ST Signal Conditioning, Interface and Power Management portfolio for wearable devices

May 2023
Wearable devices attributes

- Always on
- Low power
- Compact
- Environment aware
- Intelligent
- Connected

Devices being worn for an extended period of time with significantly enhanced user experience results
Market and Applications

Fitness and Wellness
Monitor activity and emotions

- Activity monitors, foot pods and pedometers, entertain sleep sensors, heart rate monitors
- Emotional measurement
- Smart clothing, smart watches, heads-up displays

Healthcare and Medical
Monitor vital signs

- Blood pressure monitors, ECG monitors, continuous glucose monitoring
- Insulin pumps, drug delivery products

Infotainment
Entertain and enhance lifestyle

- Headsets
- Smart glasses, smart watches

Industrial
Hand-worn terminals, heads-up displays, smart clothing, wearable detection devices.
ST Signal conditioning and Interface portfolio for wearable devices

Operational amplifiers
Large portfolio of highly power efficient op amp in tiny packages

Smart reset
Customizable products providing safe and convenient reset

Battery gas gauges
Low-power gas gauge providing very accurate battery life indicator

Current sensors
High accuracy current measurement for contactless battery chargers

Audio amplifiers
High-efficiency Class D and G amplifiers for headsets and speakers

DC-DC Buck regulators
Very high efficiency in any output load conditions, high integration, flexibility

New ST LDOs for smartphones
The one-stop-shop supplier
Wearable devices
Analog and mixed signal products partitioning

- Digital sensors
- Analog front-end
- Analog sensors
- Power management
- MCU
- User interface
- Connectivity
- Operational Amplifiers
- Analog switches
- Smart reset
- Current sensors
- Battery gas gauges
Solutions for Analog front-end
Analog transducers, getting the best from your sensor

Analog sensors need signal transducers to deliver the information to the MCU

- Accurate and stable to guarantee the maximum precision of the information
- Low power to guarantee a longer user experience
- Small to be integrated in the most stylish and thin designs

<table>
<thead>
<tr>
<th></th>
<th>Input offset voltage [µV]</th>
<th>Input offset voltage drift [µV]</th>
<th>Supply current [µA]</th>
<th>GBP [kHz]</th>
<th>Supply voltage [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSU10x</td>
<td>100</td>
<td>5</td>
<td>0.6</td>
<td>8</td>
<td>1.5 - 5.5</td>
</tr>
<tr>
<td>Very low power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSV71x</td>
<td>50</td>
<td>10</td>
<td>9</td>
<td>120</td>
<td>1.5 - 5.5</td>
</tr>
<tr>
<td>Low power precision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSZ12x</td>
<td>1</td>
<td>0.01</td>
<td>28</td>
<td>400</td>
<td>1.8 - 5.5</td>
</tr>
<tr>
<td>High precision zero drift</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ST offers a dedicated set of op amps to deliver the best match of current consumption and precision, for a wide range of applications.
Signal transducers application: electromyography

A low input offset voltage with zero drift amplifier is mandatory. Otherwise, the electrodes information would be less accurate or lost. **TSZ12x** family is the perfect match offering:
- $V_{IO} = 1\mu V$
- $\Delta V_{IO}/\Delta T = 0.010\mu V$

Once the signal dynamic has been restored precision and micro power consumption amplifiers are needed before the signal is fed to the MCU. **TSV71x** is the perfect match offering:
- $V_{IO} = 50\mu V$
- $I_{CC} = 9\mu A$
ST offers highly-efficient devices capable of delivering high quality audio into small, low power solutions.

CLASS G HEADPHONE AMPLIFIER

TS4621ML | TS4621E (μ-less)

- Power supply range 2.3 V - 4.8 V
- Low stand by current 0.6 μA
- \(V_{out} = 0.8 \text{ Vrms} \) into 16 Ω, at 1% \(\text{THD+N} \), \(V_{CC} = 3.6 \text{ V} \)
- \(\text{SNR} = 100 \text{ dB} @ 1 \text{ kHz} \)
- Reduced external BOM
- Flip-chip package

3W CLASS D MONO SPEAKER AMPLIFIER

TS4962M

- Power supply range 2.4 V - 5.5 V
- Low stand by current <1 μA
- \(P_{out} = 0.8 \text{ W} \) into 8 Ω, at 10% \(\text{THD+N} \), \(V_{CC} = 3 \text{ V} \)
- \(\text{SNR} = 85 \text{ dB} @ 1 \text{ kHz} \)
- Reduced external BOM
- Small flip-chip package

Low power

High quality

Small size
Solutions for Power Management
KEY APPLICATIONS
- Smartphones
- Tablets
- Handheld devices
- Wearable
- IoT
- Non-removable battery powered devices

KEY FEATURES
- 1 or 2 push buttons
- Customizable Reset set-up delay
- Device ship mode
- Tiny package

SMART RESET ICs
Extend the functionality of existing buttons by enabling 'hidden' features (hard reset, factory reset etc…) that can be activated by users with long press of 1 or 2 buttons simultaneously

<table>
<thead>
<tr>
<th>Model</th>
<th># of reset buttons</th>
<th>Reset set-up delay</th>
<th>Reset pulse duration</th>
<th>extra feature</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM6519</td>
<td>1</td>
<td>1.5s to 10s</td>
<td>Fixed or push button controlled</td>
<td>Customer test mode</td>
<td>DFN-6</td>
</tr>
<tr>
<td>STM6520</td>
<td>2</td>
<td>7.5s to 12.5s</td>
<td>Fixed or push button controlled</td>
<td>1 push-pull output</td>
<td>DFN-8</td>
</tr>
<tr>
<td>STM6524</td>
<td>2</td>
<td>4s to 10s</td>
<td>Fixed or push button controlled</td>
<td>Customer test mode</td>
<td>DFN-6</td>
</tr>
<tr>
<td>STM6600</td>
<td>1</td>
<td>Selectable via ext. capacitor</td>
<td>360ms</td>
<td>1 power button</td>
<td>DFN-12</td>
</tr>
<tr>
<td>STM6620</td>
<td>2</td>
<td>10s</td>
<td>push button controlled</td>
<td>Ship mode</td>
<td>QFN-10</td>
</tr>
</tbody>
</table>
STUSB4500L
USB-C charging - SINK

Key Features
- Auto-run / Plug & Play / optional MCU support
- SOURCE power budget identification
- Automatic error recovery and **restart** on fault
- Dead Battery Support

Package

<table>
<thead>
<tr>
<th>Package Type</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>QFN-24 EP</td>
<td>4x4 mm²</td>
</tr>
<tr>
<td>CSP-25</td>
<td>2.6x2.6 mm²</td>
</tr>
</tbody>
</table>

Evaluation boards & ref designs

- **STSW-STUSB002** - GUI
- **STSW-STUSB007** - Software library

Collateral

- Open source ALTIUM library: **EVAL-SCS002V1**

STUSB4500L – USB micro-B replacement - 15W

Wearable, Portable consumer, Gaming, Healthcare, POS

Applications

- Wearable, Portable consumer
- Gaming
- Healthcare
- POS
Current Sensing

ST current sensing ICs portfolio cover most application needs:
- Independent supply and common mode voltages
- Wide supply voltage range
- Selectable gains
- Low power solutions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TSC101</td>
<td>1.5</td>
<td>2.8 - 30.0</td>
<td>4.0 - 24.0</td>
<td>165</td>
<td>20, 50, 100 fixed internally</td>
<td>no</td>
<td>SOT23-5L</td>
</tr>
<tr>
<td>TSC103</td>
<td>0.5</td>
<td>2.9 - 70.0</td>
<td>2.7 - 5.5</td>
<td>200</td>
<td>20, 50, 100 pin selectable</td>
<td>no</td>
<td>TSSOP-8L, SO-8</td>
</tr>
<tr>
<td>TSC21x</td>
<td>0.035</td>
<td>-0.3 - +26</td>
<td>2.7 - 26</td>
<td>100</td>
<td>200 500 1000 50 100 75</td>
<td>yes</td>
<td>SC70-6, QFN-10L</td>
</tr>
</tbody>
</table>

Power management in wearable devices:

- Wired or wireless battery chargers
- Precision current sources from sensors
- Photovoltaic systems

More info Current Sensing - online
Current sensing application: wireless battery charging

- When swimming water pressure can reach up to 5 atm
- Wearable technology needs to be sealed. All the electrical connections with the external have to be removed.
- Wireless battery charging is mandatory

High side current sensing through the transmitter coil to dynamically regulate the charger power output

Application example:

- Power
- TSC103
Intelligent battery monitoring

ST offers an integrated solution combining current integration and voltage variation over the time thus providing the most accurate battery status measurement.

<table>
<thead>
<tr>
<th>STC3115 - Gas gauge IC with alarm output for wearable devices</th>
</tr>
</thead>
</table>
| **Accuracy** | • Coulomb counter mode, voltage mode and mixed mode operations
• 0.25 % accuracy battery voltage monitoring |
| **Robustness** | • Analog and temperature compensation
• Internal temperature sensor |
| **Flexibility** | • Low battery level alarm output with programmable thresholds
• Custom battery OCV curve |
| **Low power** | 2 µA in standby, 45 µA in operating |
| **Small size** | Flip chip, 2.01 x 1.37 x 0.6 mm, 10 bumps, 0.4 mm pitch |

More info Battery Fuel Gauge - online
New ST LDOs for smartphones

The one-stop-shop supplier

- **LD56050**
 - 500 mA Ultra Low Dropout
 - Separate Bias Rail
 - Low output voltages
 - DFN5 - 1.2x1.2

- **LD56100**
 - 1 A Ultra Low Dropout
 - Fast transient
 - Ultra Low Noise
 - DFN8 - 1.2x1.6

- **LD56020**
 - 200 mA, low input voltage
 - High PSRR, Low noise

- **LD39130S**
 - 300 mA Ultra Low IO
 - Green Mode

- **LD57100**
 - 1 A Ultra, Low IO
 - Low Dropout with bias

- **LD59030**
 - 300 mA Ultra Low Dropout

- **LDLN025**
 - 250 mA Ultra Low Noise
 - Very High PSRR

Noise sensitive loads e.g. Audio HiFi
DC-DC Buck Regulators

KEY APPLICATIONS

- **Wearable application**
- **Personal Tracking monitors**
- **Industrial sensors**
- **Bluetooth Low Energy**

Very high efficiency in any output load conditions
- ✔️ 95% typical efficiency at 1mA load
- ✔️ 92% typical efficiency at 400mA load

High integration for the minimum board size and number of external components
- ✔️ Synchronous rectification
- ✔️ Internal Loop Compensation
- ✔️ Tiny external components
- ✔️ Embedded Soft start Circuit

Flexibility
- ✔️ Extended input voltage range, minimum Vin=1.8V
- ✔️ Dynamic output voltage selection

ST1PS01

<table>
<thead>
<tr>
<th>Part Numbers</th>
<th>Output Voltages</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1PS01AJR</td>
<td>From 1.9V to 2.8V</td>
<td>FlipChip</td>
</tr>
<tr>
<td>ST1PS01BJR</td>
<td>From 1.1V to 1.7V</td>
<td></td>
</tr>
<tr>
<td>ST1PS01CJR</td>
<td>From 1V to 1.5V</td>
<td></td>
</tr>
<tr>
<td>ST1PS01DJR</td>
<td>From 1.6V to 2.8V</td>
<td></td>
</tr>
<tr>
<td>ST1PS01EJR</td>
<td>From 1.6V to 3.3V</td>
<td></td>
</tr>
<tr>
<td>ST1PS01FJR</td>
<td>From 1.05V to 1.55V</td>
<td></td>
</tr>
<tr>
<td>ST1PS01GJR</td>
<td>From 0.73V to 1V</td>
<td></td>
</tr>
<tr>
<td>ST1PS01HJR</td>
<td>From 0.625V to 1.05V</td>
<td></td>
</tr>
</tbody>
</table>

ST1PS02

<table>
<thead>
<tr>
<th>Part Numbers</th>
<th>Output Voltages, Output Discharge</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1PS02AQTR</td>
<td>From 1.4V to 1.75V, 50mV step, Yes</td>
<td>TQFN12L</td>
</tr>
<tr>
<td>ST1PS02A1QTR</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ST1PS02BQTR</td>
<td>From 1.8V to 2.5V, 100mV step, Yes</td>
<td></td>
</tr>
<tr>
<td>ST1PS02B1QTR</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ST1PS02CQTR</td>
<td>From 2.6V to 3.3V, 100mV step, Yes</td>
<td></td>
</tr>
<tr>
<td>ST1PS02C1QTR</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ST1PS02DQTR</td>
<td>From 1V to 1.35V, 50mV step, Yes</td>
<td></td>
</tr>
<tr>
<td>ST1PS02D1QTR</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

ST1PS03

<table>
<thead>
<tr>
<th>Part Numbers</th>
<th>Output Voltages, Output Discharge</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1PS03AQTR</td>
<td>From 1.6V to 3.3V, Yes</td>
<td>TQFN12L</td>
</tr>
<tr>
<td>ST1PS03A1QTR</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

More info Buck Regulators - online
Our Technology starts with you

Find out more at www.st.com/automotive