TL082, TL082A, TL082B

General purpose JFET dual operation amplifiers

Description
The TL082, TL082A and TL082B are high speed JFET input dual operational amplifiers incorporating well-matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit.
The devices feature high slew rates, low input bias and offset current, and low offset voltage temperature coefficient.

Features
- Wide common-mode (up to V_{CC^+}) and differential voltage range
- Low input bias and offset current
- Output short-circuit protection
- High input impedance JFET input stage
- Internal frequency compensation
- Latch up free operation
- High slew rate: 16 V/µs (typical)
Contents
1 Schematic diagram...3
2 Pin connections...4
3 Absolute maximum ratings and operating conditions5
4 Electrical characteristics ..6
5 Electrical characteristic curves ...8
6 Parameter measurement information11
7 Typical applications ..12
8 Package information ...13
 8.1 SO8 package information..14
 8.2 TSSOP8 package information..15
9 Ordering information..16
10 Revision history ...17
1 Schematic diagram

Figure 1: Schematic diagram
2 Pin connections

Figure 2: Pin connections (top view)

1 = Output 1
2 = Inverting input 1
3 = Non-inverting input 1
4 = V_{CC}
5 = Non-inverting input 2
6 = Inverting input 2
7 = Output 2
8 = V_{CC}
3 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>TL082I, AI, BI</th>
<th>TL082C, AC, BC</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Supply voltage (1)</td>
<td></td>
<td>±18</td>
<td>V</td>
</tr>
<tr>
<td>V_{in}</td>
<td>Input voltage (2)</td>
<td></td>
<td>±15</td>
<td>V</td>
</tr>
<tr>
<td>V_{id}</td>
<td>Differential input voltage (3)</td>
<td></td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>P_{tot}</td>
<td>Power dissipation</td>
<td>680</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>R_{thja}</td>
<td>Thermal resistance</td>
<td>SO8</td>
<td>125</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>junction-to-ambient (4)</td>
<td>TSSOP8</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>R_{thjc}</td>
<td>Thermal resistance</td>
<td>SO8</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>junction-to-case</td>
<td>TSSOP8</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output short-circuit duration (5)</td>
<td></td>
<td>Infinite</td>
<td></td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage temperature range</td>
<td></td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>ESD</td>
<td>HBM: human body model (6)</td>
<td>1</td>
<td></td>
<td>kV</td>
</tr>
<tr>
<td>ESD</td>
<td>MM: machine model (7)</td>
<td>200</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>ESD</td>
<td>CDM: charged device model (8)</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(1) All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC^+} and V_{CC^-}.
(2) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
(3) Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
(4) Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers.
(5) The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
(6) Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
(7) Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
(8) Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 2: Operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>TL082I, AI, BI</th>
<th>TL082C, AC, BC</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Supply voltage</td>
<td>6 to 36</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>T_{oper}</td>
<td>Operating free-air temperature range</td>
<td>-40 to 105</td>
<td>0 to 70</td>
<td>°C</td>
</tr>
</tbody>
</table>
4 Electrical characteristics

Table 3: VCC = ±15V, Tamb = +25°C (unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>TL082I, AC, AI, BC, BI</th>
<th></th>
<th>TL082C</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{io}</td>
<td>Input offset voltage, $R_s = 50 , \Omega$, $T_{amb} = 25 , ^\circ C$, TL082</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>V_{io}</td>
<td>Input offset voltage, $R_s = 50 , \Omega$, $T_{amb} = 25 , ^\circ C$, TL082A</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{io}</td>
<td>Input offset voltage, $R_s = 50 , \Omega$, $T_{amb} = 25 , ^\circ C$, TL082B</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{io}</td>
<td>Input offset voltage, $R_s = 50 , \Omega$, $T_{min} \leq T_{amb} \leq T_{max}$, TL082</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{io}</td>
<td>Input offset voltage, $R_s = 50 , \Omega$, $T_{min} \leq T_{amb} \leq T_{max}$, TL082A</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{io}</td>
<td>Input offset voltage, $R_s = 50 , \Omega$, $T_{min} \leq T_{amb} \leq T_{max}$, TL082B</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{vio}</td>
<td>Input offset voltage drift</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{io}</td>
<td>Input offset current, $T_{amb} = 25 , ^\circ C$ (1)</td>
<td>5</td>
<td>100</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>I_{io}</td>
<td>Input offset current, $T_{min} \leq T_{amb} \leq T_{max}$ (1)</td>
<td>4</td>
<td></td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>I_{ib}</td>
<td>Input bias current, $T_{amb} = 25 , ^\circ C$</td>
<td>20</td>
<td>200</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>I_{ib}</td>
<td>Input bias current, $T_{min} \leq T_{amb} \leq T_{max}$</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{sv}</td>
<td>Large signal voltage gain, $R_L = 2 , \text{k} \Omega$, $V_o = \pm 10 , \text{V}$, $T_{amb} = 25 , ^\circ C$</td>
<td>50</td>
<td>200</td>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>A_{sv}</td>
<td>Large signal voltage gain, $R_L = 2 , \text{k} \Omega$, $V_o = \pm 10 , \text{V}$, $T_{min} \leq T_{amb} \leq T_{max}$</td>
<td>25</td>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>SVR</td>
<td>Supply voltage rejection ratio, $R_s = 50 , \Omega$, $T_{amb} = 25 , ^\circ C$</td>
<td>80</td>
<td>86</td>
<td>70</td>
<td>86</td>
</tr>
<tr>
<td>SVR</td>
<td>Supply voltage rejection ratio, $R_s = 50 , \Omega$, $T_{min} \leq T_{amb} \leq T_{max}$</td>
<td>80</td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Supply current, no load, $T_{amb} = 25 , ^\circ C$</td>
<td>1.4</td>
<td>2.5</td>
<td>1.4</td>
<td>2.5</td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Supply current, no load, $T_{min} \leq T_{amb} \leq T_{max}$</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{cm}</td>
<td>Input common mode voltage range</td>
<td>± 11</td>
<td>15</td>
<td>15</td>
<td>± 12</td>
</tr>
<tr>
<td>CMR</td>
<td>Common mode rejection ratio, $R_s = 50 , \Omega$, $T_{amb} = 25 , ^\circ C$</td>
<td>80</td>
<td>86</td>
<td>70</td>
<td>86</td>
</tr>
<tr>
<td>CMR</td>
<td>Common mode rejection ratio, $R_s = 50 , \Omega$, $T_{min} \leq T_{amb} \leq T_{max}$</td>
<td>80</td>
<td></td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>I_{os}</td>
<td>Output short-circuit current, $T_{amb} = 25 , ^\circ C$</td>
<td>10</td>
<td>40</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>I_{os}</td>
<td>Output short-circuit current, $T_{min} \leq T_{amb} \leq T_{max}$</td>
<td>10</td>
<td>60</td>
<td>10</td>
<td>60</td>
</tr>
</tbody>
</table>
Electrical characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>TL082I, AC, AI, BC, BI</th>
<th>TL082C</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>±V_{opp}</td>
<td>Output voltage swing, (T_{\text{amb}} = 25 ^\circ \text{C}, R_L = 2 , \text{kΩ})</td>
<td>Min. 10</td>
<td>Typ. 12</td>
<td>Max. 10</td>
</tr>
<tr>
<td></td>
<td>Output voltage swing, (T_{\text{amb}} = 25 ^\circ \text{C}, R_L = 10 , \text{kΩ})</td>
<td>Min. 12</td>
<td>Typ. 13.5</td>
<td>Max. 12</td>
</tr>
<tr>
<td></td>
<td>Output voltage swing, (T_{\text{min}} \leq T_{\text{amb}} \leq T_{\text{max}}, R_L = 2 , \text{kΩ})</td>
<td>Min. 10</td>
<td>Typ. 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output voltage swing, (T_{\text{min}} \leq T_{\text{amb}} \leq T_{\text{max}}, R_L = 10 , \text{kΩ})</td>
<td>Min. 12</td>
<td>Typ. 12</td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>Slew rate, (T_{\text{amb}} = 25 ^\circ \text{C}, V_{\text{in}} = 10 , \text{V}, R_L = 2 , \text{kΩ}, C_L = 100 , \text{pF},) unity gain</td>
<td>Min. 8</td>
<td>Typ. 16</td>
<td>Max. 8</td>
</tr>
<tr>
<td>(t_r)</td>
<td>Rise time, (T_{\text{amb}} = 25 ^\circ \text{C}, V_{\text{in}} = 20 , \text{mV}, R_L = 2 , \text{kΩ}, C_L = 100 , \text{pF},) unity gain</td>
<td>Min. 0.1</td>
<td>Typ. 0.1</td>
<td></td>
</tr>
<tr>
<td>(K_{\text{ov}})</td>
<td>Overshoot, (T_{\text{amb}} = 25 ^\circ \text{C}, V_{\text{in}} = 20 , \text{mV}, R_L = 2 , \text{kΩ}, C_L = 100 , \text{pF},) unity gain</td>
<td>Min. 10</td>
<td>Typ. 10</td>
<td>%</td>
</tr>
<tr>
<td>GBP</td>
<td>Gain bandwidth product, (T_{\text{amb}} = 25 ^\circ \text{C}, V_{\text{in}} = 10 , \text{mV}, R_L = 2 , \text{kΩ}, C_L = 100 , \text{pF}, F = 100 , \text{kHz})</td>
<td>Min. 2.5</td>
<td>Typ. 4</td>
<td>Max. 2.5</td>
</tr>
<tr>
<td>(R_i)</td>
<td>Input resistance</td>
<td>Min. 10^{12}</td>
<td>Typ. 10^{12}</td>
<td>Ω</td>
</tr>
<tr>
<td>THD</td>
<td>Total harmonic distortion, (T_{\text{amb}} = 25 ^\circ \text{C}, F = 1 , \text{kHz}, R_L = 2 , \text{kΩ}, C_L = 100 , \text{pF}, A_v = 20 , \text{dB}, V_o = 2 , V_{pp})</td>
<td>Min. 0.01</td>
<td>Typ. 0.01</td>
<td>%</td>
</tr>
<tr>
<td>(e_n)</td>
<td>Equivalent input noise voltage, (R_B = 100 , \Omega, F = 1 , \text{kHz})</td>
<td>Min. 15</td>
<td>Typ. 15</td>
<td>nV/√Hz</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Phase margin</td>
<td>Min. 45</td>
<td>Typ. 45</td>
<td>degrees</td>
</tr>
<tr>
<td>(V_{o1}/V_{o2})</td>
<td>Channel separation, (A_v = 100)</td>
<td>Min. 120</td>
<td>Typ. 120</td>
<td>dB</td>
</tr>
</tbody>
</table>

Notes:

1. The input bias currents are junction leakage currents which approximately double for every 10° C increase in the junction temperature.
5 Electrical characteristic curves

Figure 3: Maximum peak-to-peak output voltage versus frequency

Figure 4: Maximum peak-to-peak output voltage versus frequency

Figure 5: Maximum peak-to-peak output voltage versus load resistance

Figure 6: Maximum peak-to-peak output voltage versus frequency

Figure 7: Maximum peak-to-peak output voltage versus free air temperature

Figure 8: Maximum peak-to-peak output voltage versus supply voltage
Figure 9: Input bias current versus free air temperature

Figure 10: Large signal differential voltage amplification and phase shift versus frequency

Figure 11: Supply current per amplifier versus free air temperature

Figure 12: Large signal differential voltage amplification versus free air temperature

Figure 13: Total power dissipation versus free air temperature

Figure 14: Supply current per amplifier versus supply voltage
Electrical characteristic curves

Figure 15: Common-mode rejection ratio versus free air temperature

Figure 16: Output voltage versus elapsed time

Figure 17: Voltage follower large signal pulse response

Figure 18: Equivalent input noise voltage versus frequency

Figure 19: Total harmonic distortion versus frequency
6 Parameter measurement information

Figure 20: Voltage follower

Figure 21: Gain-of-10 inverting amplifier
7 Typical applications

Figure 22: 100 kHz quadruple oscillator

1. These resistor values may be adjusted for a symmetrical output.
8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.
8.1 SO8 package information

Figure 23: SO8 package outline

Table 4: SO8 mechanical data

<table>
<thead>
<tr>
<th>Reference</th>
<th>Dimensions</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>1.75</td>
<td>0.069</td>
</tr>
<tr>
<td>A1</td>
<td></td>
<td>0.25</td>
<td>0.010</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>1.25</td>
<td>0.049</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>0.28</td>
<td>0.011</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>0.17</td>
<td>0.007</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>4.90</td>
<td>0.193</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>6.00</td>
<td>0.236</td>
</tr>
<tr>
<td>E1</td>
<td></td>
<td>3.90</td>
<td>0.154</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>1.27</td>
<td>0.050</td>
</tr>
<tr>
<td>h</td>
<td></td>
<td>0.50</td>
<td>0.020</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>1.27</td>
<td>0.020</td>
</tr>
<tr>
<td>L1</td>
<td></td>
<td>1.04</td>
<td>0.040</td>
</tr>
<tr>
<td>k</td>
<td></td>
<td>8°</td>
<td>8°</td>
</tr>
<tr>
<td>ccc</td>
<td></td>
<td>0.10</td>
<td>0.004</td>
</tr>
</tbody>
</table>
8.2 TSSOP8 package information

Figure 24: TSSOP8 package outline

Table 5: TSSOP8 mechanical data

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>A2</td>
<td>0.80</td>
<td>1.00</td>
</tr>
<tr>
<td>b</td>
<td>0.19</td>
<td>0.30</td>
</tr>
<tr>
<td>c</td>
<td>0.09</td>
<td>0.20</td>
</tr>
<tr>
<td>D</td>
<td>2.90</td>
<td>3.00</td>
</tr>
<tr>
<td>E</td>
<td>6.20</td>
<td>6.40</td>
</tr>
<tr>
<td>E1</td>
<td>4.30</td>
<td>4.40</td>
</tr>
<tr>
<td>e</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>0°</td>
<td>8°</td>
</tr>
<tr>
<td>L</td>
<td>0.45</td>
<td>0.60</td>
</tr>
<tr>
<td>L1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>aaa</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>
9 Ordering information

Table 6: Order codes

<table>
<thead>
<tr>
<th>Order code</th>
<th>Temperature range</th>
<th>Package</th>
<th>Packing</th>
<th>Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL082ID</td>
<td>-40 °C to 105 °C</td>
<td>SO8</td>
<td>Tube or tape and reel</td>
<td>082I</td>
</tr>
<tr>
<td>TL082IDT</td>
<td>-40 °C to 105 °C</td>
<td>SO8</td>
<td>Tube or tape and reel</td>
<td>082I</td>
</tr>
<tr>
<td>TL082IPT</td>
<td>-40 °C to 105 °C</td>
<td>Tube or tape and reel</td>
<td>082I</td>
<td></td>
</tr>
<tr>
<td>TL082CD</td>
<td>0 °C to 70 °C</td>
<td>SO8</td>
<td>Tube or tape and reel</td>
<td>082C</td>
</tr>
<tr>
<td>TL082CDT</td>
<td>0 °C to 70 °C</td>
<td>SO8</td>
<td>Tube or tape and reel</td>
<td>082C</td>
</tr>
<tr>
<td>TL082CPT</td>
<td>0 °C to 70 °C</td>
<td>TSSOP8</td>
<td>Tape and reel</td>
<td>082C</td>
</tr>
<tr>
<td>TL082ACDT</td>
<td>0 °C to 70 °C</td>
<td>SO8</td>
<td>Tube or tape and reel</td>
<td>082AC</td>
</tr>
<tr>
<td>TL082BCDT</td>
<td>0 °C to 70 °C</td>
<td>SO8</td>
<td>Tube or tape and reel</td>
<td>082BC</td>
</tr>
<tr>
<td>TL082IYDT (1)</td>
<td>-40 °C to 105 °C</td>
<td>SO8</td>
<td>Tube or tape and reel</td>
<td>082IY</td>
</tr>
<tr>
<td>TL082AIYDT (1)</td>
<td>-40 °C to 105 °C</td>
<td>SO8</td>
<td>Tube or tape and reel</td>
<td>82AIY</td>
</tr>
<tr>
<td>TL082BIYDT (1)</td>
<td>-40 °C to 105 °C</td>
<td>SO8</td>
<td>Tube or tape and reel</td>
<td>82BIY</td>
</tr>
</tbody>
</table>

Notes:

(1) Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.
Revision history

Table 7: Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>02-Apr-2001</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>2002-2003</td>
<td>2-7</td>
<td>Internal revisions.</td>
</tr>
<tr>
<td>30-Apr-2004</td>
<td>8</td>
<td>Format update.</td>
</tr>
<tr>
<td>06-Mar-2007</td>
<td>9</td>
<td>Added ESD information in Table 1 on page 4. Expanded order codes table and added automotive grade order codes. See Table 7 on page 16. Added Table 2: Operating conditions on page 4. Updated package information to make it compliant with the latest JEDEC standards.</td>
</tr>
<tr>
<td>12-Jun-2008</td>
<td>10</td>
<td>Removed information concerning military temperature range (TL082M*, TL082AM*, TL082BM*).</td>
</tr>
<tr>
<td>10-Jun-2016</td>
<td>11</td>
<td>Removed DIP8 package and all obsolete order codes. Updated document layout.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table 4: added L1 dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 24: removed silhouette and added package outline</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved