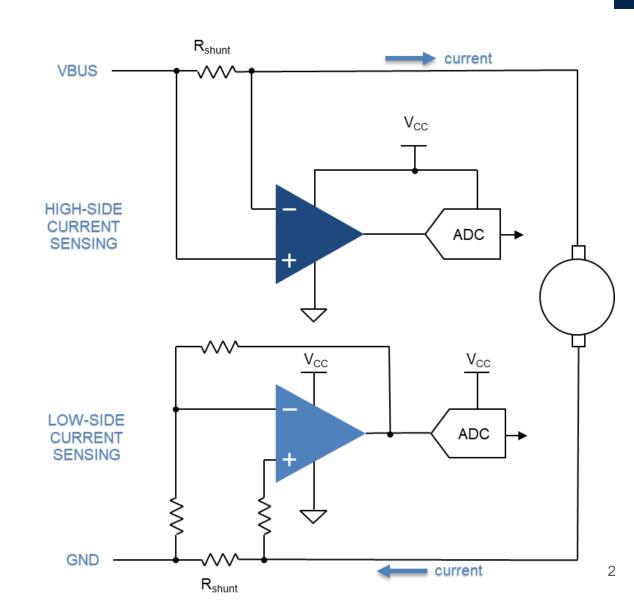


Low-side current sensing


What is low-side current sensing?

What is the definition?

- Low-side current sensing is a technique used to measure the current flowing through a load by placing a sensing resistor between the load and ground.
- Low-side current sensing is widely used in power management, motor control, battery monitoring, and various electronic circuits.

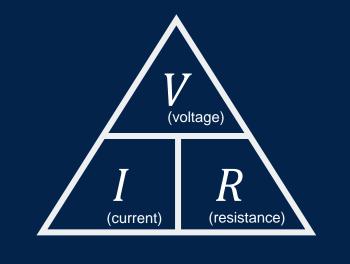
Low-side current sensing is a simple, costeffective method for current measurement

What is the basic principle of low-side current sensing?

What is the working principle?

Placement of the shunt resistor:

- In low-side current sensing, a shunt resistor (or sensing resistor) is placed between the load and ground (or the zero-voltage reference point).
- This means the shunt resistor is located on the "low" side of the circuit, i.e., between the load and ground.


2. Voltage measurement:

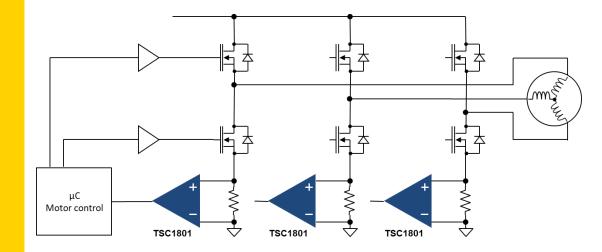
- The current flowing through the load also flows through the shunt resistor.
- By measuring the voltage drop across this shunt resistor, the current flowing through the load can be determined using Ohm's law: $I = \frac{V}{R}$, where *I* is the current, *V* is the voltage drop, and *R* is the value of the shunt resistor.

Ohm's law

The voltage drop across the sensing resistor is proportional to the current flowing through it.

What are the advantages of low-side current sensing?

Simplicity: the configuration is relatively simple and requires few additional components.



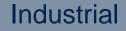
Accuracy: since the measurement is ground-referenced, it's more immune to noise and electromagnetic interferences.

Cost-effective: uses inexpensive resistors and operational amplifiers.

Example: 3-phase motor-control with low-side current measurement by TSC1801.

Typical applications

Wide range of automotive and industrial applications thanks to a combination of high-performance parameters

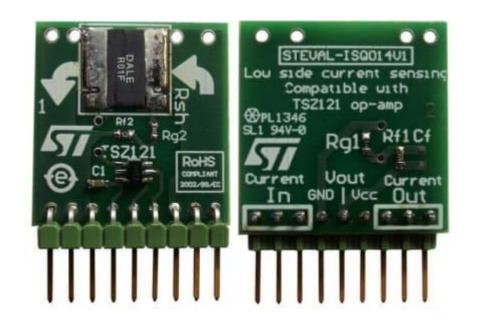


Automotive

Low-side motor current control

Discover ST's low-side current sensing

Туре	Category	Product	Channel			Grade		Bandwidth	Max accuracy /
			Single	Dual	Quad	Industrial	Automotive	for a gain of 20	Gain error
Integrated gain	Current sense	TSC1801	<u>TSC1801</u>			YES	YES	2.1 MHz	200 μV / 0.1%
Standalone op amp	Precision 5 V	TSV77 series	<u>TSV771</u>	<u>TSV772</u>	<u>TSV774</u>	YES	YES	1 MHz	200 μV
	Precision 5 V	TSV79 series	<u>TSV791</u>	<u>TSV792</u>	<u>TSV794</u>	YES	YES	2.5 MHz	200 μV
	Zero drift 5 V	TSZ15 series	<u>TSZ151</u>	<u>TSZ152</u>		YES	YES	80 kHz	7 μV
	Zero drift 5 V	TSZ18 series	<u>TSZ181</u>	<u>TSZ182</u>		YES	YES	150 kHz	25 μV
	Zero drift 36 V	TSB18 series	<u>TSB181</u>	<u>TSB1812</u>		YES	YES	150 kHz	20 μV



Want to test low-side current sensing?

Discover the STEVAL-ISQ014V1

The STEVAL-ISQ014V1 evaluation board implements low-side current sensing, which involves placing a sense resistor between the load and the circuit ground. The voltage drop across this resistor is then amplified using a TSZ121 operational amplifier, enabling precise current measurement.

<u>Discover our user manual: How to use the product evaluation board STEVAL-ISQ014V1</u> for low-side current sensing with the TSZ121 operational amplifier

For more information:

st.com/low-side-current-sensing