0.89		1.14	0.035		0.045
J		3.81			0.150	
K		3.81			0.150	
L	12.95		14.50	0.510		0.571
ØM		3.05			0.120	
N			0.71			0.028
R1			1.00			0.039
R2		1.65			0.065	

DS7072 - Rev 18 page 11/15

7 Order codes

Table 8. Ordering information

Part number	Agency specification	Quality level	Radiation level	Package	Weight	Lead finish	Marking ⁽¹⁾	Packing
STRH40P10HY1		Engineering					STRH40P10HY1	
STRH40PT0HTT		model	-			Gold	+ BeO	
STRH40P10HYG	E20E/02E/04		100 krad	TO 2544A	10 ~	Gold	520502501R	Ctrin nook
STRH40PTUHTG	5205/025/01	ECOC files	100 Krad	TO-254AA	10 g		+ BeO	Strip pack
STDLI40D40LIVT	E20E/02E/02	ESCC flight	100 kmod			Solder	520502502R	
STRH40P10HYT	5205/025/02		100 krad			dip	+ BeO	

Specific marking only. The full marking includes in addition: For the Engineering Models: ST logo, date code; country of origin (FR). For ESCC flight parts: STlogo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot.

Contact ST sales office for information about specific conditions for products in die form.

DS7072 - Rev 18 page 12/15

8 Other information

8.1 Traceability information

Date code information is described in the table below.

Table 9. Date codes

Model	Date code ⁽¹⁾
EM	3yywwN
ESCC	yywwN

^{1.} yy = year, ww = week number, N = lot index in the week.

8.2 Documentation

Table 10. Documentation provided for each type of product

Quality level	Radiation level	Documentation
Engineering model	-	Certificate of conformance
		Certificate of conformance
ESCC	100 krad	ESCC qualification maintenance lot reference
		Radiation data at 25 / 50 / 70 / 100 krad at 0.1 rad / s.

DS7072 - Rev 18 page 13/15

Revision history

Table 11. Document revision history

Date	Version	Changes
23-Dec-2010	1	First release.
02-Feb-2011	2	Updated Figure 1.
03-May-2011	3	Updated Figure 1.
22-Jun-2011	4	Updated features on coverpage.
25-Jul-2011	5	Updated order codes in Table 1: Device summary and Table 14: Ordering information.
		Minor text changes
09-Nov-2011	6	Modified: Description
00 1107 2011		Minor text changes
12-Dec-2012	7	Updated features in cover page.
12-000-2012		Updated Table 5, Table 8, Table 9, Table 10, Table 11 and Table 15.
17-Dec-2012	8	Updated Table 8: Pre-irradation source drain diode.
17-060-2012		Minor text changes.
	9	Updated Table 7: Pre-irradation switching times and Table 8: Pre-irradation
13-Jun-2013		source drain diode.
		Minor text changes.
09-Sep-2013	10	Updated Table 1.
09-3ер-2013		Minor text changes.
27-Sep-2013	11	Updated IAR value in Table 4: Avalanche characteristics.
17-Dec-2013	12	Total dose radiation testing parameters changed in Section 3: Radiation characteristics.
25-Aug-2014	13	Updated Figure 7: Transfer characteristics.
19-Dec-2016	14	Updated Table 7: Pre-irradiation switching times and Table 8: Pre-irradiation source drain diode.
42 Jul 2040	15	Updated Table 4.
12-Jul-2019		Minor text changes.
30-Nov-2020	16	Updated Table 1, Table 4, Table 5, Table 6 and Table 8.
15-Jun-2021	17	Updated Description and Figure 4.
08-Apr-2024	18	Updated Table 5.

DS7072 - Rev 18 page 14/15

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

DS7072 - Rev 18 page 15/15