
STMicroelectronics

ST240 core and
instruction set

architecture

Reference manual

8059133 Rev C

27 June 2008

BLANK

27 June 2008 8059133 Rev C 1/507

Reference manual

ST240 core and instruction set architecture

Introduction

The ST240 is a member of the ST200 family of cores.

This ST200 family of embedded processors use a scalable technology that allows variation
in VLIW (very long instruction word) operation issue width, the number and capabilities of
functional units and register files, and the instruction set.

The ST200 family includes the following features:

● parallel execution units, including multiple integer ALUs and multipliers

● architectural support for data prefetch

● predicated execution through select operations

● efficient branch architecture with multiple condition registers

● encoding of immediate operands up to 32-bits

● support for user/supervisor modes

● memory protection

The ST240 adds the following enhancements to this list:

● predicated execution through conditional loads and stores

● 64-bit loads and stores using pairs of 32-bit registers

● multiple floating point units

● saturating arithmetic and SIMD included in the multiple integer ALUs

● an integer divide and remainder unit

● instruction set support for unified L2 cache

www.st.com

http://www.st.com

Contents ST240

2/507 8059133

Contents

Introduction . 1

Preface . 12

ST200 document identification and control. 12

ST200 documentation suite . 12

Conventions used in this guide. 13

Acknowledgements. 14

1 Overview . 15

1.1 VLIW overview . 15

1.2 ST240 overview . 15

1.3 Document overview . 16

2 Execution units . 18

2.1 Arithmetic and logic units . 18

2.2 Floating point units . 18

2.3 Multiplication units . 19

2.4 Divide and remainder unit . 19

2.5 Load/store unit . 19

2.5.1 Memory access . 19

2.5.2 Addressing modes . 20

2.5.3 Alignment . 20

2.5.4 Control registers . 20

2.5.5 Cache coherency control . 20

2.5.6 Conditional load, stores and prefetches . 21

2.5.7 Data-side tightly coupled memory . 21

2.5.8 Level 2 cache . 21

2.5.9 Multi-processor and hardware multi-threading support 21

2.6 Branch unit . 22

3 Operating modes . 23

3.1 Representation of each mode . 23

3.2 Access to resources . 24

ST240 Contents

8059133 3/507

3.2.1 Control registers . 24

3.2.2 PSW updating operations . 24

3.2.3 TLB pages . 24

3.2.4 Peripherals . 24

3.3 Transitioning between modes and states . 25

3.3.1 Supervisor mode to user mode . 25

3.3.2 User to supervisor mode . 26

3.3.3 Debug mode entry and exit . 26

4 Architectural state . 27

4.1 Program counter . 27

4.2 Register file . 27

4.2.1 Link register . 27

4.3 Branch register file . 28

4.4 Program status word . 28

4.4.1 Bit fields . 28

4.4.2 PSW access . 29

4.5 Control registers . 29

4.6 Atomic address . 29

4.7 Context saving . 30

5 Bundling rules . 31

5.1 Architectural bundling rules . 31

5.2 Implementation-specific bundling rules . 32

5.3 Other restrictions . 32

6 Execution pipeline and latencies . 33

6.1 ST240 pipeline . 33

6.2 Operation latencies and bypassing . 33

6.3 Interlocks and stw/stwc to rfi usage restrictions . 34

6.4 Branching and branch stalls . 34

6.5 Link register restrictions . 34

6.6 Operations that empty the pipeline . 35

Contents ST240

4/507 8059133

7 Arithmetic operations . 36

7.1 Overview . 36

7.1.1 Rounding . 36

7.1.2 Operand types . 38

7.1.3 SIMD operation naming . 39

7.2 Multiplication operations . 40

7.3 Addition and subtraction operations . 41

7.4 Shift operations . 43

7.5 Comparison operations . 44

7.6 Saturating arithmetic operation usage . 45

7.6.1 Saturating operation behavior . 45

7.6.2 Saturating operations usage for implementation of ETSI functions 47

7.6.3 mulfracadds.ph usage . 48

7.7 SIMD arithmetic operations usage . 49

7.8 Floating point operations . 51

7.8.1 Summary of floating point operations and macros 51

7.8.2 IEEE754 specification limitations . 52

7.8.3 Floating point comparison operations . 53

7.9 Fractional arithmetic operations . 54

7.10 Divide and remainder operations . 57

7.10.1 Special cases . 57

7.10.2 Performance information . 58

8 Logical operations . 59

8.1 Scalar logical operations . 59

8.1.1 Bit extraction operations . 61

8.2 SIMD logical operations . 62

9 SIMD operations . 64

9.1 Notation used in this chapter . 64

9.2 SIMD 16-bit arithmetic operations . 65

9.2.1 SIMD 16-bit add and subtract operations . 66

9.2.2 SIMD 16-bit multiplication operations . 67

9.2.3 SIMD 16-bit comparison operations . 69

9.2.4 SIMD 16-bit shift operations . 69

ST240 Contents

8059133 5/507

9.3 SIMD 8-bit arithmetic operations . 70

9.3.1 SIMD 8-bit absolute difference operations . 71

9.3.2 SIMD 8-bit averaging operations . 71

9.3.3 SIMD 8-bit comparison operations . 73

9.3.4 SIMD 8-bit multiply and add across operation . 74

9.4 SIMD data manipulation operations . 74

9.4.1 SIMD shuffle operations . 76

9.4.2 SIMD permute operation . 76

9.4.3 SIMD static extraction operations . 77

9.4.4 SIMD dynamic extraction operations . 77

9.4.5 SIMD pack operations . 78

9.4.6 SIMD selection operations . 78

9.4.7 Handling unaligned data using logical SIMD operations 79

9.5 Summary of SIMD branch register operations . 81

10 Traps (exceptions and interrupts) . 82

10.1 Trap types . 82

10.1.1 Interrupt types . 82

10.1.2 Exception types . 82

10.2 Non recoverable exceptions . 83

10.3 Trap mechanism . 83

10.4 Trap handling . 83

10.5 Trap vector and priorities . 83

10.6 Trap priorities . 84

10.7 Saving and restoring execution state . 87

10.7.1 Normal trap startup behavior . 87

10.7.2 Debug trap startup behavior . 89

10.7.3 Restoring execution state . 90

10.8 Determining the trap type . 90

10.8.1 Normal traps . 90

10.8.2 Debug traps . 91

11 Memory translation and protection . 93

11.1 TLB overview . 93

11.2 Address space . 94

11.2.1 Physical addresses . 94

Contents ST240

6/507 8059133

11.2.2 Virtual addresses . 94

11.3 Caches . 94

11.3.1 Instruction cache organization . 94

11.3.2 Data cache organization . 96

11.3.3 Virtual aliases . 97

11.4 Control registers . 97

11.4.1 PSW . 97

11.4.2 UTLB access . 98

11.4.3 TLB_INDEX register . 98

11.4.4 TLB_ENTRY0 register . 98

11.4.5 TLB_ENTRY1 register . 100

11.4.6 TLB_ENTRY2 register . 101

11.4.7 TLB_ENTRY3 register . 101

11.4.8 TLB_REPLACE register . 101

11.4.9 TLB_CONTROL register . 103

11.4.10 TLB_ASID register . 103

11.4.11 TLB_EXCAUSE register . 103

11.5 EXADDRESS register or TLB exceptions . 105

11.6 TLB description . 105

11.6.1 Reset . 105

11.6.2 TLB coherency . 105

11.6.3 Instruction accesses . 107

11.6.4 Data accesses . 108

11.7 Speculative control unit . 109

11.7.1 SCU_BASEi, SCU_LIMITi registers . 109

11.7.2 Updates to SCU registers . 109

12 Memory subsystem . 110

12.1 Memory system configurations and terminology 111

12.1.1 L2 cache coherency management . 111

12.2 Memory coherency . 113

12.2.1 Instruction cache coherency . 113

12.2.2 D-side coherency . 114

12.3 Cache information . 115

12.4 I-side memory subsystem . 116

12.4.1 L1 instruction cache . 116

ST240 Contents

8059133 7/507

12.4.2 Instruction fetch . 116

12.4.3 Instruction cache control operations . 116

12.4.4 I-side STBus error . 118

12.5 D-side memory subsystem . 118

12.5.1 L1 data cache partitioning . 118

12.5.2 Loads, stores and prefetches . 119

12.5.3 Memory ordering . 122

12.5.4 Data cache control operations . 122

12.5.5 Write buffer . 125

12.5.6 D-side tightly coupled memory . 125

12.5.7 D-side STBus errors . 126

12.5.8 Level 2 cache support . 126

12.5.9 Summary of D-side memory subsystem behavior 127

12.6 Reset state . 131

12.7 System bus requirements . 131

13 Multi-processor and multi-threading support 132

13.1 Atomic sequence . 132

13.1.1 Atomic sequence control register . 132

13.1.2 Atomic sequence . 132

13.1.3 Lock clearing mechanisms . 133

13.1.4 Lock clearing on trap and rfi . 134

13.1.5 Shadow lock . 134

13.1.6 Atomic sequence code . 134

13.1.7 Atomic sequence semantics . 137

13.2 Write memory barrier . 138

13.3 Data/instruction barrier . 138

13.4 Operation summary . 138

13.5 Address translation . 139

13.6 Control registers for MP support . 139

14 Streaming data interfaces . 140

14.1 SDI control registers . 140

14.2 Exceptions, interrupts, reset and restart . 142

14.2.1 Interrupts . 142

Contents ST240

8/507 8059133

14.2.2 Time outs . 142

14.2.3 Restart (soft reset) . 143

15 Control registers . 145

15.1 Exceptions . 145

15.2 Control register addresses . 145

15.3 Machine state register . 151

15.4 MP core ID register . 151

15.5 Version register . 152

16 Low power modes . 153

16.1 Low power operation with a DTCM . 153

16.2 Idle mode . 153

16.2.1 Behavior in idle mode . 153

16.2.2 Latency of entry and exit of idle mode . 154

16.3 Retention mode . 154

17 Timers . 155

17.1 Timer registers . 155

17.1.1 TIMECONSTi register . 155

17.1.2 TIMECOUNTi register . 155

17.1.3 TIMECONTROLi register . 156

17.1.4 TIMEDIVIDE register . 156

18 Peripheral addresses . 157

18.1 Peripheral space address map . 157

18.2 Peripheral access . 158

18.3 Peripheral addresses . 159

18.3.1 Interrupt controller and timer registers . 160

18.3.2 DSU registers . 161

19 Interrupt controller . 163

19.1 Operation . 163

19.2 Interrupt registers . 164

19.2.1 INTPENDING registers . 164

19.2.2 INTMASK registers . 164

ST240 Contents

8059133 9/507

19.2.3 INTMASKSET and INTMASKCLR registers . 165

19.2.4 INTTEST registers . 166

19.2.5 INTTESTSET and INTTESTCLR registers . 167

20 Debugging support . 169

20.1 Debug resource access . 169

20.1.1 DSR_PERMISSIONS register . 170

20.2 Core debugging support . 171

20.2.1 Breakpoint support . 171

20.2.2 Types of breakpoint . 172

20.2.3 Software breakpoints . 172

20.2.4 Hardware breakpoints . 172

20.2.5 Enabling and updating breakpoints . 175

20.2.6 Branch trace buffer . 175

20.3 Debug support unit . 177

20.3.1 Architecture . 177

20.3.2 Shared register bank . 178

20.3.3 Debug support registers . 178

20.3.4 Debug support virtual PC register . 180

20.3.5 Soft reset . 180

20.4 Debug ROM . 181

20.4.1 Default debug handler . 181

20.5 User defined debug handler . 185

20.5.1 Other routines . 185

20.6 Debug RAM . 187

20.7 JTAG based host debug interface . 187

20.7.1 Protocol and flow control . 188

20.7.2 Command format . 189

20.7.3 Handling events . 190

20.8 On-chip host debug interface . 191

20.9 Non software controllable behavior . 191

21 Performance monitoring . 192

21.1 Events . 192

21.2 Control register (PM_CR) . 195

21.3 Event counters (PM_CNTi) . 195

Contents ST240

10/507 8059133

21.4 64bit clock counter (PM_PCLK, PM_PCLKH) . 196

21.5 Recording events . 197

21.6 Interrupts generated by performance monitors 197

21.7 PM counters in idle mode . 198

21.8 STBus latency measurement . 198

22 Execution model . 199

22.1 Bundle fetch, decode, and execute . 199

22.2 Functions . 201

22.2.1 Bundle decode . 201

22.2.2 Operation execution . 201

22.2.3 Exceptional cases . 201

23 Specification notation . 202

23.1 Variables and types . 202

23.1.1 Integer . 202

23.1.2 Boolean . 203

23.1.3 Bit fields . 203

23.1.4 Arrays . 203

23.2 Expressions . 203

23.2.1 Integer arithmetic operators . 204

23.2.2 Integer shift operators . 205

23.2.3 Integer bitwise operators . 205

23.2.4 Relational operators . 206

23.2.5 Boolean operators . 206

23.2.6 Single-value functions . 207

23.3 Statements . 209

23.3.1 Undefined behavior . 210

23.3.2 Assignment . 210

23.3.3 Conditional . 211

23.3.4 Repetition . 211

23.3.5 Exceptions . 212

23.3.6 Procedures . 212

23.4 Architectural state . 213

23.5 Memory and control registers . 214

23.5.1 Support functions . 214

ST240 Contents

8059133 11/507

23.5.2 Memory model . 215

23.5.3 Control register model . 218

23.5.4 Cache model . 219

23.5.5 Architectural state model . 221

23.5.6 Other functions . 221

24 Instruction set . 222

24.1 Bundle encoding . 222

24.1.1 Extended immediates . 222

24.1.2 Encoding restrictions . 223

24.2 Operation specifications . 223

24.3 Example operations . 224

24.4 Macros . 226

24.5 Operations . 228

Appendix A Instruction encoding . 484

A.1 Reserved bits . 484

A.2 Fields. 484

A.3 Opcodes . 487

Appendix B STBus endian behavior . 494

B.1 Endianness of bytes and half-words within a word based memory. 494

B.2 Endianness of 64-bit accesses . 495

B.3 System requirements . 495

Glossary. 496

List of instructions . 499

Revision history . 502

Index. 503

Preface ST240

12/507 8059133

Preface

ST200 document identification and control
Each book in the ST200 documentation suite carries a unique ADCS identifier of the form:

ADCS nnnnnnnx

where nnnnnnn is the document number, and x is the revision.

Whenever making comments on an ST200 document, the complete identification
ADCS nnnnnnnx should be quoted.

ST200 documentation suite
The ST200 documentation suite comprises the volumes listed below.

ST240 Core and Instruction Set Architecture

This manual describes the architecture and the instruction set of the ST240 core as used by
STMicroelectronics.

ST200 Micro Toolset User Manual

ADCS 8063762. This manual describes the ST200 Micro Toolset and provides an
introduction to OS21. It covers the various cross tools and libraries that are provided in the
toolset, the target platform libraries, how to boot OS21 applications from ROM. Information
is also given on how to build the open source packages that provide the compiler tools, base
run-time libraries and debug tools and how to set up an ST Micro Connect.

ST200 Micro Toolset Compiler Manual

(ADCS 7508723) This manual provides a detailed guide to using the ANSI C and C++
compiler drivers for compiling and linking source code to produce an executable binary. The
compiler drivers are introduced in terms of how they fit into the complete ST200 toolchain.
The manual then concentrates on the facilities provided by the compiler drivers to produce
efficient code. It covers: command line options, predefined macros, supported pragmas,
compiler optimization techniques, GNU C and C++ language extensions and asm
construct, the assembly language and intrinsic functions.

ST200 Run-time Architecture Manual

ADCS 7521848. This manual describes the common software conventions for the ST200
processor run-time architecture.

OS21 User Manual

ADCS 7358306. This manual describes the royalty free, light weight, OS21 multitasking
operating system.

ST240 Preface

8059133 13/507

OS21 for ST200 User Manual

ADCS 7410372. This manual describes the use of OS21 on the ST200 platforms. It
describes how specific ST200 facilities are exploited by the OS21 API. It also describes the
OS21 board support packages for ST200 platforms.

ST200 ELF Specification

ADCS 7932400. This document describes the use of the ELF file format for the ST200
processor. It provides information needed to create and interpret ELF files and is specific to
the ST200 processor.

Conventions used in this guide

General notation

The notation in this document uses the following conventions:

● sample code, keyboard input and file names

● variables and code variables

● code comments

● screens, windows and dialog boxes

● instructions

Hardware notation

The following conventions are used for hardware notation:

● REGISTER NAMES and FIELD NAMES

● PIN NAMES and SIGNAL NAMES

Software notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF), briefly:

● Terminal strings of the language, that is, strings not built up by rules of the language,
are printed in teletype font. For example, void

● Nonterminal strings of the language, that is, strings built up by rules of the language,
are printed in italic teletype font. For example, name

● If a nonterminal string of the language starts with a nonitalicized part, it is equivalent to
the same nonterminal string without that nonitalicized part. For example, vspace-
name

● Each phrase definition is built up using a double colon and an equals sign to separate
the two sides (‘::=’)

● Alternatives are separated by vertical bars (‘|’)

● Optional sequences are enclosed in square brackets (‘[’ and ‘]’)

● Items which may be repeated appear in braces (‘{’ and ‘}’)

Preface ST240

14/507 8059133

Acknowledgements
The ST240 core is based on technology jointly developed by Hewlett-Packard Laboratories
and STMicroelectronics.

Microsoft®, Visual Studio® and Windows® are registered trademarks of Microsoft
Corporation in the United States and/or other countries.

ST240 Overview

8059133 15/507

1 Overview

This chapter provides an overview of the ST240 prcessor and to this reference manual.

1.1 VLIW overview
VLIW (very long instruction word) processors use a technique whereby more than one
operation is performed in parallel within the same clock cycle. This is done in order to take
maximum advantage of all the processor’s available resources. The hardware
implementation of a VLIW processor is significantly simpler than a corresponding multiple
issue superscalar CPU because of the simplicity of the grouping and scheduling hardware;
the complexity is passed to the instruction scheduling software (compiler and assembler)
which is responsible for scheduling the parallel operations for maximum efficiency.

In the ST240, simple, RISC-like operations (known as “syllables”) are grouped together into
bundles so that a single bundle fills an instruction word. The operations in a bundle are then
processed simultaneously. In most cases the operations complete simultaneously; however
some results can be bypassed to subsequent operations prior to completion. This is
discussed in Chapter 6: Execution pipeline and latencies on page 33.

1.2 ST240 overview
The ST240 includes the ST240 core and an associated peripherals block. Figure 1 shows
the arrangement of these components in a block diagram.

Figure 1. Block diagram of the ST240

STBus

64 - bit

S
TB

us arbiter

D - Side memory
subsystem

I - Side memory
subsystem

4 - way
Instruction

cache

4 - way

Data

cache

Instruction

buffering

ITLB DTLB

Write

buffer

Prefetch

cache

UTLB

Mul Mul

ALU ALU ALU ALU

Register file

(64 registers, 9 read
and 5 write ports)

Execution units

4 x SDI

PC and

branch unit
Branch register file

Load /

Store
unit

Control

registers
Core

Peripherals
STBus

32 - bit

Timers
Interrupt

controller

Debug

support unit

SCU

64 interrupts

Data

TCM

(optional)

FP
add

FP
add

JTAG

Div

Overview ST240

16/507 8059133

1.3 Document overview
This manual describes the architecture and instruction set of the ST240. References are
made to one specific implementation of the ST240. This section gives an outline of the
document.

The ST240 is made up of the functional units described in Chapter 2: Execution units on
page 18; these operate on data stored in the register files described in Chapter 4:
Architectural state on page 27. The functional units are pipelined and behave as described
in Chapter 6: Execution pipeline and latencies on page 33.

The ST240 provides standard user and supervisor modes.These modes are described in
Chapter 3: Operating modes on page 23.

The ST240 has a defined set of rules that govern how individual syllables can be bundled
together into a single instruction word. These rules are decribed in Chapter 5: Bundling
rules on page 31.

ST240 arithmetic operations are described in Chapter 7: Arithmetic operations on page 36,
logical operations in Chapter 8: Logical operations on page 59 and single instruction
multiple data (SIMD) instructions in Chapter 9: SIMD operations on page 64.

The handling of exceptions and interrupts is discussed in Chapter 10: Traps (exceptions
and interrupts) on page 82.

The ST240 accesses memory through the memory subsystem described in Chapter 12:
Memory subsystem on page 110. The memory subsystem provides protection and address
translation by means of a Translation Lookaside Buffer; this is discussed in Chapter 11:
Memory translation and protection on page 93.

ST240 support for multi-processing (MP) and multi-threading (MT) is described in
Chapter 13: Multi-processor and multi-threading support on page 132.

The ST240 has four SDI ports for rapid communication with other devices and to avoid
cache pollution when processing large amounts of data; these are described in Chapter 14:
Streaming data interfaces on page 140.

Using the memory mapped control registers to control the state of the ST240 is described in
the relevant chapters. The addresses of the control registers and PSW are listed in
Chapter 15: Control registers on page 145.

The ST240 also provides a performance monitoring system to help with software
optimization and debugging; this is described in Chapter 21: Performance monitoring on
page 192.

Details of the following peripherals are also provided:

● timers in Chapter 17: Timers on page 155

● interrupt controller in Chapter 19: Interrupt controller on page 163

● the Debug Support Unit (DSU) in Chapter 20: Debugging support on page 169

The peripheral register addresses are listed in Chapter 18: Peripheral addresses on
page 157.

The execution model is described in Chapter 22: Execution model on page 199. The
execution of bundles is discussed in Section 22.1: Bundle fetch, decode, and execute on
page 199, including the behavior of the machine when exceptions or interrupts are
encountered.

ST240 Overview

8059133 17/507

Chapter 24: Instruction set on page 222 provides details of every operation, including
instruction set encoding, syntax and semantics. The encoding of bundles is defined in
Section 24.1: Bundle encoding on page 222.

The behavior of operations is specified using the notational language defined at the
beginning of Chapter 23: Specification notation on page 202 and continuing to Section 23.3:
Statements on page 209. The descriptions identify where architectural state is updated and
the latency of the operations.

A simple model of memory and control registers is described in Section 23.5.2: Memory
model on page 215 and Section 23.5.3: Control register model on page 218 describes the
techniques required when specifying load and store operations.

A Glossary of terms is provided in: Glossary on page 496.

Execution units ST240

18/507 8059133

2 Execution units

The ST240 includes a number of execution units working on two register files. The
architecture permits one or more execution units with variable latencies. This chapter refers
to the specific implementation of the architecture as shown in Figure 1: Block diagram of the
ST240 on page 15, although other implementations may exist. In this implementation, there
are:

● four arithmetic and logic units (ALU) (all of which can perform single instruction,
multiple data (SIMD) operations)

● two multiply units (which can also perform SIMD, floating point and multiply-add
operations)

● two floating point units which perform floating point addition, subtraction and
conversions

● one divide and remainder unit

● one load/store unit

● one branch unit

A bundle may therefore contain up to four ALU operations, up to two multiply operations, up
to two floating point operations, only one (or no) load/store operation and only one (or no)
branch operation. The combinations of operations which may be executed in a single
bundle are defined in Chapter 5: Bundling rules on page 31.

The two register files; the branch registers and the general purpose registers are described
in Chapter 4: Architectural state on page 27. All other units are described in this chapter.

2.1 Arithmetic and logic units
The current implementation of the ST240 has four identical arithmetic and logic units (ALU).
These also perform SIMD operations. Most of the supported operations produce results
after one cycle; this means that an operation in the next bundle can immediately use the
result as an operand.

Each operation accepts between one and three operands in the form of zero, one or two 32-
bit values and zero, one or two 4-bit conditional values. The ALU then executes the
appropriate operation and produces one or two results, depending upon the operation being
carried out. The results can either be zero or one 32-bit value and zero or one 4-bit
conditional value.

The integer operations supported are described in Chapter 7: Arithmetic operations on
page 36, Chapter 8: Logical operations on page 59 and Chapter 9: SIMD operations on
page 64.

2.2 Floating point units
The ST240 has two identical floating point units. Each unit is pipelined with a pipeline depth
of three cycles.

Each floating point operation accepts one or two operands in the form of 32-bit values and
produces one 32-bit result.

ST240 Execution units

8059133 19/507

For full details of the floating point operations see Section 7.8: Floating point operations on
page 51.

2.3 Multiplication units
The ST240 has two identical multiplication units. Each unit is pipelined with a depth of three
cycles and executes an operation every cycle. The multiplication units support integer,
SIMD and floating point arithmetic.

Each multiplication unit accepts two 32-bit operands and produces a single 32-bit result.
The multiplication operations supported are described in Section 7.2: Multiplication
operations on page 40.

2.4 Divide and remainder unit
The ST240 has a single divide and remainder unit. It is pipelined with a depth of three cycles
and executes an operation every cycle.

The divide and remainder unit accepts two 32-bit operands and produces a single 32-bit
result.

Note: The divide and remainder unit will stall the pipeline if the result is not available within three
cycles.

The supported divide and remainder operations are described in Section 7.10: Divide and
remainder operations on page 57. The causes of the differing number of cycles taken for
specific divide and remainder cases is explained there.

2.5 Load/store unit
The ST240 has a single load/store unit (LSU). The load/store unit is pipelined with a depth
of three cycles, and executes an operation every cycle.

The load/store unit can take up to one 4-bit operand, two 32-bit operands and one 64-bit
operand and may produce no result, a 32-bit or 64-bit result depending on the operation.
The load/store operations supported are described in the Section 12.5: D-side memory
subsystem on page 118.

Memory access protection and translation is implemented by the translation lookaside
buffer (TLB), which is part of the memory subsystem. The TLB also controls the cache
behavior of data accesses, see Chapter 11: Memory translation and protection on page 93.

Uncached accesses or accesses that miss the data cache both cause the load/store unit to
stall the pipeline in order to ensure correct operation.

2.5.1 Memory access

The ST240 uses a single 32-bit address space to address the external memory system.
Peripherals and control registers are mapped within this address space.

All cacheable memory transactions are made via the data cache. The data cache
determines if an external memory access (using the STBus) is required to complete the
request.

Execution units ST240

20/507 8059133

Note: The data cache does not allocate a line when servicing a write miss.

Uncached accesses are performed directly on the memory system via the STBus as
described in Uncached load and stores on page 120.

2.5.2 Addressing modes

Every load/store operation supports one of the following addressing modes:

● the multi-processor/multi-threading support operations (ldwl, stwl) support register
addressing only

● all other load/store operations support immediate plus register

2.5.3 Alignment

All load/store operations operate on data stored on the natural alignment of the data type;
that is:

● long words on long word boundaries

● words on word boundaries

● half-word on half word boundaries

A long word load or store uses a pair of contiguous registers to contain the data. More
details are given in Data widths on page 119.

2.5.4 Control registers

A portion of the address space is dedicated to control registers; these are described in
Chapter 15: Control registers on page 145. Load and store operations that access the
control register space are not translated by the TLB and do not access the data cache.

2.5.5 Cache coherency control

The ST240 provides operations which enable software control of cache coherency. These
operations include:

● invalidate operations that remove data from a cache without updating other parts of the
memory system

● flush operations that copy data from a cache into other parts of the memory system

● purge operations that copy data from a cache into other parts of the memory system
and remove the data from the cache

The ST240’s operations allow:

● invalidating individual lines of the data cache

● purging individual lines of the data or instruction cache(a)

● purging entire sets from the data or instruction cache

The ST240 also allows some operations to be applied only to the first level of cache. This
permits the first level instruction and data caches to be made coherent efficiently.

a. When applied only to the instruction cache there is no distinction between a purge and an invalidation as the
data is always clean. The distinction is made when a unified L2 cache is in use as the instruction cache purge
operations will purge, not invalidate, entries from the L2 cache.

ST240 Execution units

8059133 21/507

2.5.6 Conditional load, stores and prefetches

The ST240 uses conditional loads, stores and prefetches to support if-conversion and
pipelining of loops. These operations execute only if a test condition proves true. In the case
of the condition being false, they execute as nop operations with no side-effects.

2.5.7 Data-side tightly coupled memory

The ST240 may include a data-side tightly coupled memory (DTCM), which is a memory
mapped section of RAM contained within the LSU. The LSU accesses the DTCM in parallel
with the data cache, and the DTCM may also be accessed from the STBus target port.

Please refer to your datasheet to see if a DTCM is included. Also see Section 12.5.6: D-side
tightly coupled memory on page 125.

2.5.8 Level 2 cache

The ST240 supports a unified level 2 cache. This cache behaves as an extension of the
level 1 data and instruction caches. Details are given in Section 12.5.8: Level 2 cache
support on page 126.

2.5.9 Multi-processor and hardware multi-threading support

The ST240 instruction set includes operations that enable the ST240 to be part of a multi-
processor cache-coherent system, and to support hardware multi-threading. These
operations are described in Chapter 13: Multi-processor and multi-threading support on
page 132.

Execution units ST240

22/507 8059133

2.6 Branch unit
The ST240 has one branch unit. This unit supports branches, gotos, calls and returns as
listed in Table 1. These operations reference any branch register: see Section 4.3: Branch
register file on page 28, but only one general purpose register: see Section 4.2.1: Link
register on page 27.

The relevant operations are listed in Table 1. The operands that appear in this table are as
follows:

● BBCOND is the branch register used for the condition code for a conditional branch

● BTARG is the PC relative immediate offset of the branch, goto, call or return

● $r63 is the link register

All successfully-taken branches, gotos, calls and returns incur a penalty of one cycle of stall.
The rfi operation causes five cycles of stall as the pipeline is emptied.

Table 1. Branch unit operations

operation description

br BBCOND, BTARG PC relative conditional branch: take branch if condition is TRUE.

brf BBCOND, BTARG PC relative conditional branch: take branch if condition is FALSE.

goto BTARG PC relative unconditional goto.

goto $r63 Go to link register.

call $r63 Call link register, stores return address in link register.

call $r63 = BTARG PC relative call, stores return address in link register.

return $r63
Return to link register. Equivalent to goto $r63, but used to allow
call/return prediction in future implementations.

rfi
Return from interrupt. This operation is not simply a branch; it updates
the architectural state and empties the pipeline.

ST240 Operating modes

8059133 23/507

3 Operating modes

The ST240 provides standard user and supervisor modes. These modes enable a user
program to run securely under the control of a supervisor program. The ST240 maintains
security by:

● using the TLB to control the user program's access to specific memory locations

● limiting the operations that the user process can execute

● restricting the user program’s access to some ST240 resources

The user program cannot undermine the security of memory accesses because a user
program cannot re-program the TLB. Neither can the user program change itself into a
supervisor program that can re-program the TLB.

The ST240 also provides resources to enable a supervisor program to debug a user
program.

In addition to these standard modes, the ST240 provides a debug mode. Debug mode
permits an external debugger to control the operation of the core and to debug programs
running on the core. The ST240 provides some specific debugging resources; these are
only accessible in debug mode. In debug mode, the debugging system is protected from
code running in supervisor or user mode.

The ST240 can be in two different states when in debug mode; user debug and supervisor
debug. The difference between these two states is significant when accessing memory. In
summary, the machine has three operating modes (user mode, supervisor mode, debug
mode) and four operating states (user state, supervisor state, user debug state, supervisor
debug state).

Note: The “state” terminology is used only when it is necessary to distinguish between the two
different states corresponding to debug mode.

Refer to Chapter 10: Traps (exceptions and interrupts) on page 82, and Chapter 20:
Debugging support on page 169 for more information.

3.1 Representation of each mode
The current operating mode is represented by two bits in the PROGRAM STATUS WORD
(PSW) (see Section 4.4: Program status word on page 28), DEBUG_MODE and
USER_MODE, as shown in Table 2.

Table 2. Representation of the operating modes

DEBUG_MODE USER_MODE Operating state Operating mode

0 0 Supervisor Supervisor

0 1 User User

1 0 Debug (Supervisor) Debug

1 1 Debug (User)

Operating modes ST240

24/507 8059133

3.2 Access to resources
The following sections describe resources that have restricted access in the various
operating modes.

3.2.1 Control registers

All control registers can be accessed (that is, read from or written to) in debug mode.
Control registers that are specifically related to a host that is debugging the ST240 by
means of the debug support unit (DSU) are only accessable in debug mode. See
Section 20.3: Debug support unit on page 177 for more details. All other control registers
can be accessed in supervisor mode.

Control registers relating to OS functions (such as TLB registers and trap handler registers)
cannot be accessed in user mode. Some control registers (such as the streaming data
interface (SDI) registers) have programmable permissions. To allow access in user mode,
appropriate permissions must be programmed in supervisor or debug mode.

For the complete list of control registers and access permissions see Chapter 15: Control
registers on page 145.

3.2.2 PSW updating operations

The operations rfi and pswmask update the PSW. These operations can be executed only
in supervisor or debug mode. An attempt to execute them in user mode causes an illegal
instruction trap to be raised. See Section 20.2.3: Software breakpoints.

3.2.3 TLB pages

TLB entries can be programmed in order to restrict access to the memory that they map in
user mode, supervisor mode, or both (see Table 43: TLB_INDEX bit fields on page 98). The
USER_MODE PSW bit determines access to the restricted pages. As described in
Section 3.3: Transitioning between modes and states on page 25, entering debug mode
clears the USER_MODE PSW bit and therefore forbids access to pages without supervisor
mode permission.

It is necessary to set the USER_MODE PSW bit to access pages with user mode only
permissions when the ST240 is in debug (supervisor) mode this causes a transition from the
debug (supervisor) state to the debug (user) state, as shown in Figure 2.

3.2.4 Peripherals

The TLB also controls access to peripherals. The DSR_PERMISSIONS control register
provides a second level of protection. The access is programmable and can be one of the
following:

● access in any mode

● access in supervisor or debug mode only

● access in debug mode only

Other STBus initiators are permitted access to the DSRs. There are further details in
Section 20.3.2: Shared register bank on page 178.

ST240 Operating modes

8059133 25/507

3.3 Transitioning between modes and states
Figure 2 and Figure 3 show the possible transitions between the user, supervisor, debug
(user) and debug (supervisor) states.

Figure 2. State transitions due to PSW updating operations

Figure 3. State transitions due to traps and debug traps

3.3.1 Supervisor mode to user mode

On reset, the ST240 starts in supervisor mode. After boot, an OS such as Linux switches
into user mode before starting to run the first user application. This transition is made by
executing a PSW updating operation.

User Supervisor
(reset state)

Debug
(user)

Debug
(supervisor)

User Supervisor

Debug
(user)

Debug
(supervisor)

trap

trap

debug trap

debug trap

trap

trap

Operating modes ST240

26/507 8059133

3.3.2 User to supervisor mode

The transition from user to supervisor mode is made by means of a trap. The transition may
occur for various reasons. Some of these reasons are listed here.

● Interrupt - the user application is being interrupted.

● TLB fault - the user code has failed TLB checks and requires assistance from the OS.

● Breakpoint - the user code is being debugged.

● Syscall - the user code required a function that needs OS support to complete (for
example, printf()).

● Other trap - any other trap is likely to be fatal for user code. An example of this is an
STBus error.

3.3.3 Debug mode entry and exit

The ST240 can enter debug mode only by means of a debug trap. There are several
sources of debug trap listed in Chapter 20: Debugging support on page 169. The ST240
exits from debug mode by means of an operation to update the PSW.

Note that a normal trap in debug mode causes the ST240 to remain in debug mode. Details
are given in Trap handler with the default debug handler on page 184.

No debug traps are accepted when the ST240 is already in debug mode. If a debug interrupt
is requested, it remains pending until the ST240 exits debug mode and causes the ST240 to
re-enter debug mode immediately. Debug exceptions are not raised in debug mode. See
Section 20.2: Core debugging support on page 171.

Attempts to enter debug mode from supervisor mode with a PSW updating operation fail
silently (the PSW bit is not updated and no exception is raised).

ST240 Architectural state

8059133 27/507

4 Architectural state

This chapter describes the architectural state of the ST240 core, which consists of the
following elements:

● program counter

● register file

● branch register file

● program status word

● control registers

4.1 Program counter
The program counter (PC) contains a 32-bit byte address pointing to the beginning of the
current bundle in memory. The two LSBs of the PC are always zero as the PC is always
word aligned.

The PC value is not directly available in a register. It is made visible by three methods.

● By execution of an addpc operation, which adds an immediate value to the current PC.

● By taking a trap which saves the current PC into SAVED_PC.

● A delayed version of the PC is available from the debug support virtual PC register
(DSVPC), see Section 20.3.4: Debug support virtual PC register on page 180.

4.2 Register file
The general purpose register file contains 64 words of 32 bits each. These are named R0 to
R63.

Reading register zero (R0) always returns the value zero. Writing values to R0 has no effect
on the architectural state.

64-bit load/store operations access contiguous pairs of registers. For details see Long word
accesses on page 119.

4.2.1 Link register

Register R63, the architectural link register, is used by the call and return mechanism. R63
is updated by explicit register writes and the call operation. The link register may be used as
a general register although some restrictions apply to accessing it, see Section 6.5: Link
register restrictions on page 34.

Architectural state ST240

28/507 8059133

4.3 Branch register file
The branch register file contains eight 4-bit branch registers, B0 to B7. The functions of
these registers are as follows.

● They can represent boolean conditions for scalar operations that read branch bits: that
is, conditional branches, loads, stores and the addcg operation.

● They can hold 4-bit condition codes for SIMD operations.

The ALU performs a boolean conversion from an arbitrary 4-bit value to 0x0 or 0x1 on a
branch register that is specified as an input operand to any scalar operation.

SIMD operations read and write 4-bit values. 16-bit SIMD comparisons set bit 0 with the
result of the lower comparison and bit 2 with the result of the higher comparison. 8-bit SIMD
comparisons perform four comparisons - one for each bit of the result.

All Scalar operations write 0x1 for true and 0x0 for false.

The ST240 uses the mov operation to move 4-bit values between branch registers and
general purpose registers. When transferring from a general purpose register to a branch
register, the ST240 transfers the lower four bits of the general purpose register only. When
transferring from a branch register to a general purpose register, the core zero-extends the
4-bit value from the branch register to 32- bits.

The macro convib performs a boolean conversion on a general purpose register by writing
the result to a branch register and the macro convbi performs the reverse boolean
conversion on a branch register by writing the result to a general purpose register.

4.4 Program status word
The program status word (PSW) contains control information that affects the operation of
the ST240.

4.4.1 Bit fields

The PSW contains the bit fields listed in Table 3.

Table 3. PSW bit fields

Name Bit(s) Writable Reset Comment

USER_MODE 0a RW 0x0
1: the core is in user mode
0: the core is in supervisor mode

INT_ENABLE 1 RW 0x0

1: internal and external interrupts are
enabled

0: internal and external interrupts are
disabled

TLB_ENABLE 2 RW 0x0
1: address translation is enabled

0: address translation is disabled

Reserved 3 RO 0x0
Reserved (This was TLB_DYNAMIC
on the ST231.)

Reserved 4 RO 0x0
Reserved (This was
SPECLOAD_MALIGN_EN on the
ST231.)

ST240 Architectural state

8059133 29/507

Note: Refer to Chapter 3: Operating modes on page 23 for the combined behavior of the
USER_MODE and DEBUG_MODE bits.

4.4.2 PSW access

The PSW can be read as a control register. See Section 4.5: Control registers on page 29.

The core can atomically update bits in the PSW using the pswmask operation. This
operation returns the unmodified value.

The PSW can also be updated by means of an rfi operation. The core uses this operation to
restore the context when exiting a trap handler. The state updated by rfi is defined in
Section 10.7.3: Restoring execution state on page 90.

4.5 Control registers
Additional architectural state is held in a number of memory mapped control registers, see
Chapter 15: Control registers on page 145. These registers include support for traps and for
memory protection.

The architectural state saved and restored by a trap handler is defined in Section 10.7:
Saving and restoring execution state on page 87.

4.6 Atomic address
The core possesses a lock address register. This register is used to lock a resource in a
hardware multi-threaded or multi-processor system. The register is described in full in
Chapter 13: Multi-processor and multi-threading support on page 132.

DTCM_ONLY 5 RW 0x0

When enabled only the DTCM and
uncached memory are accessible by
load/store operations; accesses to
non DTCM cached memory cause a
DATA_CACHE_DISABLED
exception. If no DTCM is present this
bit is reserved and always reads zero.

Reserved [7:6] RO 0x0 Reserved

DBREAK_ENABLE 8 RW 0x0
1: data breakpoints are enabled

0: data breakpoints are disabled

IBREAK_ENABLE 9 RW 0x0
1: instruction breakpoints are enabled

0: instruction breakpoints are
disabled

Reserved [11:10] RO 0x0 Reserved

DEBUG_MODE 12 RW 0x0
1: the core is in debug mode

0: the core is not in debug mode

Reserved [31:13] RO 0x0 Reserved

Table 3. PSW bit fields (Continued)

Name Bit(s) Writable Reset Comment

Architectural state ST240

30/507 8059133

4.7 Context saving
A full context saving software routine saves the information listed below.

● The contents of control registers. Note, however, the following qualifications.
– The current PSW is not saved as it relates to the handler; the saved PSW is stored in

the SAVED_PSW register.
– The UTLB contents are not memory mapped, and must be accessed using the

TLB_INDEX register, see Section 11.4.3: TLB_INDEX register on page 98.
– If the trap handler is in supervisor mode, control registers only accessible in debug

mode cannot be saved. If the trap handler is in debug mode then all control registers
can be saved.

– Control registers that are read only in all operating modes are not saved.
– The lock bit from the ATOMIC_LOCK register is automatically cleared on a context

switch, and the shadow lock bit indicates whether the interrupted context had the lock
set, see Chapter 13: Multi-processor and multi-threading support on page 132. As the
ATOMIC_LOCK and associated ATOMIC_ADDRESS registers are read only they
are not saved as part of the context.

● The contents of all branch registers.

The branch registers must be transferred to general purpose registers using mov
operations before being stored.

● The contents of all general purpose registers.

ST240 Bundling rules

8059133 31/507

5 Bundling rules

The ST240 has a defined set of rules that govern how individual syllables can be bundled
together into a single instruction word. Many of these rules are required by the
implementation. If the ST240 encounters a bundle which fails to follow the bundling rules, it
raises an ILL_INST exception.

Providing the rules listed below are followed, operations can be freely grouped within a
bundle. The introduction to Chapter 2: Execution units on page 18 provides the maximum
number of each operation type allowed in a bundle for the current implementation. For
example, up to four ALU operations can be included in a single bundle, but there can be no
more than one load/store operation or one branch operation (there may be one of each).

5.1 Architectural bundling rules
These restrictions are independent of the ST240 implementation and will therefore remain
valid for any future implementation of the ST240 core.

● All syllables must be valid operations or immediate extensions.

● A bundle must have no more than one stop bit set; the stop bits of all but one syllable
must be zero.

● Unused opcode fields must be set to zero (this includes the reserved bit 30).

● Immediate extensions must be associated with an operation that is in the same bundle
and has an immediate format that can be extended.

● There can be no more than one immediate extension associated with a single
operation.

● A privileged operation can only be executed in supervisor or debug mode. (Privileged
operations are rfi and pswmask.)

● The sbrk and dbgsbrk operations must have the stop bit set.

● Destination registers in a bundle must be unique, that is, can be referenced no more
than once in a bundle. (The only exception is R0.)

● The operations prginsadd, prginsadd.l1, prginsset, prginsset.l1, syscall and
retention must be the only operation in a bundle.

Bundling rules ST240

32/507 8059133

5.2 Implementation-specific bundling rules
These bundling rules are a consequence of the current ST240 implementation and may
change in later implementations.

● A bundle can have no more than four syllables. (A bundle with four zero stop bits is
therefore illegal, as it implies a bundle with more than four syllables.)

● A br, brf, call, rfi, return or goto operation must appear as the first syllable of a
bundle.

● Multiply operations must appear at odd word addresses.

● addf.n, subf.n, convfi.n and convif.n must appear at even word addresses.

● A single bundle may not contain an addf.n, subf.n, convfi.n or convif.n operation at a
quad word aligned address and an operation requiring the load store unit at an odd
word address.

● Immediate extensions must appear at even word addresses.

● There can only be one operation requiring the load/store unit in each bundle. The
operations concerned here are div, divu, rem, remu, flushadd, flushadd.l1, invadd,
invadd.l1, prgadd, prgadd.l1, prgset, prginsadd, prginsset, sync, syncins,
pswmask, rfi, ldb, ldbu, ldbc, ldbuc, ldh, ldhu, ldhc, ldhuc, ldw, ldwc, ldl, ldlc, stb,
stbc, sth, sthc, stw, stwc, stl, stlc, pft, pftc, ldwl, stwl, waitl, and wmb.

● Operations with a latency of more than one cycle must not have R63 as a destination
register, with the exception of ldw and ldwc.

5.3 Other restrictions
All branch target addresses and trap vectors must point to the first syllable of a bundle. Any
attempt to jump to a syllable that is not the first in a bundle has undefined results.

ST240 Execution pipeline and latencies

8059133 33/507

6 Execution pipeline and latencies

This chapter describes the architecturally visible pipeline and operation latencies of the
ST240.

6.1 ST240 pipeline
The ST240 implementation uses a 6-stage pipeline (including three execution stages) with
the stages listed in Table 4.

The following aspects of the pipeline are architecturally visible for performance only:

● operation latencies

● bypassing

The following aspects of the pipeline are architecturally visible and affect the correctness of
programs:

● stw/stwc to rfi usage restrictions

● branch stalls

● speculative link register usage restrictions

6.2 Operation latencies and bypassing
The execution pipeline is three cycles long and comprises three stages E1, E2 and WB. All
operations begin in E1. Operands are read or bypassed to an operation at the start of E1. All
results are written to the register file at the end of WB.

The execution pipeline allows operations to execute for up to three cycles. Some three-
cycle operations (such as load, divide and remainder operations) may take longer than
three cycles to complete, requiring the pipeline to stall until they have completed. The
results of operations that complete earlier than WB are available for bypassing as operands
to subsequent operations, though strictly speaking the operation is not complete until the
end of the WB stage. The architectural state is updated at WB.

Table 4. ST240 pipeline stages

Stage Abbreviation Description

Fetch F
Syllables are fetched from the instruction cache
and formed into bundles.

Decode D Bundles are decoded and branches are executed.

Read R The register files are read.

Execute 1 E1 The first cycle of operation execution.

Execute 2 E2 The second cycle of operation execution.

Writeback WB The architectural state is updated.

Execution pipeline and latencies ST240

34/507 8059133

The time taken for an operation to produce a result is called the operation latency. Latencies
fall into three categories:

● arithmetic operations that take one to three cycles depending upon the operation, see
Chapter 7: Arithmetic operations on page 36

● logical operations that take one cycle

● load/store operations that take three cycles and may stall the pipeline if more cycles
are required

The latency for every operation is specified in Chapter 24: Instruction set on page 222.

The pipeline is designed to implement efficiently the serial execution of instruction code, see
Chapter 22: Execution model on page 199.

6.3 Interlocks and stw/stwc to rfi usage restrictions

The ST240 provides operation latency interlock checking. This enforces the latency
between all operations by stalling the pipeline, with the following exceptions:

● stw/stwc to SAVED_PSW to rfi

● stw/stwc to SAVED_PC to rfi

● stw/stwc to SAVED_SAVED_PSW to rfi

● stw/stwc to SAVED_SAVED_PC to rfi

In the cases listed above, the software must ensure that the control register has been
updated before executing the rfi. It does this by allowing four cycles between the stw/stwc
and the rfi. This can be achieved by issuing four bundles (or less if any of those bundles
cause interlock or branch stalls). The number of bundles will increase for future
implementations that have a longer pipeline length.

For all other cases, the ST240 automatically stalls the pipeline to uphold the internal latency
constraints. For optimal machine usage, code should be scheduled to minimize pipeline
stalls.

6.4 Branching and branch stalls
The ST240 has no penalty for not-taken branches and stalls for one cycle when a branch is
taken. There may be a further stall caused by the destination bundle of a branch crossing an
instruction cache line boundary. Branching also has the effect of clearing any unexecuted
operations from the instruction fetch logic. See Section 12.4.2: Instruction fetch on page 116
for more details.

6.5 Link register restrictions
The core uses a speculative link register (SLR) for performance optimization. The SLR
holds a copy of possible future updates in R63. The operations that use the SLR are rfi, call
$r63, goto $r63 and return $r63.

The SLR is not a true copy of R63. To compensate for this, all trap handlers must execute
the macro mov $r63 = $r63 before executing any of the SLR dependant operations listed
above.

ST240 Execution pipeline and latencies

8059133 35/507

There is a four cycle latency between a write to R63 and an SLR dependant operation.
Interlock stalls are enforced to guarantee this.

A number of operations in the implementation cannot update R63 for efficiency reasons.
R63 cannot be updated by:

● any 2 cycle operation

● any 3 cycle operation except ldw and ldwc

6.6 Operations that empty the pipeline
As state is stored within the pipeline, some changes require that the pipeline is emptied to
ensure coherency. For example, the ST240 pipeline needs to be emptied to ensure that
UTLB and PSW updates take effect. (For the recommended sequence for UTLB updates,
see Section 11.6.2: TLB coherency on page 105).

The following operations cause the pipeline to be emptied:

● rfi

● pswmask

● syncins

Arithmetic operations ST240

36/507 8059133

7 Arithmetic operations

This chapter provides a description of arithmetic operations on the ST240.

7.1 Overview
The ST240 instruction set contains a large number of arithmetic operations including
floating point, saturating, fractional, SIMD and joint multiply-add operations. In some cases,
these functions overlap; for instance, mulfracadds.ph, which is SIMD, saturating and a joint
multiply-add operation.

All SIMD operations are described in Chapter 9: SIMD operations on page 64.

7.1.1 Rounding

A number of the ST240 operations involve rounding. Six rounding modes are provided:

Figure 4 illustrates the different behaviors of these rounding modes.

Round towards Zero (RZ) The result is the representable value closest to and no
greater in magnitude than the infinitely precise result.
This is equivalent to no rounding for an unsigned number.

Round towards Minus (RM) The result is the representable value closest to and no
greater than the infinitely precise result. This is also
known as round towards negative infinity. This is
equivalent to no rounding for a signed or unsigned
number.

Round to Nearest Even (RNE) The result is the representable value closest to the
infinitely precise result, except when the infinitely precise
result lies exactly between two representable values.
When this occurs the result is the representable value
which has a zero as its least significant bit.

Round to Nearest Positive (RNP) The result is the representable value closest to the
infinitely precise result, except when the infinitely precise
result lies exactly between two representable values.
When this occurs the result is the greater representable
value.

Round towards Positive (RP) The result is the representable value closest to positive
infinity. This is also known as round towards positive
infinity.

Round to Nearest Negative (RNN)The result is the representable value closest to the
infinitely precise result, except when the infinitely precise
result lies exactly between two representable values.
When this occurs the result is the lesser representable
value.

ST240 Arithmetic operations

8059133 37/507

Figure 4. Rounding modes

For many applications RNE is the most useful rounding mode, as there is no directional bias
applied to the result. Some SIMD operations are available with different rounding modes
(shr.ph, shrrnp.ph, shrrne.ph) as this allows efficient usage for different algorithms.

 .

Table 5. Operations and rounding modes

rounding mode
RZ RM RNE RNP RP RNN

operation

addf.n, subf.n, convif.n, convfi.n, mulf.n X

mul64h, mul64hu X

mulfrac X

mulfracrne.ph X

mulfracrm.ph X

shr.ph X

shrrnp.ph X

shrrne.ph X

avgu.pb(1)

1. This operation has a programmable rounding mode

X X

avg4u.pb(1) X X X X

+2

+1

0

-1

+1.5

+1.75

+1.25

-0.5

-0.25

-0.75

+0.5

+0.75

+0.25

RZ RM RNE RNP

+2

+1

0

-1

P
re

ci
se

 re
su

lt

Rounding mode

R
ep

re
se

nt
ab

le
 re

su
lt

RP RNN

Arithmetic operations ST240

38/507 8059133

7.1.2 Operand types

The ST240 instruction set supports the following operand formats:

● 32-bit signed and unsigned integers

● 32-bit signed 1.31 fractional integers

● 32-bit single precision floating point

● 16-bit packed signed and unsigned integers

● 16-bit 1.15 fractional signed integers

● 8-bit packed unsigned integers

Except where noted otherwise.

● All 32-bit integer operations may be applied to 32-bit signed or unsigned integers, or
32-bit signed 1.31 fractional integers.

● All 16-bit integer SIMD operations may be applied to16-bit signed or unsigned integers,
or 16-bit signed 1.15 fractional integers.

SIMD operands

Table 6 shows how the SIMD (packed) data types map to a 32-bit operand.

Fractional operands

The ST240 supports both 16-bit and 32-bit fractional operands. This is a two's complement
representation in which the sign bit has weight -1 and the other bits therefore have positive
fractional weights; hence the range [-1,+1) shown in Table 7.

Fractional data formats are described with two numbers separated by a ‘.’ (full stop). These
specify the number of bits before (including the sign bit) and after the binary point. The 16-
bit fractional numbers which appear in the specification use the 1.15 format and 32-bit
fractional numbers use the 1.31 format.

Table 6. SIMD data types

Four packed 8-bit values

8-bit data bit field 3 8-bit data bit field 2 8-bit data bit field 1 8-bit data bit field 0

31 24 23 16 15 8 7 0

Two packed 16-bit values

16-bit data bit field 1 16-bit data bit field 0

31 16 15 0

Table 7. Fractional representation

Element
width

Element type
Field widths Field locations

Range Precision
Sign Int Frac Sign Int Frac

16-bit
Signed fractional
half word

1 0 15 [15] - [14:0] [-1, +1) ~31x10-6

32-bit
Signed fractional
word

1 0 31 [31] - [30:0] [-1, +1) ~466x10-12

ST240 Arithmetic operations

8059133 39/507

Floating point operands

The floating point operands are in IEEE754 single precision format. Only scalar floating
point is available, no packed types are supported.

7.1.3 SIMD operation naming

A consistent naming convention is used for the SIMD operations so that, with knowledge of
some simple rules, the semantics of most operations can be deduced.

SIMD operation names are all of the form:

<opn>s?(u|us|)?.p(h|b)(|h|l)

That is, the following suffixes are added, in the specified order, to the base name of the
operation, <opn>, being performed.

● An optional s indicates that saturation is performed.

● A u or us before the full stop indicates the operation is unsigned, u indicates the
operation is unsigned, us indicates that the first source operand is unsigned, but the
second and result operands are signed. Only one operation requires this latter form:
muladdus.pb.

● The suffix, .p, indicates that this is a SIMD (packed) operation.

● The .p suffix is always followed either by an h or b to indicate the size of the packed
objects in the operation, 16-bit or 8-bit respectively. For operations where the result
elements differ in size from the source elements the width is chosen to be consistent
with the operation. For example packs.ph, packs two 32-bit values into a register
containing two saturated 16-bit results, while unpacku.pbl unpacks unsigned 8-bit
values into 16-bit ones.

● An optional h or l is appended to indicate that the complete result is 64-bits wide and
must be returned using two separate operations, l for the lower 32-bits, h for the upper
32-bits.

Table 8 provides examples.

Note: Scalar operations do not follow this naming scheme.

Table 8. Examples of SIMD operation naming

Operation Description

add.ph
Packed 16-bit addition. Operands may be signed or unsigned 16-bit integers or
fractional 1.15 format.

subs.ph
Packed 16-bit signed subtraction with saturation. Operands may be signed or
unsigned 16-bit integers or fractional 1.15 format.

cmpgtu.pb Packed 8-bit unsigned greater than.

muladdus.pb Unsigned 8-bit integer multiplied by signed 8-bit integer value and add across.

shuff.pbh Packed 8-bit shuffle returning high result.

Arithmetic operations ST240

40/507 8059133

7.2 Multiplication operations
The ST240 instruction set includes a wide range of multiplication operations. These are
listed in Table 9.

Table 9. Multiplication summary table

Operation Syntax Latency Description

mul32
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
3

32x32-bit signed multiplication, returns
lower 32 bits of the intermediate 64-bit
result. Operands are signed or unsigned
integers.

mul64h
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
3

32x32-bit signed multiplication, returns
upper 32 bits of the intermediate 64-bit
result. Operands are signed integers.

mul64hu
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
3

32x32-bit signed multiplication, returns
upper 32 bits of the intermediate 64-bit
integers.

mulhh RDEST = RSRC1, RSRC2 3
Upper-half-word by upper-half-word signed
multiplication. Operands are 16-bit signed
integers.

mulhhu RDEST = RSRC1, RSRC2 3
Upper-half-word by upper-half-word
unsigned multiplication. Operands are 16-
bit unsigned integers.

mullh RDEST = RSRC1, RSRC2 3
Half-word by upper-half-word signed
multiplication. Operands are 16-bit and 32-
bit signed integers.

mullhu RDEST = RSRC1, RSRC2 3
Half-word by upper-half-word unsigned
multiplication. Operands are 16-bit and 32-
bit unsigned integers.

mulll
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
3

Half-word by half-word signed
multiplication. Operands are 16-bit signed
integers.

mulllu
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
3

Half-word by half-word unsigned
multiplication. Operands are 16-bit
unsigned integers.

mul.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit multiplication. Operands
may be signed or unsigned 16-bit integers.

muladd.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit signed multiplication and
add across with saturation. Operands are
signed 16-bit integers.

mulh RDEST = RSRC1, RSRC2 3
Word by upper-half-word signed
multiplication. Operands are 16-bit and 32-
bit signed integers.

mull RDEST = RSRC1, RSRC2 3
Word by half-word signed multiplication.
Operands are 16-bit and 32-bit signed
integers.

ST240 Arithmetic operations

8059133 41/507

7.3 Addition and subtraction operations
The ST240 instruction set includes a wide range of addition and subtraction operations.
These are listed in Table 10.

mulfrac
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
3

32-bit fractional multiplication with round
nearest positive and saturation. Operands
are fractional 1.31 format.

mulfracrne.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit fractional multiplication with
round nearest even and saturation.
Operands are fractional 1.15 format.

mulfracrm.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit fractional multiplication with
round minus and saturation. Operands are
fractional 1.15 format.

mulfracadds.ph RDEST = RSRC1, RSRC2 3

Packed 16-bit signed fractional
multiplication and add across with
saturation. Operands are fractional 1.15
fractional format.

muladdus.pb RDEST = RSRC1, RSRC2 3
Unsigned 8-bit integer multiplied by signed
8-bit integer value and add across.

mulf.n RDEST = RSRC1, RSRC2 3
IEEE754 format single precision floating
point multiplication.

Table 9. Multiplication summary table (continued)

Operation Syntax Latency Description

Table 10. Addition and subtraction summary table

Operation Syntax Latency Description

Scalar operations

add
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Scalar 32-bit addition. Operands may be
signed or unsigned integers or fractional
1.31 format.

addpc RDEST = RSRC1, ISRC2 1
Scalar 32-bit addition of immediate value
and virtual PC of the current bundle.

sub
RDEST = RSRC2, RSRC1

RDEST = ISRC2, RSRC1
1

Scalar 32-bit subtraction. Operands may
be signed or unsigned integers or
fractional 1.31 format.

sh1add
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Shift the first operand left one place and
perform a 32bit scalar addition with the
second operand. Operands may be
signed or unsigned integers or fractional
1.31 format.

sh2add
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Shift the first operand left two places and
perform a 32bit scalar addition with the
second operand. Operands may be
signed or unsigned integers or fractional
1.31 format.

Arithmetic operations ST240

42/507 8059133

sh3add
RDEST = RSRC1, RSRC

RDEST = RSRC1, ISRC2
1

Shift the first operand left three places
and perform a 32bit scalar addition with
the second operand. Operands may be
signed or unsigned integers or fractional
1.31 format.

addcg
RDEST,BDEST = RSRC1,
RSRC2,BSCOND

1

32-bit scalar addition with carry input
and generate a carry output. Operands
may be signed or unsigned integers or
fractional 1.31 format.

Saturating scalar operations

adds RDEST = RSRC1, RSRC2 1
Scalar 32-bit addition with saturation.
Operands may be signed or unsigned
integers or fractional 1.31 values.

addso RDEST = RSRC1, RSRC2 1
Indicates whether an adds operation
with the given input operands causes a
saturation.

subs RDEST = RSRC2, RSRC1 1
Scalar 32bit subtraction with saturation.
Operands may be signed integers or
fractional 1.31 format.

subso RDEST = RSRC2, RSRC1 1
Indicates whether a subs operation with
the given input operands causes a
saturation

sh1adds RDEST = RSRC2, RSRC1 1

Shift the first operand left one place and
perform a 32bit scalar addition with the
second operand. Operands may be
signed or unsigned integers or fractional
1.31 format.

sh1addso RDEST = RSRC2, RSRC1 1
Indicates whether a sh1adds operation
with the given input operands causes a
saturation

sh1subs RDEST = RSRC2, RSRC1 1

Shift Rsrc1 left one place, saturate to 32
bits and then subtract from Rsrc2 and
saturate again. Operands may be signed
integers or fractional 1.31 format.

sh1subso RDEST = RSRC2, RSRC1 1
Indicates whether a sh1subs operation
with the given input operands causes a
saturation

SIMD operations

add.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit addition. Operands may
be signed or unsigned 16-bit integers or
fractional 1.15 format.

adds.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed addition with
saturation. Operands may be 16-bit
scalar or fractional 1.15 format.

Table 10. Addition and subtraction summary table (continued)

Operation Syntax Latency Description

ST240 Arithmetic operations

8059133 43/507

7.4 Shift operations
The ST240 instruction set includes a wide range of arithmetic shift operations. These are
listed in Table 11. The logical shifts are covered in Chapter 8: Logical operations on
page 59.

sub.ph RDEST = RSRC2, RSRC1 1
Packed 16-bit subtraction. Operands
may be signed or unsigned 16-bit
integers or fractional 1.15 format.

subs.ph RDEST = RSRC1, RSRC2 1

Packed 16-bit signed subtraction with
saturation. Operands may be signed or
unsigned 16-bit integers or fractional
1.15 format.

Floating point operations

addf.n RDEST = RSRC1, RSRC2 3
IEEE754 format single precision floating
point add

subf.n RDEST = RSRC1, RSRC2 3
IEEE754 format single precision floating
point subtract

Table 10. Addition and subtraction summary table (continued)

Operation Syntax Latency Description

Table 11. Shift summary table

Operation Syntax Latency Description

Scalar operations

shl
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Scalar 32-bit arithmetic or logical left shift.
Operands may be signed or unsigned integers
or fractional 1.31 format.

shr
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Scalar 32-bit arithmetic right shift. Operands
may be signed integers or fractional 1.31
format.

shru
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Scalar 32-bit logical right shift. Operands are
unsigned integers.

shrrnp RDEST = RSRC1, ISRC2 2

Scalar 32-bit arithmetic right shift with round
nearest positive rounding. Operands may be
signed or unsigned integers or fractional 1.31
format.

Saturating scalar operations

shls RDEST = RSRC1, RSRC2 2
Scalar 32-bit left shift with saturation.
Operands may be signed integers or fractional
1.31 format.

shlso RDEST = RSRC1, RSRC2 2
Indicates whether a shls operation with the
same input operands would have saturated

Arithmetic operations ST240

44/507 8059133

The rounding modes used for the shifts with rounding are described in Table 7.1.1:
Rounding on page 36.

7.5 Comparison operations
The ST240 instruction set includes a full set of scalar comparisons. They are not all listed in
this section as their behavior can be determined from their names. Refer to Chapter 24:
Instruction set on page 222 for a complete list.

Table 12 lists the SIMD and floating point comparisons. Note that two macros are included
for floating point comparisons. Please refer to Section 24.4: Macros on page 226.

SIMD operations

shl.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Packed 16-bit left shift. Operands may be
signed or unsigned 16-bit integers or fractional
1.15 format.

shr.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Packed 16-bit arithmetic right shift. Operands
may be signed 16-bit integer or fractional 1.15
format.

shrrne.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift right with round
nearest even rounding. Operands may be
signed 16-bit integer or fractional 1.15 format.

shrrnp.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift right with round
nearest positive rounding. Operands may be
signed 16-bit integer or fractional 1.15 format.

shls.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift left with saturation.
Operands may be signed or unsigned 16-bit
integers or fractional 1.15 format.

Table 11. Shift summary table (continued)

Operation Syntax Latency Description

Table 12. SIMD and floating point comparison summary table

Operation Syntax Latency Description

SIMD operations

cmpeq.pb
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1 Packed 8-bit test for equality.

cmpgtu.pb
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1 Packed 8-bit unsigned greater than.

cmpeq.ph
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1 Packed 16-bit test for equality.

cmpgt.ph
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1 Packed 16-bit signed greater than.

max.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed maximum.
Operands may be signed 16-bit integers
or fractional 1.15 format.

ST240 Arithmetic operations

8059133 45/507

Floating point comparisons are described further in Section 7.8.3: Floating point
comparison operations on page 53.

7.6 Saturating arithmetic operation usage
The ST240 provides a number of saturating arithmetic operations. These are to enhance the
performance of telecommunications algorithms such as EFR and AMR. The operations are
efficiently used to implement functions defined by ETSI. Refer to ETSI documentation for a
description of these functions.

Saturating arithmetic operations may be required to indicate arithmetic overflow, as required
by the application. Therefore each scalar saturating arithmetic operation has two versions:

● Saturating: return numerical result from saturating operation into a register

● Overflowing: return overflow flag from saturating operation into a register; return a
boolean value represented by the integer value 0 or 1

7.6.1 Saturating operation behavior

The saturating operations perform a monadic or dyadic operation on the input operands,
and limit the result to a fixed output range. The overflowing operations report whether an
overflow condition occurred. To obtain both results, issue both forms of the operation.

The following functions are added to the operation notation specification, where n > 0:

● Saturaten()

● Overflown()

See Chapter 23: Specification notation on page 202 for the definitions of these functions.

See Table 14 for the value of n for each operation.

min.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed minimum.
Operands may be signed 16-bit integers
or fractional 1.15 format.

Floating point operations

cmpeqf.n
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1

IEEE754 format single precision floating
point equality comparison.

cmpgtf.n
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1

IEEE754 format single precision floating
point greater than comparison.

Floating point macros

cmpltf.n
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1

IEEE754 format single precision less
than comparison.

cmplef.n
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1

IEEE754 format single precision less
than or equal to comparison.

Table 12. SIMD and floating point comparison summary table (continued)

Operation Syntax Latency Description

Arithmetic operations ST240

46/507 8059133

All operations have the following properties:

● no laning restrictions

● take one or two register operands and write to a register

● cannot take immediate operands

A summary of saturating operations is provided in Table 13.

Table 13. Saturating operations summary

Operation Syntax Latency Description

Scalar saturating operations

adds RDEST = RSRC1, RSRC2 1
Scalar 32-bit addition with saturation.
Operands may be signed or unsigned
integers or fractional 1.31 values.

subs RDEST = RSRC2, RSRC1 1
Scalar 32-bit subtraction with saturation.
Operands may be signed integers or
fractional 1.31 value.

sh1adds RDEST = RSRC2, RSRC1 1

Shift the first operand left one place and
perform a 32-bit scalar addition with the
second operand. Operands may be
signed or unsigned integers or fractional
1.31 format.

sh1subs RDEST = RSRC2, RSRC1 1

Shift Rsrc1 left one place, saturate to 32
bits and then subtract from Rsrc2 and
saturate again. Operands may be signed
integers or fractional 1.31 format.

sats RDEST = RSRC1 1
Saturate from 32-bit scalar to 16-bit
scalar. The operand is a signed integer
or is fractional 1.31 format.

shls RDEST = RSRC1, RSRC2 2
Scalar 32-bit left shift with saturation.
Operands may be signed integers or
fractional 1.31 format.

Scalar overflowing operations

addso RDEST = RSRC1, RSRC2 1
Indicates whether an adds operation
with the given input operands causes a
saturation.

subso RDEST = RSRC2, RSRC1 1
Indicates whether a subs operation with
the given input operands causes a
saturation.

sh1addso RDEST = RSRC2, RSRC1 1
Indicates whether a sh1adds operation
with the given input operands causes a
saturation.

sh1subso RDEST = RSRC2, RSRC1 1
Indicates whether a sh1subs operation
with the given input operands causes a
saturation.

satso RDEST = RSRC1 1
Indicate if a sats operation with the
same operand would have saturated.

ST240 Arithmetic operations

8059133 47/507

7.6.2 Saturating operations usage for implementation of ETSI functions

The saturating operations are listed in Table 14, together with the ETSI functions that they
are used to implement.

shlso RDEST = RSRC1, RSRC2 2
Indicates whether a shls operation with
the same input operands would have
saturated.

SIMD saturating operations

mulfracrm.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit fractional multiplication
with round minus and saturation.
Operands are fractional 1.15 format.

mulfracrne.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit fractional multiplication
with round nearest even and saturation.
Operands are fractional 1.15 format.

mulfracadds.ph RDEST = RSRC1, RSRC2 3

Packed 16-bit signed fractional
multiplication and add across with
saturation. Operands are fractional 1.15
fractional format.

adds.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed addition with
saturation. Operands may be 16-bit
scalar or fractional 1.15 format.

subs.ph RDEST = RSRC1, RSRC2 1

Packed 16-bit signed subtraction with
saturation. Operands may be signed or
unsigned 16-bit integers or fractional
1.15 format.

Table 13. Saturating operations summary (continued)

Operation Syntax Latency Description

Table 14. Saturating operations usage for ETSI functions

Operation
Saturation
width

ETSI function

Scalar saturating operations

adds 32 L_add()

subs 32 L_sub()

sh1adds 32 Component of L_mac()

sh1subs 32 Component of L_msu()

sats 16 saturate()

shls 32
Component of L_shl(), immediate form included as most
shifts in AMR-NB are constant.

Scalar overflowing operations

addso 32 L_add()

subso 32 L_sub()

sh1addso 32 Component of L_mac()

Arithmetic operations ST240

48/507 8059133

7.6.3 mulfracadds.ph usage

The mulfracadds.ph operation does not map directly to an ETSI function, but is used to
improve the performance of loops containing calls to L_mac() and L_msu(). The
transformation required to recode a loop to use mulfracadds.ph may cause saturation
behavior to vary, as the calculations need to be refactored. Therefore any use of
mulfracadds.ph may require conformance checks to be made. An example of a loop using
L_mac() is:

int s; # 32-bit type
short a[1024], b[1024]; # 16-bit types
....
s=0;

for (i=0;i<1024;i++) {
s = L_mac(s,a[i],b[i]);

}

The loop is modified to read packed operands and refactored to allow use of
mulfracadds.ph as follows:

s=0;
int a_val, b_val, s1, s2, s3;

for (i=0;i<1024;i+=2) {
a_val = *(int *)(a+i); # read pair of operands
b_val = *(int *)(b+i); # be careful with alignment
s1 = L_mult((short)a_val,(short)b);
s2 = L_mult((short)(a_val>>16),(short)(b>>16));
s3 = L_add(s1, s2);
s = L_add(s3, s);

}

sh1subso 32 Component of L_msu()

satso 16 saturate()

shlso 32
Component of L_shl(), immediate form included as most
shifts in AMR-NB are constant

SIMD saturating operations

mulfracrm.ph 16 SIMD form of mult()

mulfracrne.ph 16 This does not map to an ETSI function.

mulfracadds.ph 16
Performs
(L_add(L_mult(operand1low,operand2low),L_mult(operand
1high,operand2high)) - see Section 7.6.3.

adds.ph 16 SIMD form of add()

subs.ph 16 SIMD form of sub()

Table 14. Saturating operations usage for ETSI functions (continued)

Operation
Saturation
width

ETSI function

ST240 Arithmetic operations

8059133 49/507

mulfracadds.ph is now used:

s=0;
int a_val, b_val, s3;

for (i=0;i<1024;i+=2) {
a_val = *(int *)(a+i); # read pair of operands
b_val = *(int *)(b+i); # be careful with alignment
s3 = __st200mulfracadds_ph(a_val, b_val);
s = L_add(s, s3);

}

Loops based upon L_msu() use L_sub(s, s3) function to assign to s instead of L_add(s,
s3).

7.7 SIMD arithmetic operations usage
All the arithmetic SIMD operations are summarized in Table 15. For a listing of logical SIMD
operations please refer to Chapter 8: Logical operations on page 59.

Table 15. SIMD arithmetic operations summary

Operation Syntax Latency Description

16-bit arithmetic operations

abss.ph RDEST = RSRC1, RSRC2 1

Packed 16-bit signed absolute
with saturation. Operands may
be signed 16-bit integers or
fractional 1.15 format.

add.ph RDEST = RSRC1, RSRC2 1

Packed 16-bit addition.
Operands may be signed or
unsigned 16-bit integers or
fractional 1.15 format

adds.ph RDEST = RSRC1, RSRC2 1

Packed 16-bit signed addition
with saturation. Operands may
be 16-bit scalar or fractional
1.15 format.

cmpeq.ph
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1 Packed 16-bit test for equality

cmpgt.ph
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1

Packed 16-bit signed greater
than

max.ph RDEST = RSRC1, RSRC2 1

Packed 16-bit signed maximum.
Operands may be signed 16-bit
integers or fractional 1.15
format.

min.ph RDEST = RSRC1, RSRC2 1

Packed 16-bit signed minimum.
Operands may be signed 16-bit
integers or fractional 1.15
format.

Arithmetic operations ST240

50/507 8059133

mul.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit multiplication.
Operands may be signed or
unsigned 16-bit integers.

muladd.ph RDEST = RSRC1, RSRC2 3

Packed 16-bit signed
multiplication and add across
with saturation. Operands are
signed 16-bit integers.

mulfracadds.ph RDEST = RSRC1, RSRC2 3

Packed 16-bit signed fractional
multiplication and add across
with saturation. Operands are
fractional 1.15 fractional format.

mulfracrm.ph RDEST = RSRC1, RSRC2 3

Packed 16-bit fractional
multiplication with round minus
and saturation. Operands are
fractional 1.15 format.

mulfracrne.ph RDEST = RSRC1, RSRC2 3

Packed 16-bit fractional
multiplication with round nearest
even and saturation. Operands
are fractional 1.15 format.

shl.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Packed 16-bit left shift.
Operands may be signed or
unsigned 16-bit integers or
fractional 1.15 format.

shls.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift left
with saturation. Operands may
be signed or unsigned 16-bit
integers or fractional 1.15
format.

shr.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Packed 16-bit arithmetic right
shift. Operands may be signed
16-bit integer or fractional 1.15
format.

shrrne.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift right
with round nearest even
rounding. Operands may be
signed 16-bit integer or
fractional 1.15 format.

shrrnp.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift right
with round nearest positive
rounding. Operands may be
signed 16-bit integer or
fractional 1.15 format.

sub.ph RDEST = RSRC2, RSRC1 1

Packed 16-bit subtraction.
Operands may be signed or
unsigned 16-bit integers or
fractional 1.15 format.

Table 15. SIMD arithmetic operations summary (continued)

Operation Syntax Latency Description

ST240 Arithmetic operations

8059133 51/507

7.8 Floating point operations
Low latency single precision floating point is available, using the IEEE754 number format.

7.8.1 Summary of floating point operations and macros

Table 16 summarizes the floating point operations and macros.

subs.ph RDEST = RSRC1, RSRC2 1

Packed 16-bit signed subtraction
with saturation. Operands may
be signed or unsigned 16-bit
integers or fractional 1.15
format.

8-bit arithmetic operations

absubu.pb RDEST = RSRC1, RSRC2 1
Packed 8-bit unsigned absolute
difference

avgu.pb
RDEST = BSCOND, RSRC1,
RSRC2

1
Packed 8-bit unsigned average
with selectable rounding mode
(round zero or round positive).

avg4u.pb
RDEST = BSCOND, RSRC1,
RSRC2

2

Packed 8-bit unsigned 4-way
average with selectable
rounding mode (round zero,
round nearest negative, round
nearest positive or round
positive).

cmpeq.pb
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1 Packed 8-bit test for equality.

cmpgtu.pb
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1

Packed 8-bit unsigned greater
than.

muladdus.pb RDEST = RSRC1, RSRC2 3
Unsigned 8-bit integer multiplied
by signed 8-bit integer value and
add across.

sadu.pb RDEST = RSRC1, RSRC2 2
Sum of absolute differences on
packed unsigned 8-bit values.

Table 15. SIMD arithmetic operations summary (continued)

Operation Syntax Latency Description

Table 16. Summary of floating point operations

Operation Syntax Latency Description

Floating point operations

convif.n RDEST = RSRC1, RSRC2 3
Signed integer to IEEE754 format single
precision floating point conversion.

convfi.n RDEST = RSRC1, RSRC2 3
IEEE754 format single precision floating point
to signed integer conversion.

addf.n RDEST = RSRC1, RSRC2 3
IEEE754 format single precision floating point
add.

Arithmetic operations ST240

52/507 8059133

7.8.2 IEEE754 specification limitations

The floating point operations do not follow the full IEEE754 specification. The differences
from the standard behavior are listed in the following section.

Rounding Modes

Only the round to nearest even rounding mode is available for addf.n, subf.n, mulf.n
convif.n.

Only the round to zero mode is available for convfi.n.

See Section 7.1.1: Rounding on page 36 for more information about rounding modes.

Denormalised number handling

Denormalised operands are operated upon as if they are signed zeroes (the sign of the
denormalised operand is retained). If the result of an operation is required by the IEEE754
standard to produce a denormalised result of either sign then the result produced is +0
instead.

Exceptions

These operations do not produce status flags and do not raise any exceptions.

Positive and negative zero

These operations never produce -0; +0 is produced instead. For example: multiplying the
negative minimum normalized number by the positive minimum normalized number returns
+0 whereas the IEEE754 standard requires -0.

IEEE754 specification interpretation

In some cases the IEEE754 specification is not fully specific. The choices made by this
architecture to cover these cases is listed in the following sections.

subf.n RDEST = RSRC1, RSRC2 3
IEEE754 format single precision floating point
subtract.

mulf.n RDEST = RSRC1, RSRC2 3
IEEE754 format single precision floating point
multiplication.

cmpeqf.n
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1

IEE754 format single precision floating point
equality comparison.

cmpgtf.n
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1

IEE754 format single precision floating point
greater than comparison.

Floating point macros

cmpltf.n
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1

IEE754 format single precision less than
comparison.

cmplef.n
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1

IEE754 format single precision less than or
equal to comparison.

Table 16. Summary of floating point operations (continued)

Operation Syntax Latency Description

ST240 Arithmetic operations

8059133 53/507

Not a number handling

This architecture does not implement propagation of NaNs. Whenever a NaN is produced, it
will be as shown in Table 17.

sNaNs (signalling NaNs) and qNaNs (quiet NaNs) are distinguished by looking at the top bit
of the mantissa field (bit 22). This bit is set for a qNaN and clear for an sNaN.

Conversions of unrepresentable floating numbers to integers

Numbers such as NaNs, infinities and out of range numbers cannot be correctly converted
to integers. The numerical values produced for signed integers are as shown in Table 18.

Table 19 shows the results for unsigned integers for future architectures that support these.

Integers

No rounding is performed when integers are produced. Therefore the round towards zero
mode is used.

Tininess detection

This architecture detects tininess before rounding. This affects future IEEE754 operations
that use the UNDERFLOW flag and does not effect any existing operations.

Infinities, NaNs and zeroes

Infinities, NaNs and zeroes are handled as defined by the IEEE754 specification except as
noted in Positive and negative zero on page 52.

7.8.3 Floating point comparison operations

The behavior is as defined by IEEE754, except that no status flags are produced, so no
exceptions can be thrown.

Table 17. NaN value

Name Value Description

GENERATED_NAN 0x7FFFFFFF Single precision qNaN

Table 18. Unrepresentable conversion value for signed integers

Name Value Description

UNREP_SIGNED_ POS 0x7FFFFFFF
Out of range positive numbers including
positive NaNs

UNREP_SIGNED_ NEG 0x80000000
Out of range negative numbers including
negative NaNs

Table 19. Unrepresentable conversion value for unsigned integers

Name Value Description

UNREP_UNSIGNED_ POS 0xFFFFFFFF
Out of range positive numbers including
positive NaNs

UNREP_UNSIGNED_ NEG 0x00000000 All negative numbers

Arithmetic operations ST240

54/507 8059133

7.9 Fractional arithmetic operations
Many scalar operations may be reused to operate on fractional operations. Specific
multiplication operations must be used for fractional arithmetic. For addition and subtraction
either the non saturating or the saturating forms may be used.

Table 20 lists all fractional arithmetic operations.

Table 20. Fractional operations summary table

Operation Syntax Latency Description

Fractional multiplication operations

mulfrac
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
3

32-bit fractional multiplication with round
nearest positive and saturation.
Operands are fractional 1.31 format.

mulfracrne.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit fractional multiplication with
round nearest even and saturation.
Operands are fractional 1.15 format.

mulfracrm.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit fractional multiplication with
round minus and saturation. Operands
are fractional 1.15 format.

mulfracadds.ph RDEST = RSRC1, RSRC2 3

Packed 16-bit signed fractional
multiplication and add across with
saturation. Operands are fractional 1.15
fractional format.

Fractional addition and subtraction operations

add
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

32-bit integer addition. Operands may be
signed or unsigned 32-bit scalar or signed
fractional 1.31 format.

sub
RDEST = RSRC2, RSRC1

RDEST = ISRC2, RSRC1
1

32-bit integer subtraction. Operands may
be 32-bit scalar or fractional 1.31 format.

sh1add
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Shift the first operand left one place and
perform a 32-bit integer addition with the
second operand. Operand types may be
32bit scalar or fractional 1.31 format.

sh2add
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Shift the first operand left two places and
perform a 32-bit integer addition with the
second operand. Operands may be 32-bit
scalar or fractional 1.31 format.

sh3add
RDEST = RSRC1, RSRC

RDEST = RSRC1, ISRC2
1

Shift the first operand left three places
and perform a 32-bit integer addition with
the second operand. Operands may be
32-bit scalar or fractional 1.31 format.

addcg
RDEST,BDEST = RSRC1,
RSRC2,BSCOND

1

32-bit integer addition with carry input
and generate a carry output. Operands
may be 32-bit scalar or fractional 1.31
format.

ST240 Arithmetic operations

8059133 55/507

Saturating fractional operations

adds RDEST = RSRC1, RSRC2 1
Integer 32-bit addition with saturation.
Operands may be 32-bit scalar or
fractional 1.31 format.

addso RDEST = RSRC1, RSRC2 1
Indicates whether an adds operation with
the given input operands causes a
saturation.

subs RDEST = RSRC2, RSRC1 1
Integer 32-bit subtraction with saturation.
Operands may be 32-bit scalar or
fractional 1.31 format.

subso RDEST = RSRC2, RSRC1 1

Indicates whether a subs operation with
the given input operands causes a
saturation. Operands may be 32-bit
scalar or fractional 1.31 format.

sh1adds RDEST = RSRC2, RSRC1 1

Shift Rsrc1 left one place, saturate to 32
bits and then perform a 32-bit integer
addition to Rsrc2 and saturate again.
Operands may be 32-bit scalar or
fractional 1.31 format.

sh1addso RDEST = RSRC2, RSRC1 1
Indicates whether a sh1adds operation
with the given input operands causes a
saturation.

sh1subs RDEST = RSRC2, RSRC1 1

Shift Rsrc1 left one place, saturate to 32
bits and then subtract from Rsrc2 and
saturate again. Operands may be 32-bit
scalar or fractional 1.31 format.

sh1subso RDEST = RSRC2, RSRC1 1

Indicates whether a sh1subs operation
with the given input operands causes a
saturation. Operands may be 32-bit
scalar or fractional 1.31 format.

sats RDEST = RSRC1 1
Saturate from 32-bit scalar to 16-bit
scalar. The operand is a signed integer or
is fractional 1.31 format.

satso RDEST = RSRC1 1
Indicate if a sats operation with the same
operand would have saturated.

shls RDEST = RSRC1, RSRC2 2
Scalar 32-bit left shift with saturation.
Operands may be signed integers or
fractional 1.31 format.

Fractional scalar shifts

shl
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Scalar 32-bit arithmetic or logical left shift.
Operands may be signed or unsigned
integers or fractional 1.31 format.

shr
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Scalar 32-bit arithmetic right shift.
Operands may be signed integers or
fractional 1.31 format.

Table 20. Fractional operations summary table (continued)

Operation Syntax Latency Description

Arithmetic operations ST240

56/507 8059133

shrrnp RDEST = RSRC1, ISRC2 2

Scalar 32-bit arithmetic right shift with
round nearest positive rounding.
Operands may be signed or unsigned
integers or fractional 1.31 format.

Fractional SIMD operations

add.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit addition. Operands may be
signed or unsigned 16-bit scalar or
fractional 1.15 format.

adds.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed addition with
saturation. Operands may be 16-bit
scalar or fractional 1.15 format.

sub.ph RDEST = RSRC2, RSRC1 1
Packed 16-bit subtraction. Operands may
be 16-bit scalar or fractional 1.15 format.

subs.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed subtraction with
saturation. Operands may be 16-bit
signed integer or fractional 1.15 format.

abss.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed absolute with
saturation. Operands may be signed 16-
bit integers or fractional 1.15 format.

max.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed maximum.
Operands may be signed 16-bit integers
or fractional 1.15 format.

min.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed minimum.
Operands may be signed 16-bit integers
or fractional 1.15 format.

shl.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Packed 16-bit left shift. Operands may be
signed or unsigned 16-bit integers or
fractional 1.15 format.

shr.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Packed 16-bit arithmetic right shift.
Operands may be signed 16-bit integer or
fractional 1.15 format.

shrrne.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift right with round
nearest even rounding. Operands may be
signed 16-bit integer or fractional 1.15
format.

shrrnp.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift right with round
nearest positive rounding. Operands may
be signed 16-bit integer or fractional 1.15
format.

shls.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift left with
saturation. Operands may be signed or
unsigned 16-bit integers or fractional 1.15
format.

Table 20. Fractional operations summary table (continued)

Operation Syntax Latency Description

ST240 Arithmetic operations

8059133 57/507

7.10 Divide and remainder operations
Table 21 lists the integer divide and remainder operations.

a. The latency with respect to instruction scheduling is 3 cycles, however additional stall cycles may occur as
detailed in the following section.

The divide and remainder operations are restricted to one per bundle as they use load/store
resources.

7.10.1 Special cases

Table 22 lists the special cases for divide and remainder operations.

a. This result appears to be negative as the result overflows.

No exception is generated for any divide by zero case. If an exception is required then this
must be coded in software.

Table 21. Divide and remainder operations

Operation Syntax Latency(a) Description

div
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
3

Signed integer division. May stall the pipeline,
see definition of IDivIeee(). Operands are
signed integers.

divu
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
3

Unsigned integer division. May stall the
pipeline, see definition of UIDivIeee().
Operands are unsigned integers.

rem
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
3

 Signed integer remainder. May stall the
pipeline, see definition of IRemIeee().
Operands are signed integers.

remu
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
3

Unsigned integer remainder. May stall the
pipeline, see definition of UIRemIeee().
Operands are unsigned integers.

Table 22. Divide and remainder special cases

operation dividend divisor result

div positive 0 0x7fffffff

div negative 0 0x80000000

div 0x80000000 0xffffffff 0x80000000(a)

rem any 0 0

rem 0x80000000 0xffffffff 0

divu any 0 0xffffffff

remu any 0 0

Arithmetic operations ST240

58/507 8059133

7.10.2 Performance information

The number of cycles taken to execute div/rem operations in this implementation of the
ST240 are provided in Table 23. Future implementations may have different performance.
The variables are defined as follows:

● d is the number of leading zeros in the dividend (if unsigned) or leading sign bits (if
signed)

● r is the number of leading zeros in the divisor (if unsigned) or leading sign bits (if
signed)

a. The / in the formula is an integer division.

In all cases where the second operand is non-zero these operations stall the ST240 while
iterating. The number of stall cycles is three less than the number of cycles given in Table 23
and can be measured using the PM_EVENT_DSTALLCYCLES performance monitor. If the
second operand is zero then these operations have a three cycle latency.

Table 23. cycles taken to execute div/rem operations

Operation Cycles

div/divu, rem/remu max(21 - (31 + d - r)/2, 5) (a)

ST240 Logical operations

8059133 59/507

8 Logical operations

The ST240 instruction set contains a large number of logical operations. They take either
scalar or packed operands as inputs. All operations in this category have a single cycle
latency.

A sub-set of operations, such as mov and andl, have forms that write values to the branch
registers.

8.1 Scalar logical operations
Table 24 lists all scalar logical operations.

Table 24. Scalar operations summary table

Operation Syntax Description

Simple logical primitives

and
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
Bitwise AND.

andl
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2

BDEST2 = BSRC1, BSRC2

Logical AND.

andc
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
Negate operand 1 and then bitwise AND.

nandl
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, ISRC2

BDEST2 = BSRC1, BSRC2

Logical NAND.

or RDEST = RSRC1, RSRC2 Bitwise OR.

orl
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, ISRC2

BDEST2 = BSRC1, BSRC2

Logical OR.

orc
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
Negate operand 1 and then bitwise OR.

norl
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2

BDEST2 = BSRC1, BSRC2

Logical NOR.

xor
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
Bitwise XOR.

slct
RIDEST = BSCOND, RSRC1, ISRC2

RDEST = BSCOND, RSRC1, RSRC2

Select between registers and immediate
operands using boolean value of branch register.

slctf RDEST = BSCOND, RSRC1, RSRC2
Select between general purpose registers using
negated boolean value of branch register.

Logical operations ST240

60/507 8059133

Move operations

mov

RDEST = BSRC1
Move a branch register value into a general
purpose register.

BDEST = RSRC1
Move a general purpose register value into a
branch register.

BDEST = BSRC1
Move a branch register value into another
branch register.

Other logical operations

extract RDEST = RSRC1, ISRC2
Generalized signed bit field extract for small
fields (1-16 bits).

extractu RDEST = RSRC1, ISRC2
Generalized unsigned bit field extract for small
fields (1-16 bits).

extractl RDEST = RSRC1, ISRC2
Generalized signed bit field extract for large
fields (>=17 bits).

extractlu RDEST = RSRC1, ISRC2
Generalized unsigned bit field extract for large
fields (>=17 bits).

rotl
RDEST = RSRC1, RSRC2

RIDEST = RSRC1, ISRC2
Rotate left.

shl
RDEST = RSRC1, RSRC2

RIDEST = RSRC1, ISRC2
Scalar 32-bit arithmetic or logical left shift.

shru
RDEST = RSRC1, RSRC2

RIDEST = RSRC1, ISRC2

Scalar 32bit logical right shift. Operands are
unsigned integers. Operands may be signed or
unsigned integers or fractional 1.31 format.

sxt
RDEST = RSRC1, RSRC2

RIDEST = RSRC1, ISRC2
Arbitrary sign extend.

zxt
RDEST = RSRC1, RSRC2

RIDEST = RSRC1, ISRC2
Arbitrary zero extend.

Operations available as macros

slctf RIDEST = BSCOND, RSRC1, ISRC2

Byte select between register and immediate
operands using negated boolean value in branch
register.

convbi RDEST = BSRC1

Perform a boolean conversion on the branch
register value and write the result to a general
purpose register.

convib BDEST = RSRC1

Perform a boolean conversion on the general
purpose register value and write the result to a
branch register.

mov RDEST = RSRC1
Move general purpose register value into
another general purpose register.

sxtb RDEST = RSRC1 Sign extend byte value.

sxth RDEST = RSRC1 Sign extend half-word value.

Table 24. Scalar operations summary table (Continued)

Operation Syntax Description

ST240 Logical operations

8059133 61/507

8.1.1 Bit extraction operations

The ST240 has four extraction operations (extract, extractu, extractl, extractlu). These
operations extract a variable number of bits from a selectable bit position within a register.
Associated operations are the arbitrary sign and zero extend operations sxt, zxt.

The extraction operations take two operands:

● an immediate operand to define the bit position and offset to extract

● a register operand on which the extraction is performed

Only bits [8:0] of the immediate operand are used by the extraction operations, so
immediate extensions are never required, but may be accidentally inferred if care is not
taken.

Danger: If bit 8 is set in the immediate operand, the programmer must
sign extend the operand to avoid the ST200 assembler
adding an immediate extension of all zeroes.

The extraction operations are listed in Table 25.

Therefore extract(u) is used to extract 1 to 16 bits and extractl(u) is used to extract 17 to
32 bits.

Note: In all cases if (length + position) > 32 then an ILL_INST exception is raised.

zxtb RDEST = RSRC1 Zero extend byte value.

zxth RDEST = RSRC1 Zero extend half-word value

Table 24. Scalar operations summary table (Continued)

Operation Syntax Description

Table 25. Extract operations

Extract operation Imm[8:5] Imm[4:0] Action

extract [length - 1] position
extract length bits starting from bit position.
Sign extend result to 32 bits.

extractu [length - 1] position
extract length bits starting from bit position.
Zero extend result to 32 bits.

extractl [length - 17] position
extract length bits starting from bit position.
Sign extend result to 32 bits.

extractlu [length - 17] position
extract length bits starting from bit position.
Zero extend result to 32 bits.

Logical operations ST240

62/507 8059133

8.2 SIMD logical operations
Table 26 lists all SIMD logical operations. SIMD operations are described in Chapter 9:
SIMD operations on page 64.

Table 26. Packed operations summary table

Operation Syntax Description

Simple logical primitives

slct.pb
RDEST = BSCOND, RSRC1, RSRC2

RIDEST = BSCOND, RSRC1, ISRC2

Byte select between input operands using 4-bit
condition code in branch register.

slctf.pb RIDEST = BSCOND, RSRC1, ISRC2
Byte select between input operands using 4-bit
condition code in branch register.

Extraction operations

ext1.pb RDEST = RSRC1, RSRC2 Extract word starting from byte 1.

ext2.pb RDEST = RSRC1, RSRC2 Extract word starting from byte 2.

ext3.pb RDEST = RSRC1, RSRC2 Extract word starting from byte 3.

extl.pb RDEST = BSCOND, RSRC1, RSRC2 Dynamic extract left operation.

extr.pb RDEST = BSCOND, RSRC1, RSRC2 Dynamic extract right operation.

Packing operations

pack.pb RDEST = RSRC1, RSRC2
Pack 4 16-bit values to 8-bit results ignoring
upper bits.

packrnp.phh RDEST = RSRC1, RSRC2
Pack high part of 32-bit signed value into 16-bit
signed results with round nearest positive.

packs.ph RDEST = RSRC1, RSRC2
Pack 32-bit signed values into 16-bit signed
results with saturation.

packsu.pb RDEST = RSRC1, RSRC2
Pack 16-bit signed values into 8-bit unsigned
results with saturation.

Shuffle and permute operations

perm.pb
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
Packed 8-bit permute.

shuff.pbh
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
Packed 8-bit shuffle returning high result.

shuff.pbl
RIDEST = RSRC1, ISRC2

Packed 8-bit shuffle returning low result.

shuff.phh RDEST = RSRC1, RSRC2 Packed 16-bit shuffle returning high result.

shuff.phl RDEST = RSRC1, ISRC2 Packed 16-bit shuffle returning low result.

shuffeve.pb RDEST = RSRC1, ISRC2 Packed 8-bit shuffle of even fields.

shuffodd.pb RDEST = RSRC1, RSRC2 Packed 8-bit shuffle of odd fields.

Operations available as macros

slctf.pb RIDEST = BSCOND, RSRC1, RSRC2
Byte select between input operands using
negated 4-bit condition code in branch register.

ST240 Logical operations

8059133 63/507

unpacku.pbh RDEST = RSRC1
Unpack upper two 8-bit values into 16-bit
results.

unpacku.pbl RDEST = RSRC1
Unpack lower two 8-bit values into 16-bit
results.

pack.ph RDEST = RSRC1, RSRC2
Pack lower 16-bit value from each operand into
32-bit result.

Table 26. Packed operations summary table (Continued)

Operation Syntax Description

SIMD operations ST240

64/507 8059133

9 SIMD operations

The ST240 instruction set contains a large number of SIMD (Single Instruction, Multiple
Data) operations. These typically perform a single operation on multiple packed data fields.
In some cases packed results are written and in some cases a single result is written. SIMD
operations were introduced in Chapter 8: Logical operations and Chapter 7: Arithmetic
operations and are described in this chapter.

Some operations involve rounding as described in Section 7.1.1: Rounding on page 36. The
operand types are described in Section 7.1.2: Operand types on page 38.

9.1 Notation used in this chapter
The diagrams in this chapter use a specific notation to indicate the steps involved in each
operation.

Table 27. Notation used for SIMD diagrams

Notation used in
diagrams

Description

+n(a,b), -n(a,b) Add or subtract n bit values a and b. The result has n+1 bits.

+n(a,b,c,d) Add 4 n bit values. The result has n+2 bits.

Clipn(a) Return the n least significant bits of a, discarding any remaining upper bits.

Satn(a) Saturaten(a)

Absn(a) Return the absolute value of the n bit value a. The result has n+1 bits.

Xsn(a,b)
Perform a signed multiplication of two n bit numbers a and b. The result
has 2n bits.

Xusn(a,b)
Perform an unsigned (value a) by signed (value b) of two n bit numbers.
The result has 2n bits.

RMn(a),
RNEn(a),RNPn(a)

Round the upper n bits of a using the given rounding mode.

<<n(a,b) Shift the n bit number a left b places. The result has n + b bits.

Minn(a,b), Maxn(a,b)
Return the minimum or maximum of the n bit numbers a and b. The result
has n bits.

USatn(a), Satn(a) Unsigned Saturaten(a), Saturaten(a) as defined in Chapter 23.

=n n bit equality comparison. The result is 1-bit boolean.

/2n(a) Integer division of n bit value a by 2. The result has n-1 bits.

/4n(a) Integer division of n bit value a by 4. The result has n-2 bits.

ST240 SIMD operations

8059133 65/507

9.2 SIMD 16-bit arithmetic operations
SIMD 16-bit arithmetic operations are performed on signed values. These operations are
summarized in Table 28.

Two input multiplexer. Data inputs a and b have n bits and the selection
input s has 1 bit. When s = 0, a is selected by the output z, and when s = 1,
b is selected.

Four input multiplexer. Data inputs a to d have n bits and the selection
input s has 2 bits. When s = 00, a is selected by the output z, and when s
= 01, b is selected and so on.

Table 27. Notation used for SIMD diagrams (Continued)

Notation used in
diagrams

Description

an bn

s1

zn

an bn cn dn

s2

zn

Table 28. SIMD 16-bit arithmetic operations

Operation Syntax Latency Description

abss.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed absolute with
saturation. Operands may be signed
16-bit integers or fractional 1.15 format.

add.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit addition. Operands may
be signed or unsigned 16-bit integers or
fractional 1.15 format.

adds.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed addition with
saturation. Operands may be signed
16-bit integers or fractional 1.15 format.

cmpeq.ph
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1 Packed 16-bit test for equality

cmpgt.ph
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1 Packed 16-bit signed greater than

max.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed maximum.
Operands may be signed 16-bit
integers or fractional 1.15 format.

min.ph RDEST = RSRC1, RSRC2 1
Packed 16-bit signed minimum.
Operands may be signed 16-bit
integers or fractional 1.15 format.

mul.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit multiplication. Operands
may be signed or unsigned 16-bit
integers.

muladd.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit signed multiplication and
add across with saturation. Operands
are signed 16-bit integers.

SIMD operations ST240

66/507 8059133

9.2.1 SIMD 16-bit add and subtract operations

The packed 16-bit addition and subtraction operations, add.ph and sub.ph, are supported
with and without saturation. When saturation is applied all operands are treated as signed,
without saturation the operands maybe signed or unsigned. Signed operands can be
integers or 1.15 fractional format.

These operations are illustrated in Figure 5.

mulfracadds.ph RDEST = RSRC1, RSRC2 3

Packed 16-bit signed fractional
multiplication and add across with
saturation. Operands are fractional 1.15
fractional format.

mulfracrm.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit fractional multiplication
with round minus and saturation.
Operands are fractional 1.15 format.

mulfracrne.ph RDEST = RSRC1, RSRC2 3
Packed 16-bit fractional multiplication
with round nearest even and saturation.
Operands are fractional 1.15 format.

shl.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Packed 16-bit left shift. Operands may
be signed or unsigned 16-bit integers or
fractional 1.15 format.

shls.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift left with
saturation. Operands may be signed or
unsigned 16-bit integers or fractional
1.15 format.

shr.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
1

Packed 16-bit arithmetic right shift.
Operands may be signed 16-bit integer
or fractional 1.15 format.

shrrne.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift right with
round nearest even rounding.
Operands may be signed 16-bit integer
or fractional 1.15 format.

shrrnp.ph
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
2

Packed 16-bit signed shift right with
round nearest positive rounding.
Operands may be signed 16-bit integer
or fractional 1.15 format.

sub.ph RDEST = RSRC2, RSRC1 1
Packed 16-bit subtraction. Operands
may be signed or unsigned 16-bit
integers or fractional 1.15 format.

subs.ph RDEST = RSRC1, RSRC2 1

Packed 16-bit signed subtraction with
saturation. Operands may be signed or
unsigned 16-bit integers or fractional
1.15 format.

Table 28. SIMD 16-bit arithmetic operations (Continued)

Operation Syntax Latency Description

ST240 SIMD operations

8059133 67/507

Figure 5. SIMD add, sub, absolute

add.ph and sub.ph can internally overflow, as represented by the Clip16() function. To
avoid this the range of operands should be restricted or the saturating versions used.

A signed absolute with saturation is also defined (abss.ph). This includes saturation for the
case where any field of the input operand has the negative maximum value.

9.2.2 SIMD 16-bit multiplication operations

The mul.ph operation multiplies pairs of 16-bit values and returns a 16-bit result in each half
of the result word. Because the upper bits of the result are discarded either signed or
unsigned operands may be used. If the upper bits of the result are required, the scalar
operations mulll or mulllu must be used.

The packed 16-bit fractional multiply operations mulfracrne.ph and mulfracrm.ph treat
their operands as fractional values in the format 1.15. The results are in the same format,
but are rounded differently (RM and RNE rounding modes).

In both cases the result is saturated, but this is only needed for -1.0 multiplied by -1.0 as the
result, +1.0, is outside the bounds of a 1.15 fraction.

mulfracrm.ph is used for an ETSI function as described in Table 7.6.2: Saturating
operations usage for implementation of ETSI functions on page 47.

Ah

Source 1 (signed /
unsigned)

Al

+/-16

Bh

Source 2 (signed /
unsigned)

Bl

+/-16

 add.ph/sub.ph
result

Ah

Source 1 (signed)

Al

+/-16

Bh

Source 2 (signed)

Bl

+/-16

 adds.ph/subs.ph
result

Sat16 Sat16Clip16 Clip16

Source 1 (signed)

Abs16

 abss.ph result

Abs16

Sat16 Sat16

Ah Al

SIMD operations ST240

68/507 8059133

The SIMD multiplications mul.ph, mulfracrne.ph and mulfracrm.ph are illustrated in
Figure 6.

Figure 6. SIMD multiplications (mul.ph, mulfracrne.ph and mulfracrm.ph)

The muladd.ph operation performs two simultaneous signed 16-bit multiplies accumulating
the two 32-bit intermediates into a single 32-bit result. The only loss in accuracy for this
operation is when all four source elements are the most negative 16-bit integer. The
mulfracadds.ph performs two simultaneous 1.15 fractional multiplies, converts the 2.30
results to 1.31 format (using a one-place saturating left shift) then adds the two results
together using a saturating add. The operation is designed to implement ETSI functions.
The muladd.ph and mulfracadds.ph operations are illustrated in Figure 7.

Figure 7. SIMD multiplications (muladd.ph and mulfracadds.ph)

Ah

Source 1 (signed/
unsigned)

Al

Xs16

Bh

Source 2 (signed,
unsigned)

Bl

Xs16

mul.ph result

Clip16 Clip16

Ah

Source 1 (1.15)

Al

Xs16

Bh

Source 2 (1.15)

Bl

Xs16

mulfracrne,rm.ph
result

RM16,
RNE16

RM16,
RNE16

Sat16 Sat16

>>32 >>32

15 15

Ah

Source 1 (signed)

Al

Xs16

Bh

Source 2 (signed)

Bl

Xs16

muladd.ph result

+32

Sat32

Ah

Source 1 (1.15)

Al

Xs16

Bh

Source 2 (1.15)

Bl

Xs16

mulfracadds.ph
result

+32

Sat32

Sat32 Sat32

<<32 <<32

1 1

ST240 SIMD operations

8059133 69/507

9.2.3 SIMD 16-bit comparison operations

The comparison operations, cmpeq.ph and cmpgt.ph, return 0 or 1 in the least significant
bit of each field of the result. If the destination is a branch register, the destination fields are
bits [3:2] and [1:0]. If the destination is a general purpose register, the destination fields are
bits [31:16] and [15:0]. For branch registers, the result is propagated to all bits in the field.
For general purpose registers, bits other than the result are set to 0.

The maximum and minimum functions, max.ph and min.ph, are SIMD signed 16-bit
operators that are applied independently to each field of the computation. These are
probably the most useful of the operators involving comparison and can be used, for
example, to clamp or saturate to arbitrary bounds and in median filtering. These operations
are illustrated in Figure 8.

Figure 8. SIMD min/max operations

9.2.4 SIMD 16-bit shift operations

In shift operations the second operand is not packed and indicates the size of the shift to be
applied to all fields of the operation. Consistently with the scalar shift operations only the
first 8-bits of the shift operand are significant and are interpreted as an unsigned 8-bit value.

The left shift operations, shl.ph and shls.ph, are illustrated in Figure 9. The figure illustrates
the difference between shl.ph, which clips the intermediate result to 16 bits and shls.ph,
which saturates the intermediate result to 16 bits.

Figure 9. SIMD left shift operations

The right shift operations shr.ph, shrrne.ph and shrrnp.ph are signed. These operations
are illustrated in Figure 10. shr.ph has no rounding applied, which is equivalent to round
minus (RM) mode. shrrne.ph and shrrnp.ph have the rounding modes indicated by the
opcode.

Ah

Source 1 (signed)

Al

Max16

Bh

Source 2 (signed)

Bl

Max16

max.ph result

Ah

Source 1 (signed)

Al

Min16

Bh

Source 2 (signed)

Bl

Min16

min.ph result

Ah

Source 1 (signed)

Al

<<16

Source 2 (unsigned)

B

<<16

shl.ph result

Clip8

Clip16 Clip16

Ah

Source 1 (signed)

Al

<<16

Source 2 (unsigned)

B

<<16

shls.ph result

Clip8

Sat16 Sat16

SIMD operations ST240

70/507 8059133

Figure 10. SIMD right shift operations

9.3 SIMD 8-bit arithmetic operations
SIMD 8-bit operations support the efficient implementation of functions that occur frequently
in video and imaging applications. The operations described in this section treat their source
operands as vectors of unsigned bytes. muladdus.pb is an exception where the second
operand contains signed bytes. The reason for this is that the low-pass filter coefficients
applied during MPEG video motion compensation and image processing are typically small
signed values. The full set of 8-bit SIMD operations are listed in Table 29.

Ah

Source 1 (signed)

Al

>>16

Source 2 (unsigned)

B

>>16

shr.ph result

Clip8

Ah

Source 1 (signed)

Al

>>16

Source 2 (unsigned)

B

>>16

shrrne.ph/
shrrnp.ph result

Clip8

RNE16,
RNP16

RNE16,
RNP16

Clip16 Clip16

Table 29. SIMD 8-bit arithmetic operations

Operation Syntax Latency Description

absubu.pb RDEST = RSRC1, RSRC2 1
Packed 8-bit unsigned absolute
difference.

avgu.pb
RDEST = BSCOND, RSRC1,
RSRC2

1
Packed 8-bit unsigned average
with selectable rounding mode
(round zero or round positive).

avg4u.pb
RDEST = BSCOND, RSRC1,
RSRC2

2

Packed 8-bit unsigned 4-way
average with selectable rounding
mode (round zero, round nearest
negative, round nearest positive or
round positive).

cmpeq.pb
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1 Packed 8-bit test for equality.

cmpgtu.pb
RDEST = RSRC1, RSRC2

BDEST2 = RSRC1, RSRC2
1 Packed 8-bit unsigned greater than

muladdus.pb RDEST = RSRC1, RSRC2 3
Unsigned 8-bit integer multiplied by
signed 8-bit integer value and add
across.

sadu.pb RDEST = RSRC1, RSRC2 2
Sum of absolute differences on
packed unsigned 8-bit values.

ST240 SIMD operations

8059133 71/507

9.3.1 SIMD 8-bit absolute difference operations

Two absolute difference operations, absubu.pb and sadu.pb, are described. The first
performs the operation abs(a-b) on each byte field of the source operands (treating each
byte as an unsigned value) and returns the result in the corresponding byte field of the
destination register. The second performs the same operation on the individual byte fields,
but then sums these four values and returns the result. The two operations are illustrated in
Figure 11.

Figure 11. absubu.pb, sadu.pb

absubu.pb is useful in image and video processing, for example, to implement the
threshold checks performed by the deblocking filter built into an H264 decoder. The key
application for sadu.pb is to implement the costing function in an MPEG encoder’s motion
estimator.

9.3.2 SIMD 8-bit averaging operations

Two averaging operations, avgu.pb and avg4u.pb, are defined, both take an additional
source operand: a branch register that can be used to apply the required rounding. The
same rounding mode is applied to all fields of the computation.

Two-way averaging performs the operation (a + b + (c<>0))/2 four times, once on each byte
field. Here a and b are from the same byte field index in the two 32-bit register sources and
c is the contents of the branch register. The result is returned in the corresponding byte field
of the destination register.

Four-way averaging performs the operation (a + b + c + d + (e^3))/4 twice, one is performed
on the lower two bytes from the two 32-bit source operands, the other is performed on the
upper two bytes. Here e is the contents of the branch register.

A3

Source 1 (unsigned)

-8

A2 A0A1 B3

Source 2 (unsigned)

B2 B0B1

-8 -8 -8

 absubu.pb result

Abs9 Abs9 Abs9 Abs9

Clip8 Clip8 Clip8 Clip8

+8

sadu.pb result

SIMD operations ST240

72/507 8059133

The final term in the addition controls the rounding mode of the operation:

● avgu.pb: when c is zero the rounding mode is RZ, otherwise RP

● avg4u.pb: selects between four rounding modes as shown in Table 30

Both operations are illustrated in Figure 12.

Figure 12. SIMD averaging operations

The two way average is useful for performing horizontal (when combined with ext1.pb) or
vertical half-pel interpolations. The four-way average is useful when simultaneous horizontal
and vertical interpolation is required. Using the branch register allows rounding to be
parameterized by the interpolation function without causing much code replication.

Table 30. avg4u.pb rounding mode selection

e ^ 3 Rounding

0 RZ

1 RNN

2 RNP

3 RP

A3

Source 1 (unsigned)

+8

A2 A0A1 B3

Source 2 (unsigned)

B2 B0B1

+8 +8 +8

BSCOND

avgu.pb result

A3

Source 1 (unsigned)

+8

A2 A0A1 B3

Source 2 (unsigned)

B2 B0B1

0 0avg4u.pb result

/ 29 / 29 / 29 / 29

^ 3
3 0

1 0

BSCOND

3 0

0

<>0?

a b

c

a
b c

d

e

+8

>>2 >>2

ST240 SIMD operations

8059133 73/507

As an illustration the following code fragment implements a vertical and horizontal
interpolation of the 4 x 4 array in registers a0, a1, a2 and a3. Register a4 contains the next
row of pixels, registers b0 to b4 contain the next column of pixels and the results are written
to registers c0 to c4.

avg4u.pb c0l = rnd, a0, a1
avg4u.pb c1l = rnd, a1, a2
avg4u.pb c2l = rnd, a2, a3
avg4u.pb c3l = rnd, a3, a4

ext1.pb ab0 = a0, b0
ext1.pb ab1 = a1, b1
ext1.pb ab2 = a2, b2
ext1.pb ab3 = a3, b3

ext1.pb ab4 = a4, b4
avg4u.pb c0h = rnd, ab0, ab1
avg4u.pb c1h = rnd, ab1, ab2
avg4u.pb c2h = rnd, ab2, ab3

avg4u.pb c3h = rnd, ab3, ab4
shuffeve.pb c0 = c0l, c0h
shuffeve.pb c1 = c1l, c1h
shuffeve.pb c2 = c2l, c2h

shuffeve.pb c3 = c3l, c3h
; plus 3 spare slots

This code uses 17 syllables and will execute in 5 cycles, which compares with 64 syllables
to implement in scalar code.

9.3.3 SIMD 8-bit comparison operations

The comparison operations, cmpeq.pb and cmpgtu.pb, return 0 in the least significant bit
of the result field when false and 1 when true. For branch register destinations each result
field is one bit of the result. For general purpose register destinations each result field is one
byte. Bits other than the result are set to 0

The behaviors of cmpeq.pb and cmpgtu.pb are illustrated in Figure 13.

Figure 13. SIMD 8-bit comparison operations

A7 A6 A4A5

 cmpeq.pb result

Source 2 (signed /
unsigned bytes)

Source 1 (signed /
unsigned bytes)

A3 A2 A0A1

=8 =8=8 =8

Source 2
(unsigned bytes)

Source 1
(unsigned bytes)

A7 A6 A4A5

 cmpgtu.pb result

A3 A2 A0A1

>8 >8>8 >8

SIMD operations ST240

74/507 8059133

9.3.4 SIMD 8-bit multiply and add across operation

The muladdus.pb operation multiplies an unsigned byte by a signed byte in each of the
byte fields and then sums across the four fields to produce a single result. The operation is
illustrated in Figure 14.

Figure 14. SIMD 8-bit multiply and add across

This operation is useful in video and image processing for applying low-pass filters to pixel
vectors, for example, in quarter-pel interpolation and deblocking functions.

9.4 SIMD data manipulation operations
These operations are used to prepare data to ensure that the elements upon which the
SIMD arithmetic operations are performed are aligned. Those operations defined for the
ST240 SIMD instruction set are listed in Table 31.

A3

Source 1 (unsigned)

Xus8

A2 A0A1 B3

Source 2 (signed)

B2 B0B1

Xus8 Xus8 Xus8

+18

muladdus.pb
result

a b

Table 31. SIMD logical operations summary table

Operation Syntax Description

Simple logical primitives

slct.pb
RDEST = BSCOND, RSRC1, RSRC2

RIDEST = BSCOND, RSRC1, ISRC2

Byte select between input operands using 4-bit
condition code in branch register.

slctf.pb RIDEST = BSCOND, RSRC1, ISRC2
Byte select between input operands using
negated 4-bit condition code in branch register.

Extraction operations

ext1.pb RDEST = RSRC1, RSRC2 Extract word starting from byte 1.

ext2.pb RDEST = RSRC1, RSRC2 Extract word starting from byte 2.

ext3.pb RDEST = RSRC1, RSRC2 Extract word starting from byte 3.

extl.pb RDEST = BSCOND, RSRC1, RSRC2 Dynamic extract left operation.

extr.pb RDEST = BSCOND, RSRC1, RSRC2 Dynamic extract right operation.

Packing operations

pack.pb RDEST = RSRC1, RSRC2
Pack four 16-bit values to 8-bit results ignoring
upper bits.

ST240 SIMD operations

8059133 75/507

packrnp.phh RDEST = RSRC1, RSRC2
Pack high part of 32-bit signed value into 16-bit
signed results with round nearest positive.

packs.ph RDEST = RSRC1, RSRC2
Pack 32-bit signed values into 16-bit signed
results with saturation.

packsu.pb RDEST = RSRC1, RSRC2
Pack 16-bit signed values into 8-bit unsigned
results with saturation.

Shuffle and permute operations

perm.pb
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
Packed 8-bit permute

shuff.pbh
RDEST = RSRC1, RSRC2

RDEST = RSRC1, ISRC2
Packed 8-bit shuffle returning high result

shuff.pbl RIDEST = RSRC1, ISRC2 Packed 8-bit shuffle returning low result

shuff.phh RDEST = RSRC1, RSRC2 Packed 16-bit shuffle returning high result

shuff.phl RDEST = RSRC1, ISRC2 Packed 16-bit shuffle returning low result

shuffeve.pb RDEST = RSRC1, ISRC2 Packed 8-bit shuffle of even fields

shuffodd.pb RDEST = RSRC1, RSRC2 Packed 8-bit shuffle of odd fields

Operations available as macros

slctf.pb RIDEST = BSCOND, RSRC1, RSRC2
Byte select between input operands using
negated 4-bit condition code in branch register.

unpacku.pbh RDEST = RSRC1
Unpack upper two 8-bit values into 16-bit
results

unpacku.pbl RDEST = RSRC1
Unpack lower two 8-bit values into 16-bit
results

pack.ph RDEST = RSRC1, RSRC2
Pack lower 16-bit value from each operand into
32-bit result

Table 31. SIMD logical operations summary table (Continued)

Operation Syntax Description

SIMD operations ST240

76/507 8059133

9.4.1 SIMD shuffle operations

The shuffle operations (see Table 31 on page 74) provide a set of interleaving operations
that can be applied to 8-bit and 16-bit packed data. They can be used for conversions
between different packed data formats, transposing matrices, aligning data for butterfly
operations and so on. These operations are illustrated in Figure 15.

Figure 15. SIMD shuffles

9.4.2 SIMD permute operation

The perm.pb operation performs byte permutations. The two least significant bits of the
second operand determine which byte from the first source operand is copied into the least
significant byte of the result, shown as arrows controlling the muxes in Figure 16. The next
two bits of the control (bits [3:2]) select the value for the next most significant byte of the
result and so on for all four bytes of the result. The perm.pb operation is illustrated in
Figure 16.

Figure 16. SIMD perm.pb operation

This operation can be used to replicate 8-bit and 16-bit fields throughout a packed vector. It
can also be used to reverse the order of 16-bit or 8-bit fields. Many other permutations are
possible. Examples of this operation are illustrated in Figure 17.

Figure 17. Example uses of perm.pb for replication and reversal

A3 A2 A0A1 B3 B2 B0B1

shuff.pbh result shuff.pbl result

Source 1 Source 2

A3 A2 A0A1 B3 B2 B0B1

shuffodd.pb result shuffeve.pb result

Source 1 Source 2

Ah

Source 1

Al Bh

Source 2

Bl

shuff.phh result shuff.phl result

A3 A2 A0A1

perm.pb result

Source 1 Source 2

A3 A2 A0A1

A1 A1 A1A1

Source 1 Source 2

0b01010101 A3 A2 A0A1

A0 A1 A3A2

Source 1 Source 2

0b00011011

ST240 SIMD operations

8059133 77/507

9.4.3 SIMD static extraction operations

The extraction operations, ext1.pb, ext2.pb and ext3.pb, concatenate two 32-bit source
operands to form a 64-bit intermediate result then extract a contiguous 32-bit sub-vector
from this at a specified 8-bit offset. The operation is illustrated in Figure 18.

Figure 18. SIMD static extraction operations

SIMD extraction is effectively a four operand operation: two register sources, an immediate
specifying the offset and the result register. Four operand operations are not possible, so
extract is split into three different operations, with the possible offsets of [1, 3] represented in
the opcode.

Extractions are useful for aligning adjacent data elements ready for a vertical operation, for
example, the byte averaging performed during horizontal half-pixel interpolation.

9.4.4 SIMD dynamic extraction operations

Dynamic extraction operations, extl.pb and extr.pb, use the branch registers as a third
source operand for the extraction operations, so that the offset can be dynamic rather than
static. Only the two least significant bits of the branch register are used to generate the
offset, if the offset is zero, the result is the contents of the first operand. The operation is
illustrated in Figure 19 where Offset represents the two least significant bits of the branch
register operand. extr.pb extracts bytes using big endian byte order and extl.pb extracts
using little endian byte order. As is shown, the bytes are correctly ordered for each
endianness when the correct operation is used.

Figure 19. SIMD dynamic extract operations - which bytes are extracted

These operations are useful for the handling of data misaligned with respect to the
load/store operations used to access it. This is discussed further in Section 9.4.7: Handling
unaligned data using logical SIMD operations on page 79.

A7 A6 A4A5

A4 A3 A1A2

Source 2 Source 1

A3 A2 A0A1

Offset = 1

extr.pb
(big endian)

extl.pb
(little endian)

0 1 32

4 5 76

3 2 01

7 6 45
Offset 0

0 1 32

4 5 76

3 2 01

7 6 45
Offset 1

0 1 32

4 5 76

3 2 01

7 6 45
Offset 2

0 1 32

4 5 76

3 2 01

7 6 45
Offset 3

Source 1

Source 2

Source 1

Source 2

Source 1

Source 2

Source 1

Source 2

LS
Byte

MS
Byte

MS
Byte

LS
Byte

0 1 32

1 2 43

2 3 54

3 4 65

0 1 32

1 2 43

2 3 54

3 4 65

SIMD operations ST240

78/507 8059133

9.4.5 SIMD pack operations

Four operations are provided for packing.

● packs.ph: signed 32-bit values by saturating them to a signed 16-bit range.

● packrnp.phh: signed 32-bit values by performing a rounding signed right shift down to
a 16-bit range.

This operation includes the saturation necessary to handle input values close to the
most positive integer.

● pack.pb: 16-bit values by ignoring the upper byte and packing the lower bytes
together.

● packsu.pb: signed 16-bit values by saturating them to an unsigned 8-bit range.

These operations are illustrated in Figure 20.

Figure 20. SIMD pack operations

Note: pack.ph is implemented as a macro for the shuff.phl operation.

9.4.6 SIMD selection operations

The select operations, slct.pb and slctf.pb, choose between the values in the source
operand byte fields based on the setting of the bit in the corresponding field of the branch
register. If the relevant bit of the branch register is true in a slct.pb operation the byte is
taken from the first register operand, when false it is taken from the second, slctf.pb selects
the other byte. Only byte forms are needed because the 16-bit branch compares set both
bits of the corresponding field in the branch register. This operation is illustrated in
Figure 21.

A7 A6 A4A5

 pack.pb result

Source 2 (signed
half words)

Source 1 (signed
half words)

A3 A2 A0A1 Ah

Source 2 (signed
half words)

Al Bh

Source 1 (signed
half words)

Bl

USat8 USat8USat8 USat8

 packsu.pb result

Source 2 (signed)

A

Source 1 (signed)

B

Sat16Sat16

 packs.ph result

Source 2 (signed)

A

Source 1 (signed)

B

Sat16Sat16

 packrnp.phh
result

RNP16 RNP16

>>16 >>16

ST240 SIMD operations

8059133 79/507

Figure 21. SIMD selection operations

A slctf.pb where the second operand is a register is implemented as a macro that swaps
the operands to slct.pb.

9.4.7 Handling unaligned data using logical SIMD operations

The dynamic extract operations, extl.pb and extr.pb, are useful for accessing data that is
misaligned with respect to the width of the load/store operations used to access it. The
address alignment must be placed in a branch register using a mov operation.

Unaligned loads

When synthesizing unaligned loads in a little-endian system extl.pb gives the correct
alignment behavior, but for big-endian systems extr.pb is required.

As an illustration of how the operations are used the following code fragment loads a 16-
element byte array at an arbitrarily aligned address addr into registers R1 to R5.

mov offset = addr
and addr = addr, -4
;; ##+ 2 spare slots
ldw $r1 = 0[addr]
;; ##+ 3 spare slots
ldw $r2 = 4[addr]
;; ##+ 3 spare slots
ldw $r3 = 8[addr]
;; ##+ 3 spare slots
ldw $r4 = 12[addr]
;; ##+ 3 spare slots
ldw $r5 = 16[addr]
extl.pb a0 = offset, u0, u1
;; ##+ 2 spare slots
extl.pb a1 = offset, u1, u2
;; ##+ 3 spare slots
extl.pb a2 = offset, u2, u3
;; ##+ 3 spare slots
extl.pb a3 = offset, u3, u4
;; ##+ 3 spare slots

slct.pb result

Source 1 (signed
/ unsigned bytes)

Source 2 (signed
/ unsigned bytes)

Source 3 (branch
register)

S3 S2 S0S1B3 B2 B0B1A3 A2 A0A1

SIMD operations ST240

80/507 8059133

In principal dynamic extraction operations can be combined with 64-bit loads. The issue is
that the unaligned array could start in either the upper or lower 32-bit word and the extract
sequence needs to begin with the starting word. This can be resolved either by using a
branch or, probably more efficiently, a selection operation before each dynamic extraction
operation.

Unaligned stores

Dynamic extraction operations can also be used to synthesize stores to arrays of unaligned
values, some additional pre-amble and post-amble is required to handle the words only
partially written to. By way of illustration, the following code fragment copies an integer array
to an arbitrarily aligned address on a little-endian memory system.

typedef int __attribute__((__may_alias__)) simd_int;(1)

void simd_misalign_store(
unsigned char *dst, unsigned int src[], int n)

{
simd_int *dptr = (simd_int*)((unsigned int)dst & -4);
unsigned int align = (unsigned int)dst;
simd_int start = *dptr;(2)

simd_int buffer = __st200extl_pb(align,0,start);(3)

simd_int end;
 int i;
 for (i=0; i<n ; i++)
 {

unsigned int val = src[i];
 dptr[i] = __st200extr_pb(align,val,buffer);

buffer = val;
 }

 end = dptr[n];
 end = __st200extl_pb(align,end,0);
 dptr[n] = __st200extr_pb(align,end,buffer);

}

1. Creating a type with the attribute may_alias stops the compiler assuming the dst
and dptr arrays are independent.

2. Need to load first aligned word of destination so it can be merged with first store.

3. This extract places the preserved bytes at the bottom of the alignment buffer.

ST240 SIMD operations

8059133 81/507

9.5 Summary of SIMD branch register operations
A small set of operations is used to access branch registers. These are listed in Table 32.

Table 32. SIMD logical operations summary table

Operation Syntax Description

Selection operations

slct.pb
RDEST = BSCOND, RSRC1, RSRC2

RIDEST = BSCOND, RSRC1, ISRC2

Byte select between input operands using 4-bit
condition code in branch register.

slctf.pb RIDEST = BSCOND, RSRC1, ISRC2
Byte select between input operands using
negated 4-bit condition code in branch register.

Extraction operations

extl.pb RDEST = BSCOND, RSRC1, RSRC2 Dynamic extract left operation.

extr.pb RDEST = BSCOND, RSRC1, RSRC2 Dynamic extract right operation.

Comparison operations

cmpeq.pb BDEST = RSRC1, RSRC2 Packed 8-bit test for equality.

cmpeq.ph BDEST = RSRC1, RSRC2 Packed 16-bit test for equality.

cmpgtu.pb BDEST = RSRC1, RSRC2 Packed 8-bit unsigned greater than.

cmpgt.ph BDEST = RSRC1, RSRC2 Packed 16-bit greater than.

Operations available as macros

slctf.pb RIDEST = BSCOND, RSRC1, RSRC2
Byte select between input operands using
negated 4-bit condition code in branch register.

Traps (exceptions and interrupts) ST240

82/507 8059133

10 Traps (exceptions and interrupts)

In the ST240 architecture, exceptions and interrupts are jointly termed traps. The flow
diagram, Chapter 22: Execution model on page 199 shows the behaviour of the ST240
when a trap is taken. The aim of this chapter is to describe the types of traps which may be
taken and to define the steps that are carried out when a trap is taken.

The ST240 defines two types of traps.

● Normal traps caused by program execution or interrupts.

● Debug traps caused by an external debugger requiring entry into debug mode.

10.1 Trap types
The sections that follow provide details of the different types of traps. All possible traps along
with the associated trap types are listed in Table 34: Trap types and priorities on page 84.

10.1.1 Interrupt types

There are two types of interrupts: normal interrupts and debug interrupts.

Normal interrupts

Possible sources of normal interrupts are:

● external interrupt inputs

● timer generated interrupts

● performance monitor generated interrupts

More information about normal interrupts can be found in Chapter 19: Interrupt controller on
page 163.

Debug interrupts

Debug interrupts can be raised from the following sources:

● the JTAG port under control of an external host

● a write to the RAISE_DEBUG_INT bit of DSR1

● the assertion of the trigger_in input pin

More information about debug interrupts can be found in Chapter 20: Debugging support on
page 169.

10.1.2 Exception types

Both types of exceptions include breakpoints. More information about breakpoints can be
found in Chapter 20: Debugging support on page 169.

Normal exceptions

Normal exceptions arise from program execution and from normal breakpoints. All
exceptions that are not debug exceptions fit into this category.

ST240 Traps (exceptions and interrupts)

8059133 83/507

Debug exceptions

Debug exceptions arise when debug breakpoints trigger. Debug breakpoints cause the
ST240 to enter debug mode.

10.2 Non recoverable exceptions
A class of exceptions are non-recoverable; program execution cannot continue after the
exception has been raised. Non-recoverable exceptions are described in Chapter 22:
Execution model on page 199.

10.3 Trap mechanism
The trap point is the point in the program execution where a trap occurs. All bundles
executed before the trap point have finished updating the architectural state; no architectural
state has been updated by subsequent bundles. For an exception the trap point is the start
of the bundle that caused the exception. For an interrupt, the trap point is the start of the
bundle that had its execution interrupted. Typically the interrupted bundle had begun but not
completed execution when the interrupt was raised or enabled.

In effect taking a trap can be viewed as executing an operation that branches to the required
handler. The branch has a number of side effects which are described in this chapter.

At the trap point the ST240 transfers execution to the trap handler and saves the execution
state as detailed in Section 10.7: Saving and restoring execution state on page 87. All
operations issued before the trapping bundle are allowed to complete. All operations issued
after (including the trapping bundle) are discarded. The architectural state, with the
exception of saved execution state, remains as it is at the trap point. Hence ST240 interrupts
and exceptions are precise.

10.4 Trap handling
The execution of a single bundle can result in multiple traps. The traps are prioritized as
shown in Table 34 on page 84 and only the highest priority trap is raised. Multiple traps
resulting from the execution of a single bundle do not affect the execution of other bundles.

10.5 Trap vector and priorities
When a trap is taken, a handler address is chosen from the trap vector depending upon the
trap type as shown in Table 33. Note that all normal traps cause the ST240 to jump to a
programmable address set by writing to the control register listed in the table. Debug traps
cause the ST240 to jump to the default debug handler; this is code contained within the
DSU. This handler is referred to as DEBUG_HANDLER in this chapter for convenience even
though this does not refer to an actual control register. See Section 20.4.1: Default debug
handler on page 181.

Traps (exceptions and interrupts) ST240

84/507 8059133

10.6 Trap priorities
Table 34 shows all possible traps with the handler address that each trap uses. The entries
in the table are listed in decending priority order starting with the highest priority.

Table 33. Trap vector

Handler Type Description

TRAP_TLB

Control register

This handler is used for TLB faults.

TRAP_BREAK This handler is used for normal breakpoints.

TRAP_EXCEPTION
This handler is used for normal exceptions not covered
by TRAP_TLB, TRAP_BREAK.

TRAP_INTERRUPT This handler is used for normal interrupts.

DEBUG_HANDLER
Fixed address in
DSU

This handler is used for all debug traps.

Table 34. Trap types and priorities

P
ri

o
ri

ty

Name Description

n
o

rm
al

,

d
eb

u
g

D
B

G
_E

X
C

A
U

S
E

N
O

E
X

C
A

U
S

E
N

O

sy
n

ch
ro

n
o

u
s,

as
yn

ch
ro

n
o

u
s

Handler

1 EVENT
The host has requested a debug
interrupt by sending an event
message.

debug

0

async
DEBUG_
HANDLER2 RAISE_DBG_INT

A debug interrupt has been caused
by a write to DSR1.

1

3 TRIGGER
The trigger_in pin has been
asserted.

2

4 STBUS_IC_ERROR

An STBus request caused by an
instruction cache fill or a prginsadd
or prginsset propagated to the L2
caused an STBus error.

normal

0 sync

TRAP_
EXCEPTION

5 STBUS_DC_ERROR(1)

An STBus request caused by a store
operation or by a prgadd, prgset,
invadd or flushadd propagated to
the L2 caused an STBus error.(2)

1

async

6 EXTERN_INT
An unmasked internal or external
interrupt request was received.

2
TRAP_
INTERRUPT

ST240 Traps (exceptions and interrupts)

8059133 85/507

7 DBG_IBREAK
A debug instruction address
breakpoint triggered.

debug 3

synch

DEBUG_
HANDLER

8 IBREAK
An normal instruction address
breakpoint triggered.

normal

3 TRAP_ BREAK

9 ITLB
An instruction related TLB exception
occurred.

4 TRAP_TLB

10 DBG_SBREAK
An enabled debug software
breakpoint triggered.(3) debug 4

DEBUG_
HANDLER

11 SBREAK
A normal software breakpoint
triggered.

normal

5 TRAP_BREAK

12 ILL_INST

The bundle could not be decoded
into legal sequence of operations or
a privileged operation is being
issued in user mode.

6

TRAP_
EXCEPTION

13 SYSCALL
This exception is used as a hook to
signal to the OS that user code
requires a system call.

7

14 DBG_DBREAK
A debug breakpoint on a data
address triggered.

debug 5
DEBUG_
HANDLER

Table 34. Trap types and priorities (Continued)

P
ri

o
ri

ty

Name Description

n
o

rm
al

,

d
eb

u
g

D
B

G
_E

X
C

A
U

S
E

N
O

E
X

C
A

U
S

E
N

O

sy
n

ch
ro

n
o

u
s,

as
yn

ch
ro

n
o

u
s

Handler

Traps (exceptions and interrupts) ST240

86/507 8059133

15 DBREAK
A normal breakpoint on a data
address triggered.

normal

8 TRAP_ BREAK

16 MISALIGNED_TRAP

A load or store address is not
aligned to the data width. Not thrown
for accesses to control register
space.

9
TRAP_
EXCEPTION

17 CREG_NO_MAPPING
A word load or store to control
register space was attempted which
didn't map to a valid control register.

10

TRAP_
EXCEPTION

18
CREG_ACCESS_
VIOLATION

A word load or store to a control
register was attempted without the
necessary privileges, or a byte, half-
word or long word load or store to a
control register was attempted.

11

19 DTLB
A data related TLB exception
occurred.

12
TRAP_TLB

20
DTCM_ONLY_
VIOLATION

DTCM_ONLY is set in the PSW and
a load, store, prefetch, data cache
purge or data cache invalidation
operation is executed to a memory
page which is 1. mapped as cached
in the TLB 2.outside the DTCM
address range.

13

TRAP_
EXCEPTION

21 SDI_TIMEOUT
One of the SDI interfaces timed out
while being accessed

14

22 STBUS_DC_ERROR(1)
An STBus request caused by a load
or by a sync(2) propagated to the L2
caused a bus error.

1

1. STBUS_DC_ERROR is split into two as loads will not be submitted to the STBus if any other trap has occurred on the
bundle, therefore STBus errors from loads have the lowest priority. STBus errors resulting from stores arrive
asynchronously and cannot be directly associated with the store operation which caused them.

2. The implementation may make an STBus error caused by a sync propagated to the L2 cache as priority 5 instead of 22
which means handling it asynchronously.

3. There are two cases which cause DBG_SBREAK to be thrown as an ILL_INST exception instead, see Section 20.2.3:
Software breakpoints on page 172.

Table 34. Trap types and priorities (Continued)

P
ri

o
ri

ty

Name Description

n
o

rm
al

,

d
eb

u
g

D
B

G
_E

X
C

A
U

S
E

N
O

E
X

C
A

U
S

E
N

O

sy
n

ch
ro

n
o

u
s,

as
yn

ch
ro

n
o

u
s

Handler

ST240 Traps (exceptions and interrupts)

8059133 87/507

10.7 Saving and restoring execution state
Directly following a trap, the saved execution state defines the reason for the trap and the
precise trap point in the execution flow of the ST240. Execution is resumed by executing an
rfi (return from interrupt) operation. Two levels of nested trap are possible - a debug trap
may interrupt the execution of a normal trap. For this reason the debug trap has an extra
level of state saving for the current PC and PSW.

10.7.1 Normal trap startup behavior

Taking an normal trap can be summarized as:

// Branch to the exception handler
EXCAUSE ← HighestPriorityBitNormal();
PC ← NormalExceptionHandlerAddress(EXCAUSE);

// Store information for the handler
EXCAUSENO ← HighestPriorityNumberNormal();
EXADDRESS ← ExceptAddressNormal(EXCAUSE);
TLB_EXCAUSE ← TlbExcauseValue();

// Save the PSW and PC

SAVED_PSW ← PSW;
SAVED_PC ← BUNDLE_PC;

// clear the multi-processor/multi-threaded lock
ATOMIC_LOCK[LOCKED] ← 0;

// Enter supervisor mode.
// Disable interrupts, DTCM_ONLY mode, normal breakpoints

PSW[USER_MODE] ← 0;
PSW[INT_ENABLE] ← 0;
PSW[DTCM_ONLY] ← 0;
PSW[IBREAK_ENABLE] ← 0;
PSW[DBREAK_ENABLE] ← 0;

Function definitions

NormalExceptionHandlerAddress() returns the correct handler for the trap type as
defined in Table 34: Trap types and priorities on page 84.

HighestPriorityNumberNormal() returns the number of the highest priority normal trap
from those that have been raised as defined in Table 34: Trap types and priorities on
page 84 and in Table 39: EXCAUSENO_EXCAUSENO values on page 90.

HighestPriorityBitNormal() returns 1 << HighestPriorityNumberNormal(), see
Section 10.8.1: Normal traps on page 90.

ExceptAddressNormal() defines the value that is stored into the EXADDRESS control
register as shown in Table 35.

Traps (exceptions and interrupts) ST240

88/507 8059133

Any result from ExceptAddressNormal() which is not defined to be zero is the optional
argument that is passed to THROW (see Section 23.3.5: Exceptions on page 212) when the
trap was raised.

TlbExcauseValue() defines the value that is stored into the TLB_EXCAUSE control register
as shown in Table 36.

Table 35. ExceptAddressNormal() function definition

Trap type Value

ITLB
The virtual address of the syllable which caused the ITLB
exception - see Section 11.5: EXADDRESS register or TLB
exceptions on page 105.

DBREAK

The virtual data address which caused the exception.

MISALIGNED_TRAP

CREG_NO_MAPPING

CREG_ACCESS_VIOLATION

DTLB

All other traps Zero

Table 36. TlbExcauseValue() function definition

Trap type Value

ITLB Information regarding the TLB exception which has been thrown -
see Section 11.4.11: TLB_EXCAUSE register on page 103.DTLB

All other traps Zero

ST240 Traps (exceptions and interrupts)

8059133 89/507

10.7.2 Debug trap startup behavior

Taking an debug trap is summarized in the following pseudo code:

// Branch to the debug handler
PC ← DEBUG_HANDLER;
// Store information for the handler
DBG_EXCAUSENO ← HighestPriorityDebug();
DBG_EXADDRESS ← ExceptAddressDebug(DBG_EXCAUSENO);
// Save the PSW and PC
SAVED_PSW ← PSW;
SAVED_PC ← BUNDLE_PC;
SAVED_SAVED_PC ← SAVED_PC;
SAVED_SAVED_PSW ← SAVED_PSW;

// clear the multi-processor lock
ATOMIC_LOCK[LOCKED] ← 0;
// Enter debug (supervisor) state
// Disable interrupts, DTCM_ONLY mode, normal breakpoints, TLB
PSW[USER_MODE] ← 0;
PSW[DEBUG_MODE] ← 1;
PSW[INT_ENABLE] ← 0;
PSW[DTCM_ONLY] ← 0;
PSW[IBREAK_ENABLE] ← 0;
PSW[DBREAK_ENABLE] ← 0;
PSW[TLB_ENABLE] ← 0;

Function definitions

HighestPriorityDebug() returns the highest priority debug trap from those that have been
raised as defined in Table 34: Trap types and priorities on page 84 and in Table 41:
DBG_EXCAUSENO_DBG_EXCAUSENO values on page 92.

ExceptAddressDebug() defines the value that is stored into the DBG_EXADDRESS
control register as shown in Table 37.

Table 37. ExceptAddressDebug() function definition

Trap type Value

DBG_DBREAK The virtual data address that caused the exception.

All other debug traps Zero

Traps (exceptions and interrupts) ST240

90/507 8059133

10.7.3 Restoring execution state

An rfi (return from interrupt) operation is used to restart execution. The rfi operation causes
the following state updates:

PC ← SAVED_PC;
PSW ← SAVED_PSW;
SAVED_PC ← SAVED_SAVED_PC;
SAVED_PSW ← SAVED_SAVED_PSW;
ATOMIC_LOCK[LOCKED] ← 0;
ATOMIC_LOCK[SHADOW_LOCKED] ← 0;

The saved PC and PSW values may be modified after the trap has been taken and before
executing the rfi. Therefore execution need not:

● return to the trapping bundle

● restore the PSW value which was active when the trap occurred

10.8 Determining the trap type
This section describes the causes of normal and debug traps.

10.8.1 Normal traps

The EXCAUSENO control register (Table 38) provides the cause of the last normal trap.

For backward compatibility the exception cause is also available as a bit field by reading the
EXCAUSE register. The EXCAUSE register is read only and always returns
1<<EXCAUSENO. The meaning of each value is given in Table 39, and the descriptions are
given in Table 34: Trap types and priorities on page 84.

Table 38. EXCAUSENO bit fields

Name Bit(s) Writeable Reset Comment

EXCAUSENO [4:0] RW 0x0 Specifies the trap number.

Reserved [31:5] RO 0x0 Reserved.

Table 39. EXCAUSENO_EXCAUSENO values

Name Value Comment

STBUS_IC_ERROR 0
An STBus request caused by an instruction cache
fill caused a bus error.

STBUS_DC_ERROR 1
An STBus request caused by a load or store
operation caused a bus error.

EXTERN_INT 2
An unmasked internal or external interrupt request
was received.

IBREAK 3 A normal instruction address breakpoint triggered.

ITLB 4 An instruction related TLB exception occurred.

SBREAK 5 A normal software breakpoint triggered.

ST240 Traps (exceptions and interrupts)

8059133 91/507

10.8.2 Debug traps

For a debug trap the cause is read from DBG_EXCAUSENO. The descriptions are given in
Table 34: Trap types and priorities on page 84

ILL_INST 6
The bundle could not be decoded into legal
sequence of operations or a privileged operation is
being issued in user mode.

SYSCALL 7
This exception is used as a hook to signal to the OS
that user code requires a system call.

DBREAK 8 A normal breakpoint on a data address triggered.

MISALIGNED_TRAP 9
A load or store address is not aligned to the data
width. Not thrown for accesses to control register
space.

CREG_NO_MAPPING 10
A word load or store to control register space was
attempted which did not map to a valid control
register.

CREG_ACCESS_VIOLATION 11

A word load or store to a control register was
attempted without the necessary privileges, or a
byte, half-word or long word load or store to a
control register was attempted.

DTLB 12 A data related TLB exception occurred.

DTCM_ONLY_VIOLATION 13

DTCM_ONLY is set in the PSW and a load, store,
prefetch, data cache purge or data cache
invalidation operation is executed to a memory page
which is 1.mapped as cached in the TLB 2.outside
the DTCM address range.

SDI_TIMEOUT 14
One of the SDI interfaces timed out while being
accessed.

Reserved 15-31 Reserved.

Table 39. EXCAUSENO_EXCAUSENO values (Continued)

Name Value Comment

Table 40. DBG_EXCAUSENO bit fields

Name Bit(s) Writeable Reset Comment

DBG_EXCAUSENO [2:0] RW 0x0 Specifies the debug trap number.

Reserved [31:3] RO 0x0 Reserved.

Traps (exceptions and interrupts) ST240

92/507 8059133

Table 41. DBG_EXCAUSENO_DBG_EXCAUSENO values

Name Value Comment

EVENT 0
The host has requested a debug interrupt by
sending an event message.

RAISE_DBG_INT 1
A debug interrupt has been caused by a write to
DSR1.

TRIGGER 2 The trigger_in pin has been asserted.

DBG_IBREAK 3 A debug instruction address breakpoint triggered.

DBG_SBREAK 4 An enabled debug software breakpoint triggered.

DBG_DBREAK 5
A debug data breakpoint on a data address
triggered.

RESERVED 6-7 Reserved.

ST240 Memory translation and protection

8059133 93/507

11 Memory translation and protection

The ST240 provides full memory translation and protection by means of a translation
lookaside buffer (TLB).

The TLB enables a virtual-memory based OS such as Linux to use the ST240, while also
supporting an OS that does not use virtual memory.

The ST240 memory management system permits multiple virtual address spaces. Each
virtual address space has associated with it an address space identifier (ASID).

The ST240 memory management system enables memory pages to be marked with three
different policies: cached, uncached and write combining uncached, as defined in Table 45
on page 99.

11.1 TLB overview
Table 42 provides details of the unified TLB (UTLB) and the two micro TLBs (DTLB and
ITLB).

The micro TLBs act as small caches that keep copies of the most recently used translations.
Only translations that are shared or match the current ASID are loaded into the micro TLBs.

The micro TLBs perform address translations. If an address misses either micro TLB then
the relevant micro TLB sends a request to the UTLB for the translation. If present in the
UTLB, it is transferred into the relevant micro TLB. If the translation is not in the UTLB then
an exception is raised.

When the UTLB is changed, the micro TLBs are not updated; they can be flushed under
software control by means of the TLB_CONTROL register. See Section 11.4.9:
TLB_CONTROL register on page 103.

The UTLB size can be determined either by reading the version register and the knowledge
that the ST240 UTLB contains 64 entries, or by reading the LIMIT field of the
TLB_REPLACE register after reset as shown in Table 52 on page 101.

Table 42. TLB information

TLB Size Comment

UTLB 64 entries.
Fully associative unified TLB with hardware assisted
replacement, managed by software. Stores translations
for both the instruction and data caches.

DTLB 8 entries.

Fully associative micro data TLB with hardware least
recently used (LRU) replacement, flushed by software.
The translations are used for load, store, prefetch, purge,
invalidation and flush of data addresses operations and
purge of instruction addresses.

ITLB 4 entries.
Fully associative micro instruction TLB with hardware
LRU replacement, flushed by software. The translations
are used for instruction fetch.

Memory translation and protection ST240

94/507 8059133

11.2 Address space
This section describes physical and virtual addresses.

11.2.1 Physical addresses

The ST240 TLB supports a 32-bit (4 GB) physical address space. The format of the TLB
entries allows future variants to support up to a 44-bit physical address space.

11.2.2 Virtual addresses

Virtual addresses are 32-bit. The TLB supports the use of four page sizes: 4 Kbyte, 8 Kbyte,
4 Mbyte and 256 Mbyte.

Virtual addresses above 0xFFFF0000 are mapped to control registers. TLB mappings of
these virtual addresses are ignored.

11.3 Caches
The instruction and data caches are virtually indexed and physically tagged. In both cases
the cache tag RAM lookup occurs in parallel with the TLB lookup.

The arrangement of the instruction and data caches is described in the following sections.
The only difference between the arrangement of the instruction and data caches is the
linesize.

11.3.1 Instruction cache organization

Instruction cache addressing is illustrated in Figure 22 where the cache access for a
4 Kbyte page is illustrated.

The instruction cache is 32 Kbyte 4-way set associative and built from 4 x 128 x 64 byte
lines. The cache uses a round robin replacement policy with one replacement pointer per
set of the cache.

ST240 Memory translation and protection

8059133 95/507

Figure 22. Instruction cache addressing

In Figure 22 the virtual address used to index the cache is split into three fields:

● bits that are translated: [31:12]

● cache line index bits: [12:6]

● byte offset within the cache line: [5:0]

The cache line index of the virtual address indexes the tag RAM to read the physical tags of
all cache lines in the set. The ITLB translates bits [31:12] of the virtual address to produce
the physical page address in Figure 22. Bits [31:12] of the physical page address are then
compared against bits [31:12] of all four physical tags to check for a cache hit.

As bit 12 is translated and is also used for the cache line index, it may cause aliases to be
generated, see Section 11.3.3: Virtual aliases on page 97.

Cache tag

Physical page address Byte offset in 4k page

Virtual page address

Cache row index

Virtual address

31 12 5 06

Physical address

31 12 5 06

ITLB

Cache tag
compare

Cache tag
RAM

Cache data
RAM

Data outCache hit out

11

11

Byte offset in 4k page

Byte in line

4 tags are read; one
for each line in the set

13

13

Memory translation and protection ST240

96/507 8059133

11.3.2 Data cache organization

Data cache addressing is illustrated in Figure 23 where the cache access for a 4 Kbyte page
is illustrated.

The data cache is 32 Kbyte 4-way set associative and built from 4 x 256 x 32 byte lines. The
cache uses a round robin replacement policy with one replacement pointer per set of the
cache.

Figure 23. Data cache addressing

Cache tag

Physical page address Byte offset in 4k page

Virtual page address

Cache row index

Virtual address

31 12 4 05

Physical address

31 12 4 05

DTLB

Cache tag
compare

Cache tag
RAM

Cache data
RAM

Data outCache hit out

11

11

Byte offset in 4k page

Byte in line

4 tags are read; one
for each line in the set

13

13

ST240 Memory translation and protection

8059133 97/507

In Figure 23 the virtual address used to index the cache is split into three fields:

● bits that are translated depending upon the minimum page size: [31:12]

● cache line index bits: [12:5]

● byte offset within the cache line: [4:0]

The cache line index of the virtual address indexes the tag RAM to read the physical tags of
all cache lines in the set. The DTLB translates bits [31:12] of the virtual address to produce
the physical page address in Figure 22. Bits [31:12] of the physical page address is then
compared against bits [31:12] of all four physical tags to check for a cache hit.

As bit 12 is translated and is also used for the cache line index, it may cause aliases, see
Section 11.3.3.

11.3.3 Virtual aliases

Virtual aliases occur in a virtually indexed, physically tagged cache when both the following
are true:

● the page size is smaller than the way size

● two or more virtual addresses, which map on to the same physical address, differ in
any bits used to index the cache (cache row index)

In this case there would be multiple locations caching a single physical address and
coherency would not be guaranteed. A further problem can arise when it is necessary to
remove a physical address from a cache. In the presence of a virtual alias, it may be
necessary to remove more than one cache entry.

In the ST240 virtual aliasing can occur in either the instruction cache or the data cache, only
when the 4 Kbyte page size is used.

The prevention or handling of virtual aliases is left to software. The data cache coherency
control operations (Section 12.5.4: Data cache control operations on page 122) and the
instruction cache coherency operations (Section 12.4.3: Instruction cache control
operations on page 116) may be used to remove entries (and hence aliases or potential
aliases) from the corresponding cache. Note that aliases only occur in the level 1 cache and
so the cache coherency operations which operate only on the level 1 cache should be used
for efficiency.

11.4 Control registers
A full list of control registers is provided in Chapter 15: Control registers on page 145.

11.4.1 PSW

The TLB can be enabled and disabled by a bit in the PSW (see Chapter 4: Architectural
state on page 27).

While address translation is disabled (TLB_ENABLE = 0):

● virtual addresses are not translated and are used directly as physical addresses

● all data accesses are made uncached

● no TLB exceptions are raised (except for DEBUG_VIOLATION)

● addresses from 0xFFFF0000 to 0xFFFFFFFF always access control registers and
cannot be used to access the data cache or the system memory

Memory translation and protection ST240

98/507 8059133

11.4.2 UTLB access

The 64 UTLB entries are 128 bits in size and are not directly memory mapped; only one TLB
entry is accessible at any one time and is selected by programming the TLB_INDEX
register. The selected entry is accessible using the TLB_ENTRYx (x = 0, 1, 2, 3 or 4)
registers, which are described in Section 11.4.4: TLB_ENTRY0 register on page 98 and in
the sections following.

Selecting an out-of-range UTLB register causes writes to the TLB_ENTRY registers to be
ignored and reads to return undefined results.

11.4.3 TLB_INDEX register

Table 43 shows the mapping for the TLB_INDEX register.

When the TLB_INDEX register is written, subsequent read/writes to the TLB_ENTRYx
registers are to the indicated UTLB entry.

11.4.4 TLB_ENTRY0 register

The TLB_ENTRY0 register maps bits [31:0] of the TLB entry. Table 44 lists the fields of the
TLB_ENTRY0 register, the fields are described in subsequent tables.

Table 43. TLB_INDEX bit fields

Name Bit(s) Writable Reset Comment

ENTRY [7:0] RW 0x0

Determines which of the 64 TLB
entries is mapped to the
TLB_ENTRYx registers. Writing a
value to this register that is greater
than the maximum UTLB entry
available has no effect (the UTLB is
not updated).

Reserved [31:8] RO 0x0 Reserved.

Table 44. TLB_ENTRY0 bit fields

Name Bit(s) Writable Reset Comment

ASID [7:0] RW 0x0 The ASID that owns this page.

SHARED 8 RW 0x0
True if the page is shared by multiple
ASIDs.

PROT_SUPER [11:9] RW 0x0
A three bit field that defines the
protection of this region in supervisor
mode. See Table 48.

PROT_USER [14:12] RW 0x0
A three bit field that defines the
protection of this region in user
mode. See Table 48.

DIRTY 15 RW 0x0

Page is dirty. If this bit is 0, stores to
this page (if write permission is
enabled) raise a
TLB_WRITE_TO_CLEAN exception.

ST240 Memory translation and protection

8059133 99/507

Writing zero to TLB_ENTRY0 disables the page.

Table 45 lists the possible values of the POLICY field.

Table 46 lists of the possible values of the SIZE field.

POLICY [19:16] RW 0x0
Cache policy for this page. See
Table 45.

SIZE [22:20] RW 0x0
Size of this page (also used to
disable the page). See Table 46.

PARTITION [24:23] RW 0x0
Data cache partition indicator. See
Table 47.

MP_COHERENCY_ENABL
E

25 RO 0x0

When 1, enables cache coherency
within an MP cluster for the current
TLB page, for future implementations
which support this. When 0 MP
cache coherency is disabled.

Reserved [31:26] RO 0x0 Reserved.

Table 45. TLB_ENTRY0.POLICY values

Name Value Comment

UNCACHED 0
Uncached mode. Memory access to an uncached page
accesses memory directly.

CACHED 1

Cached mode. In this mode:
– a read that misses the cache causes the cache to be

filled
– a write that hits the cache is written into the cache

– a write that misses the cache is sent to the write buffer

WCUNCACHED 2

Write combining uncached. In this mode:

– writes are sent to the write buffer

– reads access memory directly

Reserved [15:3] Reserved. Causes uncached if selected.

Table 46. TLB_ENTRY0.SIZE values

Name Value Comment

DISABLED 0 Page is disabled.

8K 1 8 Kbyte page

4MB 2 4 Mbyte page

256MB 3 256 Mbyte page

4K 4 4 Kbyte page

Reserved [7:5] Reserved. An entry here causes the page to be disabled.

Table 44. TLB_ENTRY0 bit fields (Continued)

Name Bit(s) Writable Reset Comment

Memory translation and protection ST240

100/507 8059133

Table 47 lists of the possible values of the PARTITION field (see also Section 12.5.1: L1
data cache partitioning on page 118):

Table 48 lists of the possible values of the PROT_USER and PROT_SUPER fields:

11.4.5 TLB_ENTRY1 register

The TLB_ENTRY1 register provides access to bits [63:32] of the TLB entry, the fields in this
register are listed in Table 49.

Table 47. TLB_ENTRY0.PARTITION values

Name Value Comment

REPLACE 0
Place in the way specified by the replacement
pointer and increment the replacement pointer.

WAY1 1 Place in way 1 only.

WAY2 2 Place in way 2 only.

WAY3 3 Place in way 3 only.

Table 48. PROT_USER and PROT_SUPER values

Name Value Comment

EXECUTE 1
Execute (instruction fetch and instruction cache
purge) permission.

READ 2
Read (load, prefetch, data cache purge and
invalidate) permission.

WRITE 4 Write (store) permission.

Table 49. TLB_ENTRY1 bit fields

Name Bit(s) Writable Reset Comment

VADDR [19:0] RW 0x0

The upper 20 bits of the virtual
address.

– For 256 Mbyte pages only the
upper 4 bits of this field are
significant.

– For 4 Mbyte pages only the upper
10 bits of this field are significant.

– For 8 Kbyte pages only the upper
19 bits of this field are significant.

– For 4 Kbyte pages all 20 bits are
significant.

All non-significant bits are ignored
when performing the memory
translation.

Reserved [31:20] RO 0x0 Reserved.

ST240 Memory translation and protection

8059133 101/507

11.4.6 TLB_ENTRY2 register

The TLB_ENTRY2 register provides access to bits [95:64] of the TLB entry, the fields in this
register are listed in Table 50.

11.4.7 TLB_ENTRY3 register

The TLB_ENTRY3 register maps bits [127:96] of the TLB entry, the fields in this register are
listed in Table 51. This register is reserved for future expansion of TLB attributes.

11.4.8 TLB_REPLACE register

Table 52 shows the mapping of the TLB_REPLACE register.

Table 50. TLB_ENTRY2 bit fields

Name Bit(s) Writable Reset Comment

PADDR [19:0] RW 0x0

The upper 20 bits of the physical
address.
– For 256 Mbyte pages, only the

upper 4 bits of this field are
significant.

– For 4 Mbyte pages, only the upper
10 bits of this field are significant.

– For 8 Kbyte pages, only the upper
19 bits of this field are significant.

– For 4 Kbyte pages, all 20 bits are
significant.

All non-significant bits are ignored
when performing the memory
translation.

Reserved [31:20] RO 0x0 Reserved.

Table 51. TLB_ENTRY3 bit fields

Name Bit(s) Writable Reset Comment

Reserved [31:0] RO 0x0 Reserved.

Table 52. TLB_REPLACE bit fields

Name Bit(s) Writable Reset Comment

LFSR [15:0] RW 0xffff
Random number to determine the
entry to replace next.

LIMIT [23:16] RW 0x40
Number of TLB entries to be
replaced.

Reserved [31:24] RO 0x00 Reserved.

Memory translation and protection ST240

102/507 8059133

Figure 24 shows the structure of the REPLACE register.

Figure 24. REPLACE register

Software uses the replacement register to randomly select the TLB entry to replace. The
value of the REPLACE field is generated in a pseudo-random manner using a 16-bit linear
feedback shift register (LFSR) generating a maximum length sequence (taps on bits 3, 12,
14 and 15).

A read from the TLB_REPLACE register returns the current LFSR and LIMIT values. The
LFSR is then clocked to generate a new value. The current value of the LFSR field can be
changed by writing to the TLB_REPLACE register.

The LIMIT field is reset to the number of entries in the TLB. The LIMIT field can be changed
by writing the TLB_REPLACE register. To reserve a number of entries for a fixed mapping,
software sets the LIMIT field to less than the number of entries available to the TLB.

The LIMIT field is not used by the hardware, but is included to allow the software to
determine quickly the next TLB entry to replace. A suggested replacement algorithm is:

1. Read the TLB_REPLACE control register into a general purpose register.

2. Extract the LFSR and LIMIT fields and perform an unsigned multiply of the two values.

3. Shift the result right 16 places.

4. Write the result to the TLB_INDEX register.

Step 2 can be achieved efficiently by using the mullhu operation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Load from REPLACE

LFSR

ST240 Memory translation and protection

8059133 103/507

11.4.9 TLB_CONTROL register

Table 53 shows the mapping of the TLB_CONTROL register.

Before the ITLB or DTLB are flushed, the hardware ensures that all outstanding writes to the
UTLB have completed.

11.4.10 TLB_ASID register

Table 54 shows the mapping of the TLB_ASID register.

11.4.11 TLB_EXCAUSE register

When the ST240 raises a TLB exception, the TLB_EXCAUSE register is updated. Refer to
Figure 25: Instruction access on page 107 and Figure 26: Data access on page 108 for the
prioritization of the different TLB exception types.

The possible exceptions are listed in Table 55.

Table 53. TLB_CONTROL bit fields

Name Bit(s) Writable Reset Comment

ITLB_FLUSH 0 RW 0x0

Writing a 1 to this bit flushes the
entire ITLB.
Writing a 0 to this bit has no effect.
This bit always reads as 0.

DTLB_FLUSH 1 RW 0x0

Writing a 1 to this bit flushes the
entire DTLB.

Writing a 0 to this bit has no effect.
This bit always reads as 0.

Reserved [31:2] RO 0x0 Reserved.

Table 54. TLB_ASID bit fields

Name Bit(s) Writable Reset Comment

ASID [7:0] RW 0x0
Address space identifier. Writes to
this register also cause the ITLB and
DTLB to be flushed.

Reserved [31:8] RO 0x0 Reserved.

Table 55. TLB_EXCAUSE_CAUSE values

Name Value Comment

NO_MAPPING 0
Neither the relevant microTLB nor the UTLB had a
mapping for the virtual address.

PROT_VIOLATION 1
An attempt has been made to violate the
permissions of the page.

WRITE_TO_CLEAN 2 A write to a clean page has been attempted.

MULTI_MAPPING 3
There were multiple hits in the relevant microTLB or
the UTLB. The software managing the TLB should
ensure that this does not happen.

Memory translation and protection ST240

104/507 8059133

The IN_UTLB field of TLB_EXCAUSE indicates whether the mapping which caused the
exception was present in the UTLB at the time. Full details of the IN_UTLB field are shown
in Table 56.

Access to debug resources which cause a DEBUG_VIOLATION are defined in
Section 20.1: Debug resource access on page 169.

Table 57 describes the bit fields within the TLB_EXCAUSE register.

DEBUG_VIOLATION 4
An illegal access to Debug RAM or DSRs
addresses was attempted. Set purges do not cause
this. This may be thrown when the TLB is disabled.

Reserved 5-7 Reserved.

Table 56. TLB exception causes and the IN_UTLB bit

Cause TLB is enabled?
Mapping is in

UTLB?(1)

1. It is possible for a mapping to be present in one or more microTLBs but not in the UTLB, if the software
removed a mapping from the UTLB and did not flush the relevant microTLB(s)

IN_UTLB

NO_MAPPING,
PROT_VIOLATION,
WRITE_TO_CLEAN

No N/A N/A

Yes
Yes 1

No 0

MULTI_MAPPING
No

N/A
N/A

Yes 0

DEBUG_VIOLATION

No N/A 0(2)

2. This is the only case where a TLB exception is thrown even though the TLB is disabled.

Yes
Yes 1

No 0

Table 57. TLB_EXCAUSE bit fields

Name Bit(s) Writable Reset Comment

INDEX [7:0] RW 0x0
TLB index of excepting page. Only
valid when IN_UTLB field is 1.

Reserved [15:8] RO 0x0 Reserved.

CAUSE [17:16] RW 0x0 Cause of current TLB exception.

Reserved 18 RO 0x0 Reserved.

WRITE 19 RW 0x0

1 indicates that this exception was
caused by an attempted store.

0 indicates that this exception was
caused by an attempted load, purge
or invalidation.

Table 55. TLB_EXCAUSE_CAUSE values (Continued)

Name Value Comment

ST240 Memory translation and protection

8059133 105/507

11.5 EXADDRESS register or TLB exceptions
When a DTLB exception is raised the EXADDRESS register contains the virtual address
which caused the exception.

When an ITLB exception is raised the EXADDRESS register may contain either of the
following virtual addresses, depending upon circumstances:

● the virtual address of the first syllable within the bundle that caused the exception if
either of the following is true:

– the bundle is fully contained within one TLB page

– the bundle crosses a TLB page boundary and the syllable or syllables in the lower
page cause a TLB exception

● the virtual address of a later syllable within the bundle if:

– the bundle crosses a TLB page boundary and the syllable or syllables in the lower
TLB page do not cause an exception although the first syllable in the higher TLB
page does

11.6 TLB description
The TLB functionality is controlled completely by accessing the control registers provided.

11.6.1 Reset

After reset the contents of the UTLB are undefined. Before the TLB is enabled all entries
must be programmed (or cleared) to prevent undefined behavior.

11.6.2 TLB coherency

The software must ensure coherency after making the following changes:

● changing the current ASID

● updating the UTLB

Changing the ASID

Changing the current ASID requires that all operations that may be affected by the change
are flushed from the pipeline. This is achieved by executing a syncins or an rfi.

If it can be guaranteed that no operation within the next eight bundles following the bundle
that changes the ASID are affected, then the syncins/rfi may be omitted.

IN_UTLB 20 RW 0x0

1 the virtual address of the exception
is mapped in the UTLB, and is not
multimapped. When 1 the INDEX field
is valid, when 0 it is not.

Reserved [31:21] RO 0x0 Reserved.

Table 57. TLB_EXCAUSE bit fields (Continued)

Name Bit(s) Writable Reset Comment

Memory translation and protection ST240

106/507 8059133

Updating the UTLB

Updating the UTLB requires six cycles for the change to take effect. The change does not
automatically update the micro TLBs.

If the properties of a virtual address are changed, operations in the pipeline using the old
properties may be incoherent. In this case, the relevant micro TLB and the pipeline must be
flushed to ensure coherency.

Flushing the pipeline is achieved by executing a syncins or an rfi. If updating the UTLB at
the end of an exception handler, rfi is appropriate.

The recommended sequences for ensuring coherency are shown in Table 58 and depend
upon the pipeline length. An increased pipeline length in a future implementation will
invalidate these sequences. $r1 contains the value 1-3 depending on whether the ITLB or
DTLB or both require flushing, see Section 11.4.9: TLB_CONTROL register on page 103.

The normal sequence allowing the properties of the virtual address to change may be used
to ensure coherency in any case.

Table 58. Ensuring coherency after UTLB updates

Properties of VA changed Properties of VA not changed

Normal
stw TLB_CONTROL[$r0] = $r1;;
nop;;
syncins;;

nop;;
nop;;
syncins;;

At the end of
an exception
handler

stw TLB_CONTROL[$r0] = $r1;;
rfi;;

nop;;
rfi;;

ST240 Memory translation and protection

8059133 107/507

11.6.3 Instruction accesses

Instruction accesses are always cached; the cache policy is ignored. The procedures for
accessing instructions are summarized in Figure 25.

Figure 25. Instruction access

TLB_EXCAUSE NO_MAPPING
THROW ITLB_EXCEPTION

TLB_EXCAUSE MULTI_MAPPING
THROW ITLB_EXCEPTION

TLB_EXCAUSE PROT_VIOLATION
THROW ITLB_EXCEPTION

PSW[TLB_ENABLE]?

VA UTLB hit?Yes No

Cached memory access to
PA

No

Instruction access to virtual address (VA)

VA ITLB hit?

Yes

No
Yes

VA Protection
violation? Yes

VA Multiple
hits? YesNo

Physical Address (PA) =
Virtual Address (VA)

No

PA = Translated VA

PA Debug
violation?

TLB_EXCAUSE DEBUG_VIOLATION
THROW ITLB_EXCEPTION

Yes

No

Memory translation and protection ST240

108/507 8059133

11.6.4 Data accesses

The procedures for reading and writing data are summarized in Figure 26.

Figure 26. Data access

Debug violations are described in Section 20.1: Debug resource access on page 169.

Data access to virtual address (VA)

PSW[TLB_ENABLE‘]?

TLB_EXCAUSE <- NO_MAPPING
THROW DTLB_EXCEPTION

TLB_EXCAUSE <- MULTI_MAPPING
THROW DTLB_EXCEPTION

TLB_EXCAUSE <- PROT_VIOLATION
THROW DTLB_EXCEPTION

TLB_EXCAUSE WRITE TO CLEAN
THROW DTLB_EXCEPTION

Yes

VA DTLB hit?

VA UTLB hit?
No

No

Yes

TLB_EXCAUSE DEBUG VIOLATION
THROW DTLB_EXCEPTION

Physical Address (PA) =
Virtual Address (VA)

All other VAs

Control register access
and permissions

VA in control register space

Yes

Yes

VA multiple hits?

No

VA Protection violation?
Yes

Access type Write

Read Page clean? Yes

PA = Translated VA

PA Debug violation?

Yes

TLB_EXCAUSE DEBUG VIOLATION
THROW DTLB_EXCEPTION

Yes

Cached

No

No

Yes

PA Debug violation?

Uncached memory
access to PA

Cached memory
access to PA

No

No

ST240 Memory translation and protection

8059133 109/507

11.7 Speculative control unit
The speculative control unit (SCU) filters the physical addresses of prefetches that miss the
cache to make sure that speculative STBus requests are not sent out to peripherals and
unmapped memory regions.

The SCU supports four regions of memory aligned to the smallest TLB page size (4 Kbyte).
If a prefetch operation is executed and the properties of the cache line addressed by the
prefetch are such that an STBus request is required (according to Section 12.5.2: Loads,
stores and prefetches on page 119), the SCU filters the physical address of the prefetch. If
the physical address falls within one or more of the SCU regions, the cache line requested
by the prefetch will be requested from the STBus; if not, the prefetch is silently aborted.

The regions are configured using the SCU_BASEi and SCU_LIMITi control registers, where
i = [0,3]. A region may be disabled by setting the base to be larger than the limit.

The SCU resets so each of the four regions cover the whole of memory.

11.7.1 SCU_BASEi, SCU_LIMITi registers

The SCU_BASEi register defines the physical start address of the region where prefetches
are permitted. This region is aligned to the smallest page size as only the 19 or 20 upper bits
of the address can be programmed. The base address is inclusive, so setting BASE equal
to LIMIT defines a 4 Kbyte region.

11.7.2 Updates to SCU registers

To confirm that all STBus transactions before an SCU change are made with the old
settings and all future transactions are made with new settings, a sync must be issued
before updating the SCU registers.

Table 59. SCU_BASE0 bit fields

Name Bit(s) Writable Reset Comment

BASE [19:0] RW 0x0
Represents the upper 20 bits of the
base of this region.

Reserved [31:20] RO 0x0 Reserved.

Table 60. SCU_LIMIT0 bit fields

Name Bit(s) Writable Reset Comment

LIMIT [19:0] RW 0xfffff
Represents the upper 20 bits of the
limit of this region.

Reserved [31:20] RO 0x0 Reserved.

Memory subsystem ST240

110/507 8059133

12 Memory subsystem

This chapter describes the operation of the ST240 memory subsystem and the cache
coherency control operations. The ST240 memory subsystem includes the following
components:

● L1 instruction cache

● L1 data cache

● prefetch cache

● write buffer

● optional Data-side Tightly Coupled Memory (DTCM)

● optional external unified L2 cache

The presence or absence of the DTCM is documented in the system datasheet for a
particular product, as is its size.

The memory subsystem is split broadly into two parts: the instruction side (I-side) and the
data side (D-side). The I-side supports the fetching of instructions. The D-side supports the
prefetching, storing and loading of data. Both sides support cache control operations to
allow coherency.

Cache policies for loads and stores are determined by the Translation Lookaside Buffer
(TLB), described in Chapter 11: Memory translation and protection on page 93. The use of
TLB cache policy affects coherency as described in Section 12.2: Memory coherency on
page 113.

ST240 Memory subsystem

8059133 111/507

12.1 Memory system configurations and terminology
This section discusses the two memory systems shown in Figure 27.

Figure 27. Documented memory system configurations

With reference to Figure 27 the following terminology is used to explain the operation of the
cache control operations on the memory hierarchy:

● memory: the external memory

● the lower memory system: any L2 cache and the external memory

● L1 caches: the L1 data cache and the L1 instruction cache

12.1.1 L2 cache coherency management

The ST240 supports a hardware interface for managing the coherency of an L2 cache.
When the L2 cache is managed by the hardware, the ST240 will communicate purge, flush
and invalidate requests to the L2 cache. The L2CACHE_DETAILS register (see Table 65:
L2CACHE_DETAILS bit fields on page 115) indicates whether or not the L2 cache is
managed by the hardware.

If the L2 cache is connected by a different interface, L2 cache coherency must be managed
expliclty by software. Purge, flush and invalidate requests must be communicated to the L2
cache (typically through a register interface).

ST Bus

ST Bus L2 Cache Interface

ST240 ST240

L1 D$ L1 D$L1 I$ L1 I$

External Memory

External Memory Unified L2$

Memory subsystem ST240

112/507 8059133

The ST240 memory subsystem is shown in simplified form in Figure 28.

Figure 28. Memory subsystem block diagram

With reference to Figure 28, which shows the memory subsystem hierarchy in simplified
form, the following terminology is used:

● D-side memory subsystem: the L1 data cache, the write buffer, the prefetch cache and
the optional DTCM

● I-side memory subsystem: the L1 instruction cache and any instruction fetch ahead
logic

Cache control operations are available which:

● purge, flush or invalidate data from the L1 data cache, the prefetch cache and any L2
cache (prgadd, flushadd, invadd, prgset)

● purge, flush or invalidate only the L1 data cache and the prefetch cache (prgadd.l1,
flushadd.l1, invadd.l1, prgset.l1)

● purge data from the L1 instruction cache and any L2 cache (prginsadd, prginsset)

● purge data only from the L1 instruction cache (prginsadd.l1, prginsset.l1)

● remove unexecuted syllables from the instruction fetch logic (syncins, rfi)

Write buffer

Prefetch cache

Data cache

D-side memory
subsystem

DTCM

STBus
target

S
TB

us
 d

at
a

 o
ut

S
TB

us
 d

at
a

 in

S
TB

us
 re

qu
es

t
STBus
initiator

STBus request

Load/store unit

Instruction cache
I-side
memory
subsystem

addresss,
operation type

S
TB

us
 a

rb
ite

r

STBus Data out

STBus Data in

ST240

ST240 Memory subsystem

8059133 113/507

The following terminology is used:

● standard cache control operations: cache control operations which operate on the
relevant L1 cache and any L2 cache

● L1 cache control operations: cache control operations which only operate on the
relevant L1 cache

The cache control operations are described in Section 12.4.3: Instruction cache control
operations on page 116 and Section 12.5.4: Data cache control operations on page 122.
The cache control operations are used for memory coherency as described in Section 12.2:
Memory coherency on page 113.

12.2 Memory coherency
The ST240 ensures that data accesses mapped as cached in the TLB are coherent with
other data accesses mapped as cached. The same is true of data access marked as either
uncached or write-combining uncached. There is no guarantee of coherency:

● between the I-side and D-side memory subsystems

● between the I-side and D-side memory subsystems and the optional L2 cache

● between memory pages mapped with different cache policies

● between the ST240 and memory

To ensure coherency in the cases listed above data must be purged, flushed, invalidated
and/or synchronized as covered in this section.

12.2.1 Instruction cache coherency

There are coherency issues associated with the I-side memory subsystem:

● incoherency between the L1 instruction cache, any L2 cache and the memory

● incoherency between the L1 instruction cache, the L1 data cache and any L2 cache

● incoherency between the L1 instruction cache, any L2 cache and the DTCM

● incoherency between the L1 instruction cache and fetched but unexecuted syllables

Incoherency between the L1 instruction cache, any L2 cache and memory

In this case the L1 instruction cache and (possibly) the L2 cache have incoherent copies of
the data which is up to date in the memory.

In both cases the correct solution is to execute standard instruction cache purge operations.
as described in Purging the L1 instruction cache by address on page 116. If it is known that
the L2 copy is coherent with the memory, L1 instruction cache purges may be used instead
for improved performance.

Incoherency between the L1 instruction cache, the L1 data cache and any L2
cache

In this case there is data incoherency between the L1 instruction cache, the L1 data cache
and any L2 cache. The correct data is in the L1 data cache.

● The ST240 executes standard data cache purges or flushes as described in Purging a
memory range from the data cache on page 123 or Flushing a memory range from the

Memory subsystem ST240

114/507 8059133

L1 and L2 data caches on page 124 to make the data visible to the L1 instruction
cache.

● The ST240 executes standard instruction cache purges and removes any fetched but
unexecuted syllables as described in Purging a memory range from the data cache on
page 123.

If an L2 cache is in use, the performance may be optimized by using L1 data and instruction
cache purge operations. Otherwise standard cache purge operations must be used.

Incoherency between the L1 instruction cache, any L2 cache and the DTCM

In this case there is data incoherency between the L1 instruction cache, any L2 cache and
the DTCM. The correct data is in the DTCM.

The ST240 executes standard instruction cache purges and removes any fetched, but
unexecuted syllables as described in Purging a memory range from the L1 instruction cache
and L2 cache on page 117.

Incoherency between any fetched but unexecuted syllables and the L1
instruction cache

This case is a subset of the cases listed above. Instruction cache purges have been
executed, but previously fetched syllables remain. The syllables are flushed out with a
syncins or an rfi as described in Purging a memory range from the L1 instruction cache
and L2 cache on page 117.

12.2.2 D-side coherency

There are coherency issues associated with the D-side memory subsystem:

● incoherency between the L1 data cache any L2 cache and the memory

● incoherency between the L1 data cache and the L1 instruction cache

Incoherency between the L1 data cache, any L2 cache and the memory

The ST240 has updated the L1 data cache and now the L2 cache and memory are
incoherent. To update the L2 cache, the memory range is flushed or purged (using standard
data cache operations) depending on whether the data is likely to be reused as described in
Flushing a memory range from the L1 and L2 data caches on page 124 and Purging a
memory range from the data cache on page 123. If coherency with the memory is not
required, L1 cache operations may be used.

A DMA engine has transferred data directly into the L2 cache. The ST240 makes the L1
data cache coherent by either purging or invalidating the incoherent memory range using L1
cache operations. If invalidations are used then any dirty data is discarded, so invalidation
must be used with care.

A DMA engine has transferred data into the memory. The ST240 makes the L1 data cache
and any L2 cache coherent by either purging or invalidating the incoherent memory range
using standard cache operations. If invalidations are used, any dirty data is discarded, so
invalidation must be used with care.

Incoherency between the L1 data cache and the L1 instruction cache

This case is covered in Incoherency between the L1 instruction cache, the L1 data cache
and any L2 cache on page 113.

ST240 Memory subsystem

8059133 115/507

12.3 Cache information
Information about the caches is available in the read-only registers: ICACHE_LINESIZE,
DCACHE_LINESIZE, ICACHE_SETS and DCACHE_SETS. The registers are described in
Table 61, Table 62, Table 63 and Table 64.

Table 61. ICACHE_LINESIZE bit fields

Name Bit(s) Writable Reset Comment

ICACHE_LINESIZE [31:0] RO 0x40
Number of bytes in one L1 instruction
cache line

Table 62. DCACHE_LINESIZE bit fields

Name Bit(s) Writable Reset Comment

DCACHE_LINESIZE [31:0] RO 0x20
Number of bytes in one L1 data
cache line

Table 63. ICACHE_SETS bit fields

Name Bit(s) Writable Reset Comment

ICACHE_SETS [31:0] RO 0x80(1)

1. Represents a 32 bytes instruction cache

Number of sets in the L1 instruction
cache

Table 64. DCACHE_SETS bit fields

Name Bit(s) Writable Reset Comment

DCACHE_SETS [31:0] RO 0x100(1)

1. Represents a 32 Kbyte data cache

The L2CACHE_DETAILS register indicates whether the ST240 is managing an external L2
cache. The register bit fields are described in Table 65.

Number of sets in the L1 data cache

Table 65. L2CACHE_DETAILS bit fields

Name Bit(s) Writable Reset Comment

L2_HW_MANAGED 0 RO
System
defined

When this bit is 1, it denotes that an
L2 cache is present in the system and
is managed by the ST240. When this
bit is 0, an L2 may be present in the
system, but it is the responsibility of
the software to detect and manage it.

Reserved [31:1] RO 0x0 Reserved.

Memory subsystem ST240

116/507 8059133

12.4 I-side memory subsystem
Instructions are always cached. The ST240 cannot execute uncached instructions.

12.4.1 L1 instruction cache

The instruction cache is described in Section 11.3.1: Instruction cache organization on
page 94.

12.4.2 Instruction fetch

The ST240 fetches code from the L1 instruction cache and the implementation may choose
to buffer unexecuted syllables.

The instruction cache only fetches syllables from one cache line at a time. The fetch of a
bundle that crosses a cache line boundary therefore takes two cycles. The performance
impact of the additional cycle is most visible when a branch target bundle crosses a cache
line boundary, for example, at the start of a loop or a function.

If the TLB is enabled, instruction fetch requires execute permission.

If instruction fetch reaches the end of memory, the PC will silently wrap round.

12.4.3 Instruction cache control operations

Instruction cache coherency is discussed in Section 12.2.1: Instruction cache coherency on
page 113.

Purging the L1 instruction cache by address

The prginsadd operation purges the specified virtual address from the L1instruction cache
and the L2 cache, if there is one. prginsadd.l1 only purges the L1 instruction cache. The
address is byte aligned and one full cache line is purged. The size of the cache line is
determined by the value in the ICACHE_LINESIZE register, see Table 61 on page 115.

If the virtual address passed to prginsadd or prginsadd.l1 fails, the TLB makes the checks
described in Figure 22: Instruction cache addressing on page 95 and an ITLB exception is
raised. There is a protection violation, if the page does not have execute permission; neither
read nor write permission is required.

For implementational reasons prginsadd and prginsadd.l1 use the DTLB to perform the
address translation and TLB checks.

If prginsadd or prginsadd.l1 is issued to a TLB page which is only used for instructions
and not for data, an instruction related mapping becomes present in the DTLB. Similarly
prginsadd and prginsadd.l1 will cause DTLB related performance monitors to increment
and not ITLB related performance monitors, see Chapter 21: Performance monitoring on
page 192.

ST240 Memory subsystem

8059133 117/507

Purging a memory range from the L1 instruction cache and L2 cache

To purge a memory range from the L1 instruction cache and any L2 cache, carry out the
following procedure:

1. Execute enough prginsadd operations to purge the entire memory range. The purge
address is incremented by the line size each time; the line size is stored in the
ICACHE_LINESIZE register, see Table 61 on page 115.

2. Flush the DTLB to remove any I-side mappings caused by the prginsadd operations,
see Section 11.4.9: TLB_CONTROL register on page 103.

3. Execute a syncins or an rfi to ensure that any fetched, but unexecuted syllables have
been removed.

Purging the L1 instruction cache and L2 cache by set

The prginsset operation uses bits from the address operand to obtain a cache row index,
see Section 11.3.1: Instruction cache organization on page 94. The operation then purges
all the cache lines within the set indicated by the cache row index. It also purges the
required section of any L2 cache, so that when the L1 instruction cache has been purged so
has the L2 cache. The replacement pointer of the set is reset to way zero. No translation or
TLB checks are performed on the virtual address operand.

If an L2 cache is present and the L2 cache contains coherent data, prginsset.l1 may be
used, then the purges do not affect the L2 cache. In all other cases prginsset must be
used.

To purge the instruction cache, carry out the following procedure:

1. Read the number of sets and the line size of the L1 instruction cache from the relevant
control registers, see Table 61 on page 115 and Table 63 on page 115.

2. Execute a prginsset for every set of the cache in turn. This is done by starting at zero,
and incrementing the effective operand by the line size. The number of iterations is
determined by the number of sets in the cache. The equivalent section of any L2 cache
is also purged.

3. Execute a syncins or rfi to ensure that any unexecuted instructions have been flushed
out. These operations also guarantee that the instruction cache purges have updated
the L2 cache state as seen by the ST240.

If an L2 cache is present and the L2 cache contains coherent data, prginsset.l1 may be
used for performance reasons so that the purges do not affect the L2 cache. In all other
cases prginsset must be used.

prginsset, prgset.l1 and syncins can be executed in user mode but rfi cannot.

Note: It is inevitable that the sequence to purge the instruction cache will result in instruction
cache misses. When the sequence completes the L1 instruction cache (and any L2 cache)
will not be empty, part or all of the sequence will be present.

Memory subsystem ST240

118/507 8059133

12.4.4 I-side STBus error

An L1 instruction cache refill request may cause an STBus error. An STBus error caused by
a cache refill causes the cache line allocated to the refill to be invalidated and the
replacement pointer not to be updated (so that the next fetch to the same set will allocate
the same line again).

If a bundle from the cache line that caused the error reaches writeback, an
STBUS_IC_ERROR exception is raised. Therefore I-side bus errors are synchronous
events as they relate specifically to the PC which caused the error.

12.5 D-side memory subsystem
All data accesses take place through the D-side memory subsystem.

The data cache is described in Section 11.3.2: Data cache organization on page 96.

12.5.1 L1 data cache partitioning

L1 data cache partitioning enables the data cache either to operate as normal or to have
one, two or three locked partitions, so the data cache can appear to be:

● a single 32 Kbyte four way cache (configuration 1)

● a 24 Kbyte three way cache and an 8 Kbyte direct mapped cache (configuration 2)

● a 16 Kbyte two way cache and two 8 Kbyte direct mapped caches (configuration 3)

● four 8 Kbyte direct mapped caches (configuration 4)

A combination of attributes in TLB entries and global state in the STATE1 control register
controlling the data cache replacement pointers are used to achieve the cases listed above.

The global state restricts which ways of the cache are locked; that is, which way becomes a
separate 8Kbyte direct mapped cache. Locked partitions can only be accessed by TLB
pages that have been specifically programmed to access them.

Table 66 shows how to achieve the four cases listed above.

The attributes in the TLB entries are controlled by the PARTITION field of TLB_ENTRY0
and described in Table 47: TLB_ENTRY0.PARTITION values on page 100.

Table 66. Data cache partitioning control

Config
PARTITION
in STATE1

TLB
page 0

TLB
page 1

TLB
page 2

Other
TLB

pages
Comment

1 replace 0-3 replace replace replace replace default configuration

2 replace 0-2 way 3 replace replace replace
TLB page 0 references an 8 Kbyte
locked way of the cache, other pages
are restricted to ways 0 to 2.

3 replace 0-1 way 3 way 2 replace replace
TLB pages 0, 1 each reference an 8
Kbyte locked way of the cache, other
pages are restricted to ways 0 to 1.

4 replace 0 way 3 way 2 way1 replace
TLB pages 0, 1, 2 each reference an
8 Kbyte locked way of the cache,
other pages are restricted to way 0.

ST240 Memory subsystem

8059133 119/507

Global control is achieved using the PARTITION field of STATE1, the entries in the
PARTITION in STATE1 column are described in Table 77: STATE1 bit fields on page 151.

Changing the PARTITION field of the STATE1 register does not ensure that the
replacement pointer lies in the specified range. Therefore if the global state is changed to
restrict the replacement pointers, the entire L1 data cache must be purged as described in
Purging the L1 instruction cache and L2 cache by set on page 117. This ensures that the
replacement pointer for each set of the cache is set to zero. This purging is not required if
the L1 data cache has not been used since the last reset.

The intended use of this facility is to lock part of the data cache that contains data that has
no chance of eviction.

12.5.2 Loads, stores and prefetches

This section deals with loads, stores and prefetches.

Conditional loads, stores and prefetches

All load, store and prefetch operations can optionally refer to a condition bit. If the condition
is true then the operation is executed. If the condition is not true the operation becomes a
nop with no side-effects.

The conditional operations have a c suffix. For example, the ldw operation is not
conditional, but the ldwc operation is.

Data widths

The following points apply when considering loads, stores and prefetches.

● All load and store operations work on data stored on the natural alignment of the data
type; that is, long words on long word boundaries, words on word boundaries, half-
word on half word boundaries.

● Load and store operations with misaligned addresses raise an exception that allows
the implementation of misaligned loads by trap handlers.

● For a byte or half-word load, the data from memory is loaded into the least significant
part of a register and is either sign-extended or zero extended according to the
operation definition.

● For a byte or half-word store, the data is stored from the least significant part of a
register.

● For a long word loads or stores, see Long word accesses on page 119.

Long word accesses

Long word data loads and stores access a contiguous register pair. Legal values for the first
register in the pair are 0, 2, 4, 6...60.

Note that:

● pair 0 cannot be used as a destination register for ldl or ldlc as this is the encoding for
prefetch

● if used as a source register for stl or stlc, the register pair is R0 and R0 (rather than R0
and R1) and so stl and stlc store 64-bits of 0

● register pair 62 cannot be used as a source for stl or stlc or destination for ldl or ldlc
due to restrictions accessing the link register (R63)

Memory subsystem ST240

120/507 8059133

The ldl and ldlc operations load a long word from memory:

● in little endian mode:

– bits [31:0] are stored in the low register of the pair

– bits [63:32] are stored in the high register

● in big endian mode:

– bits [63:32] are stored in the low register of the pair

– bits [31:0] are stored in the high register

The stl and stlc operations store a long word to memory:

● in little endian mode:

– the low register of the pair is stored to bits [31:0]

– the high register to bits [63:32]

● in big endian mode:

– the low register of the pair is stored to bits [63:32]

– the high register is stored to bits [31:0]

Cached loads and stores

Cached loads and stores are performed through the L1 data cache. Most cached memory
operations operate on full cache lines:

● a load miss fetches a cache line from memory

● purges, flushes and invalidations operate on cache lines

The size of the cache line is determined as shown in Table 62 on page 115.

Stores that miss the cache do not operate on a full cache line, as cache lines are not
allocated on write misses. Stores that miss the cache send the exact data width referenced
by the store operation to the write buffer, see Section 12.5.5: Write buffer on page 125.

The memory subsystem presents a consistent view of cached memory to the ST240
programmer; that is, a store followed by a load to the same address always returns the
stored data. To guarantee ordering of accesses to external memory in cached regions,
purge or flush and synchronization operations must be used, see Section 12.2: Memory
coherency on page 113.

Uncached load and stores

Uncached loads and stores are issued directly to the STBus. Data from an uncached region
of memory is never brought into the L1 data cache or prefetch cache.

The precise amount of data specified in the access is transferred and the access is not
combined with any other.

To guarantee that an uncached store has completed, either a sync operation (see
Section 12.5.3: Memory ordering on page 122) or an uncached load to the same STBus
target must be issued.(a)

a. This is true for a system using an STBus. A system using an AXI bus may not have this property, as loads and
stores to the same address may be reordered. This is the rationale behind Section 12.7: System bus
requirements on page 131

ST240 Memory subsystem

8059133 121/507

Write combining uncached loads and stores

Write combining uncached loads are equivalent to uncached loads. Write combining
uncached stores are not issued directly to the STBus, but are sent to the write buffer
instead, see Section 12.5.5: Write buffer on page 125.

Prefetching data

A pft or pftc operation is a hint to the memory subsystem that the given item of data may be
accessed in the future. In the implementation, the prefetch cache stores the prefetched data
and sends the data to the data cache when (and if) it is referenced by a load operation.
Prefetched addresses are byte aligned, therefore it is not possible to execute a misaligned
prefetch.

A prefetch is ignored (that is, treated as a nop) if either:

● it hits the data cache or the prefetch cache(b)

● it is issued when 8 other prefetches are outstanding, see Prefetch performance notes
on page 121

● the address of the prefetch:

– would cause a load operation to the same address to cause any TLB exceptions,
except for DTLB MULTIMAPPING

– maps to uncached or write combining uncached page in the TLB

– maps to control register space

– maps to the DTCM address space, if defined, see Section 12.5.6: D-side tightly
coupled memory on page 125

– does not fall into one of the valid regions in the SCU, see Section 11.7:
Speculative control unit on page 109

A prefetch that does not fall into any of these categories is issued to the STBus. A prefetch
which causes an STBus error will not raise an exception until a load is issued to the
prefetched cache line.

Prefetches can cause DTLB MULTI_MAPPING and DBREAK exceptions.

Prefetch performance notes

The prefetch cache contains eight entries, each storing one cache line of data. The prefetch
cache has an LRU (least recently used) replacement policy and will evict entries that contain
valid data when more than eight requests are made. Prefetch requests are ignored when all
eight entries are in the outstanding state (waiting for data). Therefore programs should
avoid having more than seven prefetch operations between a prefetch and a load to the
same address.

It is possible to raise a trap when prefetch evictions occur by using the
PM_EVENT_PFTEVICTIONS performance counter, see Chapter 21: Performance
monitoring on page 192.

b. This includes the case where the prefetch data is outstanding on the STBus.

Memory subsystem ST240

122/507 8059133

12.5.3 Memory ordering

To enforce the completion and ordering of memory operations, use a sync or dib operation.
One of these may be necessary after any purges, flushes or invalidations to ensure that the
D-side memory subsystem is coherent with the L2 cache and/or the system memory.

The sync operation ensures that the lower memory system is up to date with respect to
pending writes from the D-side memory subsystem. Pending writes are caused by store,
purge or flush operations.

The dib operation ensures that any pending writes from the D-side memory subsystem are
visible to the I-side memory subsystem. This includes data from cached, uncached and
write combining uncached writes.

The uniprocessor ST240 dib performs a subset of the actions of the sync operation; dib
sends all pending writes to the STBus and does not wait for responses. Therefore dib is a
performance optimization over sync. For an MP ST240 the behavior of dib will be
determined by the coherency system.

12.5.4 Data cache control operations

For discussion of data cache coherency see Section 12.2.2: D-side coherency on page 114.

Purge, invalidate and flush

The L1 purge (prgadd.l1) and L1 invalidate (invadd.l1) operations are used to ensure a
copy of a particular data item is not cached in the D-side memory subsystem. An L1 purge
operation writes dirty data back to the lower memory system and an invalidate operation
does not. Therefore if an invalidate operation is used it must be certain that any dirty data
can be safely discarded; that is, invalidation can lead to an incoherency.

The L1 flush (flushadd.l1) operation is used to ensure that cached data is consistent with
the lower memory system. Dirty data is written to memory and the cache line is retained and
becomes clean.

To ensure that purges, flushes and invalidations also operate on an L2 cache, if present, the
.l1 suffixes should be removed from the operations. Using the .l1 operations may cause
incoherences as they may not update the memory and so must be used with care.

The virtual address passed to purge, invalidation and flush operations are interpreted as
byte addresses, so it is not possible for them to be misaligned. Any of these operations
which hit the DTCM address space are executed as nops.

Purging data by address

Purging data involves removing the specified virtual address from the relevant cache or
caches. Any dirty data is written back to either the L2 cache or the memory.

The prgadd operation purges the specified virtual address from the L1 data cache and any
L2 cache. The prgadd.l1 operation only purges the L1 data cache. In both cases the
address is byte aligned and one full cache line is purged.

The size of the cache line is determined as shown in Table 62 on page 115.

If the virtual address is in control register space or if the virtual address is in DTCM space,
the purge operations have no effect. Otherwise if the virtual address fails the TLB checks
described inFigure 26: Data access on page 108, a DTLB exception is raised and the state
of the cache is not modified.

ST240 Memory subsystem

8059133 123/507

Note: There is a protection violation unless the page has read permission.

Invalidating data by address

Invalidating data involves removing the specified virtual address from the relevant cache or
caches. Any dirty data is not written back to either the L2 cache or the memory.

The invadd operation invalidates the specified virtual address from the L1 data cache, the
prefetch cache and any L2 cache. The invadd.l1 operation only invalidates the L1 data
cache and the prefetch cache. The address is byte aligned and one full cache line is
invalidated.

If the virtual address is in control register space, or in DTCM address space the invalidate
operations have no effect. Otherwise, if the virtual address passes the TLB checks
described in Figure 26: Data access on page 108, a DTLB exception is raised and the state
of the cache is not modified.

Note: There is a protection violation unless the page has read permission.

Flushing data by address

Flushing data involves removing the specified virtual address from the relevant cache or
caches. If the virtual address hits a dirty line, the dirty data is written to the write buffer and
the cache line becomes clean.

The flushadd operation flushes the specified virtual address from the L1 data cache and
any L2 cache. The address is byte aligned and one full cache line is flushed. The
flushadd.l1 operation only flushes from the L1 data cache. The address is byte aligned and
one full cache line is flushed.

If the virtual address is in control register space, or is in DTCM address space the flush
operations have no effect. Otherwise, if the virtual address passes the TLB checks
described in Figure 26: Data access on page 108, a DTLB exception is raised and the state
of the cache is not modified.

Note: There is a protection violation unless the page has read permission.

Purging a memory range from the data cache

To purge a memory range from the L1 data cache and ensure that the state of the memory
range in the L1 data cache is coherent with any L2 cache and memory, carry out the
following sequence of operations:

1. Issue enough prgadd/prgadd.l1 operations to ensure that the entire memory range is
purged from the data cache. The purge address is incremented by the line size each
time as shown in Table 62 on page 115.

2. Issue a sync to ensure that all purged dirty data has been written back to memory or
issue a dib to ensure that the data is available for instruction fetch.

Note: dib does not ensure that data is up to date in memory.

If only the L2 cache needs to be updated, L1 purges can be used (prgadd.l1). In all other
cases prgadd must be used.

Memory subsystem ST240

124/507 8059133

Invalidating a memory range from the L1 and L2 data caches

To invalidate a memory range from the L1 data cache and any L2 cache, carry out the
following operation:

1. Issue enough invadd operations to ensure that the entire memory range is invalidated.
The invalidation address is incremented by the line size each time as shown in
Table 62 on page 115.

If the purpose of the invalidation is to remove entries from the L1 data cache or prefetch
cache (or both) without affecting the L2 cache, L1 cache purges can be used (invadd.l1). In
all other cases invadd must be used.

Flushing a memory range from the L1 and L2 data caches

To flush a memory range from the L1 data cache and any L2 data cache, carry out the
following sequence of operations:

1. Issue enough flushadd/flushadd.l1 operations to ensure that the entire memory range
is flushed from the data cache. The flush address is incremented by the line size each
time as shown in Table 62 on page 115.

2. Issue a sync to ensure that all purged dirty data has been written back to memory, see
Table 67 on page 126.

If only the L2 cache needs to be updated then L1 flushes can be used (flushadd.l1). In all
other cases flushadd must be used.

Purging the L1 and L2 data caches by set

The prgset operation uses bits from the address operand to obtain a cache row index, see
Section 11.3.2: Data cache organization on page 96. This operation purges all the cache
lines within the set indicated by the cache row index and the relevant section of any L2
cache. The replacement pointer of the set is reset to way zero. No translation or TLB checks
are performed on the virtual address operand. In addition to purging a set, prgset
invalidates the entire prefetch cache.

If only the L1 data cache and prefetch cache are to be purged without affecting the L2 cache
then prgset.l1 can be used. In all other cases prgset must be used.

Carry out the following sequence of operations:

1. Read the number of sets and the line size of the data cache from the relevant control
registers, see Table 62 on page 115 and Table 64 on page 115.

2. Execute a prgset or prgset.l1 to every set of the cache in turn. This is done by starting
at zero and incrementing by the line size. The number of iterations is determined by the
number of sets in the cache.

3. Execute a sync to ensure that the all purged dirty data has been written back to main
memory or a dib to ensure that the data is available for instruction fetch.

ST240 Memory subsystem

8059133 125/507

12.5.5 Write buffer

Stores that miss the L1 data cache and dirty lines that are evicted from the cache are held in
the write buffer pending write back to the STBus. Stores to TLB pages mapped as write-
combining uncached are also held in the write buffer.

Stores to different cache policies that hit the same write buffer entry cause undefined
behavior.

The write combining behavior of the write buffer allows stores that map to the same cache
line to be merged into fewer STBus transactions.

Write buffer performance notes

The write buffer stores four entries, each holding one cache line. The replacement policy is
LRU. To avoid evictions, applications that make many stores should ensure that as many as
possible are made within three of the four available entries before storing to other memory
locations.

12.5.6 D-side tightly coupled memory

The ST240 optionally provides a block of RAM (the DTCM), which the core can access, and
which can also be accessed from the STBus using the target port as shown in Figure 28 on
page 112. The physical address is fixed and is determined by input pins.

The DTCM forms part of the system memory map. Any device connected to the STBus,
including the L1 instruction cache, is able to access the DTCM.

Load and store operations to cached TLB pages access the DTCM directly without going
through the data cache or going through the STBus. The latency of accessing the DTCM is
the same as the latency of accessing the data cache. The DTCM forms a fixed part of the
address map, and is always enabled, so it is not possible for both the data cache and the
DTCM to contain data at the same address.

DTCM and TLB behavior

The behavior for different TLB cache policies is shown in Table 68: Memory subsystem
behavior on page 128. STBus requests are made for all accesses which hit the DTCM
address space and which are not mapped as cached.

Power efficiency with a DTCM

The ST240 has a mechanism that allows software to access only the DTCM and not the
data cache; this is done in order to save power. This is achieved with a bit in the PSW called
DTCM_ONLY (as described in Section 4.4: Program status word on page 28). Any load or
store which misses the DTCM address space when DTCM_ONLY is set raises a trap. The
trap handler startup sequence automatically clears the DTCM_ONLY bit so that
DTCM_ONLY mode is disabled during the handler startup. The intention is that the handler
then returns causing the re-execution of the load or store.

DTCM access in idle mode

When the ST240 is in idle mode, it is still possible to access the DTCM without having to exit
idle mode. See Chapter 16: Low power modes on page 153.

Memory subsystem ST240

126/507 8059133

12.5.7 D-side STBus errors

An STBUS_DC_ERROR exception is raised if the D-side memory subsystem causes a
STBus error.

In the case of a load this exception is synchronous and associated with the load operation
that caused the error (even if the data was prefetched and held in the prefetch cache). An
STBus error caused by a cache refill causes the cache line allocated to the refill to be
invalidated and the replacement pointer updated. Therefore the next allocation within the
same set will not allocate the line allocated to the fetch that caused the error.

Conversely, an STBus error caused by a store operation can not be associated with the
store operation which caused it. Therefore STBus errors caused by store operations are
asynchronous. An STBus error that arrives when interrupts are disabled due to a handler
saving the current context causes the context to be overwritten. It is not possible to recover
from this condition.

The priority of these two cases are shown in Table 34: Trap types and priorities on page 84.

12.5.8 Level 2 cache support

The ST240 instruction set allows a unified L2 cache to be used as an extension of the L1
caches.

The presence of an L2 cache is made visible to the software by a control register, see
Table 65: L2CACHE_DETAILS bit fields on page 115.

If an L2 cache is supported by an ST240 implementation, the following cache control
operations act upon both the L1 and L2 caches:

prgadd, invadd, flushadd, prgset, sync, dib, prginsadd, prginsset

This allows application code which uses these operations to execute correctly whether or
not an L2 cache is present.

The cache control operations are listed in Table 67.

Table 67. Operations that are executed on the L1 or L1 and L2 caches

operation Action Example use

prgadd
Purge address from data
cache and L2 cache.

To make modified cached data visible in external
memory.

prgadd.l1
Purge address from data
cache only.

To move dynamically generated code from the
L1 data cache into L2 cache for L1 instruction
cache visibility.

prgset

Purge set from data cache,
invalidate prefetch cache.
Purge corresponding part of
L2 cache.

To purge corresponding part of the L2 cache so
that the entire L2 is purged when the entire L1
data cache is purged.

prgset.l1
Purge set from data cache,
invalidate prefetch cache.

To remove incoherent data from the L1 data
cache without affecting the L2 cache.

invadd
Invalidate address from data
cache and L2.

To invalidate a shared memory buffer before
initiating a DMA transfer into the buffer, which
overwrites the previous data.

ST240 Memory subsystem

8059133 127/507

Prefetching in the presence of an L2 cache

As mentioned in Prefetch performance notes on page 121, prefetch cache evictions can be
costly for performance. The presence of an L2 cache effectively removes the size limit of the
prefetch cache as prefetched data is also written into the L2 cache. Any limit imposed on the
number of prefetches executed for performance reasons is caused by the size and
associativity of the L2 cache.

12.5.9 Summary of D-side memory subsystem behavior

Table 68 lists the operations supported by the D-side memory subsystem and their behavior
under different cache policies. If the DTCM is not present, ignore the DTCM column. If an L2
cache is connected, it follows the behavior shown except where L1 cache control operations
are used.

It is possible to hit the data cache and the write buffer with a single cached access.
Execution of a flushadd or flushadd.l1 operation causes data to be present in both
locations, if the address operand hits the cache and the line is dirty. Subsequent access to
the address which hit both cache and write buffer cause the data cache hit to take priority.

invadd.l1
Invalidate address from data
cache only.

To remove virtual aliases from the D-side
memory subsystem. The data is re-fetched from
the L2 cache.

flushadd
Flush address from data
cache and L2.

To write data back to main memory and retain a
copy.

flushadd.l1
Flush address from data
cache only.

To ensure dirty data is written back to the L2
cache, for example, for generated code (as for
prgadd.l1 above).

dib
Ensure that all pending D-side
writes are visible for
instruction fetch

To make generated code available for instruction
fetch.

sync
Synchronize the data cache
and L2 with the system
memory.

To ensure that the system memory is up to date
following data cache flushes or purges.

prginsadd
Purge address from
instruction cache and L2
cache.

To purge incoherent data from the L1 instruction
cache and L2.

prginsadd.l1
Purge address from L1
instruction cache only.

To re-fetch code from the L2 cache into the L1
instruction cache.

prginsset
Purge set from L1 instruction
cache and corresponding part
of L2 cache.

Purge corresponding part of the L2 cache so that
the entire L2 is purged when the entire L1
instruction cache is purged.

prginsset.l1
Purge set from L1 instruction
cache only.

Purge corresponding part of the L2 cache so that
the entire L2 is purged when the entire L1
instruction cache is purged.

Table 67. Operations that are executed on the L1 or L1 and L2 caches (Continued)

operation Action Example use

Memory subsystem ST240

128/507 8059133

Write-combining uncached data in the write buffer is not defined to cause multiple hits
between write buffer and data cache or prefetch cache on a cached access. In the case that
a cached access hits a write-combining uncached entry in the write buffer the behavior is
undefined.

Table 68. Memory subsystem behavior

Operation Policy DTCM
L1
Cache

Write
buffer

Prefetch Result

Loads:
ldb, ldbu,
ldh, ldhu,
ldw, ldl,
ldbc,
ldbuc,
ldhc,
ldhuc,
ldwc, ldlc

Uncached
Miss

Miss

Miss Miss Load uncached from STBus.

Hit Behavior is architecturally
undefined

Hit

Hit clean

Hit dirty

Hit Load uncached from STBus.

Loads:
ldb, ldbu,
ldh, ldhu,
ldw, ldl,
ldbc,
ldbuc,
ldhc,
ldhuc,
ldwc, ldlc

WC
uncached

Miss

Miss

Miss
Miss Load uncached from STBus.

Hit
Behaviour is architecturally
undefined

Hit
Flush write buffer entry. Load
uncached via STBus.

Hit clean Behaviour is architecturally
undefinedHit dirty

Hit Load uncached from STBus.

Stores:
stb, sth,
stw, stl,
stbc, sthc,
stwc, stlc

Uncached
Miss

Miss

Miss Miss Store uncached to STBus.

Hit Behaviour is architecturally
undefined

Hit

Hit clean

Hit dirty

Hit Store uncached to STBus.

Stores:
stb, sth,
stw, stl,
stbc, sthc,
stwc, stlc

WC
Uncached

Miss

Miss

Miss
Miss Store to write buffer.

Hit
Behaviour is architecturally
undefined.

Hit

Store to write buffer.

If hit entry contains cached
data then behaviour is
architecturally undefined

Hit clean Behaviour is architecturally
undefined.Hit dirty

Hit Store uncached to STBus.

ST240 Memory subsystem

8059133 129/507

Loads:
ldb, ldbu,
ldh, ldhu,
ldw, ldl,
ldbc,
ldbuc,
ldhc,
ldhuc,
ldwc, ldlc

Cached
Miss

Miss

Miss

Miss
Fill cache line from STBus,
Load data from cache

Hit
Transfer data to cache. Load
data from cache

Hit

If write buffer entry contains
cached data then flush write
buffer line, Fill cache line, Load
data from cache.

If write buffer entry contains
wc-uncached data the
behaviour is undefined.

Hit clean
Load data from cache

Hit dirty

Hit Load data from DTCM

Stores:
stb, sth,
stw, stl,
stbc, sthc,
stwc, stlc

Cached
Miss

Miss

Miss

Miss Store data to write buffer

Hit
Discard prefetch cache entry,
Store data to write buffer

Hit

Store data to write buffer.

If write buffer entry contains
wc-uncached data the
behaviour is architecturally
undefined

Hit clean
Store data to cache and make
cache line dirty

Hit dirty Store data to cache

Hit Store data to DTCM

prgadd
prgadd.l1

All
Miss

Miss
Miss

Miss No effect

Hit Discard prefetch cache entry

Hit No effect

Hit clean Invalidate cache line

Hit dirty

Purge cache line to write
buffer. Invalidate cache line.

If purged data hits a write
buffer entry which contains wc-
uncached data the behaviour is
architecturally undefined.

Hit No effect

Table 68. Memory subsystem behavior (Continued)

Operation Policy DTCM
L1
Cache

Write
buffer

Prefetch Result

Memory subsystem ST240

130/507 8059133

prgset All

Purge cache lines in set (dirty
data is sent to the write buffer).
Invalidate cache lines. Discard
all prefetch cache entries.
Reset replacement pointer to
way 0.

If purged data hits any write
buffer entries which contain
wc-uncached data the
behaviour is architecturally
undefined.

invadd
invadd.l1

All
Miss

Miss
Miss

Miss No effect

Hit Discard prefetch cache entry

Hit No effect

Hit clean
Invalidate cache line

Hit dirty

Hit No effect

flushadd or
flushadd.l1

All
Miss

Miss
Miss

Miss

No effect
Hit

Hit

Hit clean

Hit dirty

Send data to write buffer. Make
cache line clean.
If flushed data hits a write
buffer entry which contain wc-
uncached data the behaviour is
architecturally undefined.

Hit No effect

dib All
Ensure that all pending d-side
writes are made visible to the
instruction fetch mechanism.

sync
Flush entire write buffer to
memory, wait for all STBus
transactions to complete.

Table 68. Memory subsystem behavior (Continued)

Operation Policy DTCM
L1
Cache

Write
buffer

Prefetch Result

ST240 Memory subsystem

8059133 131/507

12.6 Reset state
After reset, all lines in the L1 instruction cache and L1 data cache are marked as invalid.
The write buffer and prefetch cache entries are marked as empty. The contents of the
DTCM are not altered on reset.

12.7 System bus requirements
The D-side memory subsystem can be used with system buses other than the STBus. Any
system bus connected to the ST240 must not reorder reads and writes to the same STBus
target.

pft, pftc

Cached
Miss

Miss
Miss

Miss

Check the address in the SCU.
if it misses the SCU: The
prefetch is discarded
If it hits the SCU: Issue a fetch
to the STBus for the relevant
cache line

Hit

Prefetch is discarded

Hit

Hit

Hit

Uncached,
WC
Uncached

Table 68. Memory subsystem behavior (Continued)

Operation Policy DTCM
L1
Cache

Write
buffer

Prefetch Result

Multi-processor and multi-threading support ST240

132/507 8059133

13 Multi-processor and multi-threading support

The ST240 architecture supports cache-coherent multi-processing (MP) and multi-threading
(MT). It achieves this by providing operations to allow atomic sequences (ldwl, stwl and
waitl), a write memory barrier operation (wmb) and a data/instruction barrier (dib).

The architectural state in this chapter only covers the uniprocessor (UP) case. Further
architectural state is required for either an MP or an MT implementation.

13.1 Atomic sequence
Atomic read, write and wait operations are available. They are used to enable efficient
locking of a item of data in an MP cache coherent system, or when executing multiple
hardware threads on a single MT core.

13.1.1 Atomic sequence control register

The following sections reference the LOCK_ADDRESS control register and a lock. The lock
refers to the LOCKED bit of the LOCK_ADDRESS register.

The lock address, stored in the ATOMIC_ADDRESS control register, is aligned to a data
cache line (32-bytes) to be consistent with an MP coherency system. Unused words in the
cache line assigned to lock addresses may be used for other purposes, but updating them
clears the locks of other processors or hardware threads as described later in this chapter.

13.1.2 Atomic sequence

The load word linked (ldwl) and store word conditional linked (stwl) operations perform the
atomic read, modify and write of a word of data. The wait for link (waitl) operation is used to
make the atomic sequence more efficient.

The execution of an ldwl operation sets the lock. When an stwl is executed the lock is
tested.

● If set, then the store succeeds, the cache line is updated, success is indicated to the
software and the lock is cleared.

● If clear, then the store fails, the cache line is not updated and failure is indicated to the
software.

The lock may have been cleared for any of the reasons listed in Section 13.1.3: Lock
clearing mechanisms on page 133.

Table 69. LOCK_ADDRESS register bit fields

Name Bit(s) Writable Reset Comment

SHADOW_LOCKED 0 RO 0x0
0: the shadow lock is not set

1: the lock is set

LOCKED 1 RO 0x0

Lock status.

0: the lock is not set
1: the lock is set

Reserved [4:2] RO 0x0 Reserved.

ST240 Multi-processor and multi-threading support

8059133 133/507

The code below can be used to implement a simple atomic increment sequence.

atomic_increment::
load the value from r2 (the lock address) and set the lock
ldwl $r1 = [$r2]
;;
increment the value
add $r1 = $r1, 1
;;
attempt to store the new value. If address r2 has been modified
by someone else, the store will fail
stwl $b0, [$r2] = $r1
;;
The store failed (someone else updated address r2) so try again
brf $b0, atomic_increment
;;

This code fragment is included to demonstrate the basic operation and is suitable for a UP
core which needs to detect whether a sequence has been interrupted. Section 13.1.6:
Atomic sequence code on page 134 contains some suggested code for real-world use in an
MP or MT system.

In the case of a failure, the software then executes the read, modify, write sequence again
until the write succeeds. This sequence can be costly if several MP cores are attempting to
gain the same lock at once; both in terms of active power of tightly executing a short
sequence of code attempting to gain the lock and in coherency traffic. In an MT system it is
useful for efficiency reasons to have a scheme for descheduling a thread which is waiting for
a lock as otherwise the thread will continue execution with no chance of gaining the lock.
Therefore the wait for link (waitl) operation is provided. This causes execution to stall until
the lock becomes available in an MP core system. In an MT core waitl causes the issuing
thread to be descheduled. In a UP waitl is a nop.

Note that multiple cores or hardware threads can have multiple locks set at once. Only the
first core or hardware thread to write to the lock address succeeds and invalidates all other
locks to the same lock address. For this reason writes from stwl operations must be strictly
ordered.

A UP has only one lock.

13.1.3 Lock clearing mechanisms

The following events clear a lock.

● Any remote MP core executing any store operation to the lock address, where the store
is to a TLB page mapped both as cached and as participating in the coherency system,
see Section 13.1.6: Atomic sequence code on page 134.

● Any hardware thread executing any store operation to the lock address clears the lock
of all hardware threads with matching lock addresses except for the issuing hardware
thread, see Section 13.1.6: Atomic sequence code on page 134.

● Any trap (exception or interrupt).

● Execution of an rfi or stwl operation by the local MP core, issuing hardware thread or a
UP.

Only the last two points are relevant to the UP. See Section 10.7: Saving and restoring
execution state on page 87 for more information on these last two points.

Multi-processor and multi-threading support ST240

134/507 8059133

13.1.4 Lock clearing on trap and rfi

The lock is cleared on an interrupt to ensure that when the interrupt handler starts, the lock
is not set. This is to prevent the following cases in an MP or MT system.

● If an ldwl/stwl sequence is interrupted and the interrupt handler restores execution to
another ldwl/stwl sequence and the lock has not been cleared since being set by the
first sequence, then the second sequence may falsely see a granted lock as it may
have been attempting to lock a different address.

● If a kernel routine incorrectly returns to an ldwl/stwl sequence without having cleared
the lock, then the sequence may falsely see a granted lock as it may have been
attempting to lock a different address.

Additionally in the UP case ldwl/stwl are used to detect whether the execution of a piece of
code has been interrupted. Therefore clearing the lock on interrupt or rfi is required.

13.1.5 Shadow lock

The ldwl, stwl, rfi and other store operations modify the SHADOW_LOCK bit of
LOCK_ADDRESS in the same way as the lock is modified as described in Section 13.1.3:
Lock clearing mechanisms on page 133. Trap startup, however, does not clear the shadow
lock. This is to enable a deadlock caused by all processors or threads waiting for the same
lock to be detected. The shadow lock is only provided to improve debug.

13.1.6 Atomic sequence code

A UP, MP or MT core can use the code fragment later in this section to implement locking of
shared resources. Two levels of locks are used: a hardware lock and a software lock.

The software lock overrides the hardware lock. When the software lock is set, the hardware
lock is irrelevant and must not be used. When the software lock is clear the hardware lock is
used to gain the software lock.

The software lock is based upon the value stored at the lock address. A software convention
is used in the example code to indicate whether the lock is set (SPIN_LOCK_HELD_VALUE)
or if the lock is available (SPIN_LOCK_AVAILABLE_VALUE). The value of the software lock
is loaded with an ldwl. If the software lock is set, no attempt is made to modify the data
stored at the lock address (no stwl follows the ldwl) and a waitl is issued for efficiency. If
the software lock is available, an stwl is used to attempt to claim the software lock.

If the software lock has already been taken, an ldwl must not be followed by a stwl.

Figure 29 is the software and hardware lock flowchart. In the diagram the software lock is
represented by SL and the hardware lock by HL. A question mark (?) indicates that the
value of the lock is not known at that point.

ST240 Multi-processor and multi-threading support

8059133 135/507

Figure 29. Software and hardware lock flow chart

Note that in Figure 29 an stw is used to clear the software lock. This is because the
hardware lock is clear at that point and so an stwl fails. The stw is required to clear the
locks of all other hardware threads in the MT case and all other processors in the MP case,
and therefore restarts execution in other threads/processors that have executed waitl
operations. It is not required to clear the local hardware lock which is already clear at this
point. Therefore this architecture chooses not to clear the hardware lock of the local MT
hardware thread or the local MP core following a non stwl store to the lock address to
simplify the implementation (any store operation excluding stwl).

SL = ?
HL = 0
start

Initial state:
SL = ?
HL = 0

issue ldwl to read
software lock

SL is set?

SL = 1
HL = 1

issue waitl

SL = 0
HL = 1

issue stwl to try to
claim software lock

stwl succeeds?

SL = 0
HL = 0
retry

SL = 1
HL = 0

software lock is held

SL = 1
HL = 0

make critical updates

SL = 0
HL = 0
finish

yes

yes

no

no

SL = 1
HL = 0

stw 0 to lock address

Multi-processor and multi-threading support ST240

136/507 8059133

In the code fragment LOCK_ADDRESS_RG is the register which contains the lock address.

__MP_spin_lock::
load from the lock address and set the lock bit
ldwl $r1 = [LOCK_ADDRESS_RG]
;;
if someone else has the software lock, indicated by $r1 =
SPIN_LOCK_HELD_VALUE then don’t attempt an stwl. The hardware
lock may be set, and so the stwl may overwrite the software
lock (although the value is the same). Also not executing an
stwl reduces MP coherency traffic
##
cmpeq $b0 = $r1, SPIN_LOCK_HELD_VALUE
mov $r2 = SPIN_LOCK_HELD_VALUE
;;
wait as someone else has the software lock
br $b0, __MP_spin_lock_wait
;;
attempt to use the hardware lock to claim the software lock
stwl $b0, [LOCK_ADDRESS_RG] = $r2

 ;;
did we get the hardware and software lock? If not retry.
brf $b0, __MP_spin_lock
;;
LOCK_ADDRESS is set to SPIN_LOCK_HELD_VALUE
so no-one else will try to update it
other processors or hardware threads will execute waitls
until the stw below clears their hardware locks
<critical code section>
;;
this is a normal store which will clear the hardware lock
of other hardware threads/processes. An stwl would fail
as the lock hardware lock was cleared by the stwl above
stw [LOCK_ADDRESS_RG] = SPIN_LOCK_AVAILABLE_VALUE
;;
function complete
return $r63
;;

__MP_spin_lock_wait:
we'll exit wait state when hardware lock is cleared by another
core or hardware thread.
waitl
;;
wait state has exited as the hardware lock has been cleared
restart lock acquisition sequence
goto __MP_spin_lock
;;

ST240 Multi-processor and multi-threading support

8059133 137/507

13.1.7 Atomic sequence semantics

ldwl

When a ldwl operation is executed:

● if the virtual address is in control register space, a CREG_ACCESS_VIOLATION is
raised

● if no control register exceptions are raised, TLB checks are performed as defined in
Figure 26: Data access on page 108

● if no exceptions are raised:

– in the MP or MT case the physical address of the ldwl is stored to the upper bits of
the LOCK_ADDRESS register (for a UP this does not occur)

– the lock is set

stwl

When a stwl operation is executed:

● if the virtual address is in control register space, a CREG_ACCESS_VIOLATION is
raised

● if no control register exceptions are raised, TLB checks are performed as defined in
Figure 26: Data access on page 108

● if no exceptions are raised the lock is tested

● if the lock is set:

– the stwl is executed as normal and the destination branch register is set to true

– in the MP case the lock of all other processors that have a lock address that
matches the address operand passed to stwl are cleared

– in the MT case the lock of all hardware threads other than the issuing thread that
have a lock address that matches the address operand passed to stwl are cleared

– in the UP case there is no additional behavior

● if the lock is clear:

– the stwl is not performed and the destination branch register is set to false

● the lock is always cleared

Note: stwl never checks the lock address.

Other store operations

When a store operation that is not an stwl is executed:

● if the virtual address is in control register space, a CREG_ACCESS_VIOLATION or
CREG_NO_MAPPING may be raised, Table 75: Control register spaces access
exceptions on page 145

● if no control register exceptions are raised then TLB checks are performed as defined
in Figure 26: Data access on page 108

● in the MP case, if the store address matches the lock address of any other processor,
the lock of that processor is cleared

● in the MT case, if the store address matches the lock address of any other hardware
thread, the lock of that hardware thread is cleared

● in the UP case, the lock is not modified

Multi-processor and multi-threading support ST240

138/507 8059133

waitl

When a waitl operation is executed:

● in the MP case, the lock is tested

– if set, waitl stalls until either the lock is cleared or until an interrupt occurs

– if clear, waitl is executed as a nop

● in the MT case, the lock is tested

– if set, the issuing hardware thread deschedules and will not reschedule until either
the lock is cleared or until an interrupt occurs

– if clear, waitl is executed as a nop

● in the UP case, waitl is always executed as a nop

13.2 Write memory barrier
In the MP case wmb ensures that all pending memory writes have been broadcast to the
coherency system and that the broadcasts have been acknowledged. The write buffer is
also flushed to the STBus.

In the MT and UP cases wmb is a nop with no side effects.

13.3 Data/instruction barrier
In all cases dib ensures that all memory writes from all data-side memory subsystems are
visible to all instruction-side memory subsystems.

In the UP and MT case dib causes all pending writes to be sent to the STBus and
completes without waiting for the responses to be received. In the MP case the exact
function of dib depends on the coherency system.

13.4 Operation summary
Table 70 summarizes the behavior of each operation in each use case.

Table 70. Summary of operation behavior for MP, MT and UP

MP MT UP

ldwl Load word and set lock.

stwl (lock is set)

Store word. Clear lock of
all other processor s that
have a lock on the same
lock address.

Store word. Clear lock of
all other hardware
threads that have a lock
on the same lock address

Store word and clear
lock.

stwl (lock is clear) Do not store word.

non stwl store

Store data and clear lock
of all other processors, if
store address matches
lock address.

Store data and clear lock
of all other hardware
threads, if store address
matches lock address.

Store data.

waitl (lock is set) Prevent execution until lock is cleared or interrupted. Executed as a nop(1).

ST240 Multi-processor and multi-threading support

8059133 139/507

13.5 Address translation
In the MP and MT cases, issuing ldwl operations with the TLB enabled causes the
translated address to be written to the LOCK_ADDRESS register. This is a side effect of the
atomic sequence support and can be used to perform virtual to physical address translation
in a convenient way.

13.6 Control registers for MP support
The following control registers or control register fields are available for an MP core. MP
implementations may support some or all of the features listed. The UP core has all
referenced fields as zero and read only.

● The ID of the current core is read from the MP_CORE_ID register, see Section 15.4:
MP core ID register on page 151.

● Cache coherency may be enabled and disabled on a page by page basis, see
Section 11.4.4: TLB_ENTRY0 register on page 98.

waitl (lock is clear) Executed as a nop.

wmb

Broadcast all
outstanding memory
writes and wait for
responses.

nop

dib

Broadcast all
outstanding memory
writes and make the
writes visible to all I-side
memory subsystems.

Send all pending writes to STBus. Ensure
visibility of resulting data to I-side memory
subsystem.

1. A UP may either execute waitl as a nop or prevent execution until the lock is cleared or interrupted as
for an MP or MT core. The first implementation of the ST240 executes waitl as a nop; future MT/MP
implementations running in UP mode will prevent execution until the lock is cleared or interrupted.

Table 70. Summary of operation behavior for MP, MT and UP (Continued)

MP MT UP

Streaming data interfaces ST240

140/507 8059133

14 Streaming data interfaces

The streaming data interfaces (SDI) provide a mechanism for attaching the ST240 to an
external device that needs to transfer large amounts of data. Use of the SDI interfaces
enables the ST240 to access the data without going through the data cache. Therefore SDI
usage reduces data cache pollution, STBus traffic and does not require data cache misses
to be serviced to load the data from the external device.

The ST240 implements four unidirectional SDIs: SDI 0 and 1 are inputs and SDI 2 and 3 are
outputs. 32-bit data is transferred through these SDI “channels”.

The SDIs are accessed using control registers. In the naming of the control registers, i =
[0,3]. Reads from the relevant SDIi_DATA register read from an input channel and stall if no
data is available. Writes to the relevant SDIi_DATA register write to an output channel and
stall if the channel is full. The stalls caused by these two cases may be either interrupted or
timed out.

Data is communicated in order, in both directions. The n-th data item communicated arrives
after the (n - 1)th item and before the (n + 1)th data item.

14.1 SDI control registers
See Chapter 15: Control registers on page 145 for the address of the control registers. By
default none of the registers may be accessed in user mode. The bit fields of the
SDIi_CONTROL registers(i = 0 to 3) are shown in Table 71 and Table 72. Note that Table 71
applies to SDI0_CONTROL and SDI1_CONTROL and Table 72 applies to SDI2_CONTROL
and SDI3_CONTROL. All other registers contain a single 32-bit bit field.

Table 71. SDI0_CONTROL bit fields

Name Bit(s) Writable Reset Comment

PRIV [1:0] RW 0x0 Privilege bits.

RESETINPUT 2 RO 0x0
RESETINPUT acts as
RESETREQUEST when slave,
RESETACK when master.

RESETOUTPUT 3 RW 0x0
RESETOUTPUT, acts as
RESETREQUEST when master,
RESETACK when slave.

INPUTNOTOUTPUT 4 RO 0x1 INPUTNOTOUTPUT.

Reserved 5 RO 0x0 Reserved

MASTERNOTSLAVE 6 RO
System
defined

MASTERNOTSLAVE.

TIMEOUTENABLE 7 RW 0x0

Time out enable and disable:

1: disable time out exceptions

0: enable time out exceptions.

Reserved [31:8] RO 0x0 Reserved

ST240 Streaming data interfaces

8059133 141/507

The definition of the PRIV field is shown in Table 73.

Input and output channels have the same set of control registers. The definition of some
registers vary depending on the direction of the channel as shown in Table 74. All registers
in Table 74 reset to zero.

The access column shows the access rights in user, supervisor and debug mode:

Where only one value is listed in the Access column it refers to all three modes. Where two
values are listed the second value refers to supervisor and debug mode.

Table 72. SDI2_CONTROL bit fields

Name Bit(s) Writable Reset Comment

PRIV [1:0] RW 0x0 Privilege bits.

RESETINPUT 2 RO 0x0
RESETINPUT acts as
RESETREQUEST when slave,
RESETACK when master.

RESETOUTPUT 3 RW 0x0
RESETOUTPUT acts as
RESETREQUEST when master,
RESETACK when slave.

INPUTNOTOUTPUT 4 RO 0x0 INPUTNOTOUTPUT.

Reserved 5 RO 0x0 Reserved.

MASTERNOTSLAVE 6 RO
System
defined

MASTERNOTSLAVE.

TIMEOUTENABLE 7 RW 0x0

Time out enable and disable.

1: disables time out exceptions

0: enables time out exceptions

Reserved [31:8] RO 0x0 Reserved.

Table 73. SDIi_CONTROL_PRIV values

Name Value Comment

PRIV_NOUSER 0 Access only allowed in supervisor mode.

PRIV_USER 1 Allow user access to data and ready register.

Reserved 2-3 Reserved (defaults to privilege no user).

NA No access, any access cause a CREG_ACCESS_VIOLATION

RO Read only, writes silently ignored

RW Read/write

CF Configurable read/write or no access

CFRO Configurable read only (writes silently ignored) or no access

Streaming data interfaces ST240

142/507 8059133

 .

14.2 Exceptions, interrupts, reset and restart
This section describes interrupts, time outs and restarts (soft resets).

14.2.1 Interrupts

Stalls due to SDI accesses can be interrupted. In effect, the bundle attempting to access the
SDI is trapped before being executed. If the bundle is re-executed before the channel has
become available, the bundle stalls again. Availability of the channel can be checked in the
handler by checking that the value of SDIi_TIMEOUT has been reset to the value stored in
SDIi_COUNT, or by checking that SDIi_READY is non zero.

14.2.2 Time outs

Stalls due to SDI accesses may time out. In effect, the bundle attempting to access the SDI
traps before being executed. If the bundle is re-executed before the channel has become
available, the bundle is trapped again. To avoid this, the handler should first check channel
availability by checking if the value of SDIi_TIMEOUT has been reset to the value stored in
SDIi_COUNT, or by checking that SDIi_READY is non zero. If the channel is still
unavailable, the handler should write a non zero value to the SDIi_TIMEOUT register before
re-executing the bundle.

The time out exception is generated by the ST240 and not by the channel.

Table 74. SDI control registers

SDI register Access Definition

SDIi_CONTROL NA/RW
Used to configure the SDI including enabling/disabling
time outs as shown in Table 71.

SDIi_TIMEOUT NA/RW

The number of cycles an SDI data access is allowed to
stall before the channel times out raising an
SDI_TIMEOUT exception. The channel becoming
available for input or output causes this value to be
reset to the value stored in SDIi_COUNT. Reads zero
after the channel times out.

SDIi_COUNT NA/RW
The value written into SDIi_TIMEOUT after successful
SDI accesses.

SDIi_DATA CF/RW

For an input channel:
Input channel data register. A reads stalls if not data is
available. Writing to register has no effect.
For an output channel:
Output channel data register. A write stalls if the
channel is full. Reading from the register returns zero.

SDIi_READY CFRO/RO

For an input channel:
Whether a slot is available to be read from the input
channel. Resets to 0.

For an output channel:
Whether a slot is available to be written to in the output
channel. Resets to 1.

ST240 Streaming data interfaces

8059133 143/507

14.2.3 Restart (soft reset)

An SDI interface can have the ST240 as the master or slave. The only distinction is related
to resetting the channel.

If the ST240 is a master, the reset sequence is as follows:

● the software writes a 1 to the RESETREQUEST bit in SDIi_CONTROL

● the reset is acknowledged by RESETACK being asserted (the software polls for this bit
being set)

● the software clears RESETREQUEST

● the software polls for RESETACK being cleared

If the ST240 is a slave then the sequence is reversed. The software on the ST240 must
check for RESETREQUEST being asserted, and then drives RESETACK accordingly.

After an SDI reset any data buffered by the core is discarded, consequently:

● an output channel becomes available

● an input channel becomes empty

During the reset sequence the SDIi_READY and SDIi_DATA registers should not be
accessed as the values read are implementation dependant. The reset sequence does not
affect the contents of the SDIi_TIMEOUT and SDIi_COUNT registers.

The reset sequence is as follows:

The reset control structure is illustrated in Figure 30.

1. Master requests reset
Subsystem resets itself and consumes all data presented at inputs.
RESETREQUEST is forwarded to other slave side subsystems.

2. All units in reset
After subsystem has reset itself AND all slave side subsystems
have sent RESETACK, RESETACK can be forwarded to master.

3. Master requests leave reset
Unit forwards removal of RESETREQUEST to all slave-side
subsystems. Unit leaves reset and stops consuming data.

4. All units out of reset
On receipt of RESETACK from all subsystems, RESETACK is
forwarded to master. System can restart.

Streaming data interfaces ST240

144/507 8059133

Figure 30. Soft reset control structure

ST240 Control registers

8059133 145/507

15 Control registers

The ST240 control registers contain architectural state information that is not typically
accessed by application code. This includes the TLB, PSW, exception registers and
breakpoint registers.

The ST240 can only access control registers with word load and store operations. Control
registers are not accessible from the STBus.

The control register space is defined by the range of virtual addresses from 0xFFFF 0000 to
0xFFFF FFFF.

Control register loads or stores are executed without reference to the TLB as shown in
Figure 26: Data access on page 108.

15.1 Exceptions
Table 75 shows which operations may access control registers and the causes of the two
related exceptions for illegal accesses.

15.2 Control register addresses
Table 76 shows the addresses and access permissions of all control register addresses.
The addresses are all relative to 0xFFFF 0000.

The access column shows the access rights in user, supervisor and debug mode:

Table 75. Control register spaces access exceptions

Operation Legal cases
CREG_ACCESS_
VIOLATION

CREG_NO_MAPPING

ldw, ldwc, stw, stwc
Aligned address that
maps to a control
register

The operation does not
have the correct access
permissions, see
Section 15.2.

Either:

– the address is
misaligned

– aligned address that
maps to a control
register that does not
exist

All other loads and
stores

None All None

NA No access, any access cause a CREG_ACCESS_VIOLATION

RO Read only, writes silently ignored

RW Read/write

CF Configurable read/write or no access

CFRO Configurable read only (writes silently ignored) or no access

Control registers ST240

146/507 8059133

Table 76. Control registers - BASE: CREG_BASE

Name Offset
Access
(U/S/D)

Reset Comment

DBG_BT_DEST7 0x0b48 NA/NA/RO Not reset
Branch trace buffer entry 7
destination PC

DBG_BT_SRC7 0x0b50 NA/NA/RO Not reset
Branch trace buffer entry 7 source
PC

DBG_BT_DEST6 0x0b58 NA/NA/RO Not reset
Branch trace buffer entry 6
destination PC

DBG_BT_SRC6 0x0b60 NA/NA/RO Not reset
Branch trace buffer entry 6 source
PC

DBG_BT_DEST5 0x0b68 NA/NA/RO Not reset
Branch trace buffer entry 5
destination PC

DBG_BT_SRC5 0x0b70 NA/NA/RO Not reset
Branch trace buffer entry 5 source
PC

DBG_BT_DEST4 0x0b78 NA/NA/RO Not reset
Branch trace buffer entry 4
destination PC

DBG_BT_SRC4 0x0b80 NA/NA/RO Not reset
Branch trace buffer entry 4 source
PC

DBG_BT_DEST3 0x0b88 NA/NA/RO Not reset
Branch trace buffer entry 3
destination PC

DBG_BT_SRC3 0x0b90 NA/NA/RO Not reset
Branch trace buffer entry 3 source
PC

DBG_BT_DEST2 0x0b98 NA/NA/RO Not reset
Branch trace buffer entry 2
destination PC

DBG_BT_SRC2 0x0ba0 NA/NA/RO Not reset
Branch trace buffer entry 2 source
PC

DBG_BT_DEST1 0x0ba8 NA/NA/RO Not reset
Branch trace buffer entry 1
destination PC

DBG_BT_SRC1 0x0bb0 NA/NA/RO Not reset
Branch trace buffer entry 1 source
PC

DBG_BT_DEST0 0x0bb8 NA/NA/RO Not reset
Branch trace buffer entry 0
destination PC

DBG_BT_SRC0 0x0bc0 NA/NA/RO Not reset
Branch trace buffer entry 0 source
PC

DBG_BT_CONTROL 0x0bc8 NA/NA/RW
Refer to bit
field in
Table 116

Branch trace buffer Control
Register

DBG_SBREAK_CONTROL 0xbff8 NA/NA/RW 0x0
Debug software breakpoint
control

DBG_EXCAUSENO 0xc000 NA/NA/RO 0x0
Cause of the last debug trap
represented as an integer

DBG_IBREAK_CONTROL 0xc008 NA/NA/RW 0x0
Debug instruction breakpoint
control

ST240 Control registers

8059133 147/507

DBG_IBREAK_UPPER 0xc010 NA/NA/RW 0x0
Debug instruction breakpoint
upper address

DBG_IBREAK_LOWER 0xc018 NA/NA/RW 0x0
Debug instruction breakpoint
lower address

DBG_DBREAK_CONTROL 0xc020 NA/NA/RW 0x0 Debug data breakpoint control

DBG_DBREAK_UPPER 0xc028 NA/NA/RW 0x0
Debug data breakpoint upper
address

DBG_DBREAK_LOWER 0xc030 NA/NA/RW 0x0
Debug data breakpoint lower
address

DBG_EXADDRESS 0xc038 NA/NA/RO 0x0
Virtual data address which
caused a DBG_DBREAK trap

SCU_BASE0 0xd000 NA/RW/RW 0x0 Base address of prefetch region 0

SCU_LIMIT0 0xd008 NA/RW/RW 0xfffff Limit address of prefetch region 0

SCU_BASE1 0xd010 NA/RW/RW 0x0 Base address of prefetch region 1

SCU_LIMIT1 0xd018 NA/RW/RW 0xfffff Limit address of prefetch region 1

SCU_BASE2 0xd020 NA/RW/RW 0x0 Base address of prefetch region 2

SCU_LIMIT2 0xd028 NA/RW/RW 0xfffff Limit address of prefetch region 2

SCU_BASE3 0xd030 NA/RW/RW 0x0 Base address of prefetch region 3

SCU_LIMIT3 0xd038 NA/RW/RW 0xfffff Limit address of prefetch region 3

SDI0_DATA 0xe000 CF/RW/RW 0x0 SDI 0 data

SDI0_READY 0xe008
CFRO/RO/
RO

0x0 SDI 0 ready

SDI0_CONTROL 0xe010 NA/RW/RW
Refer to bit
field in
Table 71

SDI 0 control

SDI0_COUNT 0xe018 NA/RW/RW 0x0 SDI 0 count

SDI0_TIMEOUT 0xe020 NA/RW/RW 0x0 SDI 0 timeout

SDI1_DATA 0xe400 CF/RW/RW 0x0 SDI 1 data

SDI1_READY 0xe408
CFRO/RO/
RO

0x0 SDI 1 ready

SDI1_CONTROL 0xe410 NA/RW/RW
Refer to bit
field in
Table 71

SDI 1 control

SDI1_COUNT 0xe418 NA/RW/RW 0x0 SDI 1 count

SDI1_TIMEOUT 0xe420 NA/RW/RW 0x0 SDI 1 timeout

SDI2_DATA 0xe800 CF/RW/RW 0x0 SDI 2 data

SDI2_READY 0xe808
CFRO/RO/
RO

0x1 SDI 2 ready

Table 76. Control registers - BASE: CREG_BASE (Continued)

Name Offset
Access
(U/S/D)

Reset Comment

Control registers ST240

148/507 8059133

SDI2_CONTROL 0xe810 NA/RW/RW
Refer to bit
field in
Table 72

SDI 2 control

SDI2_COUNT 0xe818 NA/RW/RW 0x0 SDI 2 count

SDI2_TIMEOUT 0xe820 NA/RW/RW 0x0 SDI 2 timeout

SDI3_DATA 0xec00 CF/RW/RW 0x0 SDI 3 data

SDI3_READY 0xec08
CFRO/RO/
RO

0x1 SDI 3 ready

SDI3_CONTROL 0xec10 NA/RW/RW
Refer to bit
field in
Table 72

SDI 3 control

SDI3_COUNT 0xec18 NA/RW/RW 0x0 SDI 3 count

SDI3_TIMEOUT 0xec20 NA/RW/RW 0x0 SDI 3 timeout

PM_CR 0xf800 NA/RW/RW 0x0 Performance monitoring control

PM_CNT0 0xf808 NA/RW/RW 0x0
Performance monitor counter 0
value

PM_CNT1 0xf810 NA/RW/RW 0x0
Performance monitor counter 1
value

PM_CNT2 0xf818 NA/RW/RW 0x0
Performance monitor counter 2
value

PM_CNT3 0xf820 NA/RW/RW 0x0
Performance monitor counter 3
value

PM_PCLK 0xf828
RO/RW/R
W

0x0
Performance monitor core cycle
counter (lower 32 bits)

PM_PCLKH 0xf82c
RO/RW/R
W

0x0
Performance monitor core cycle
counter (upper 32 bits)

PM_INT 0xf830 NA/RW/RW 0x0
Performance monitoring interrupt
control

IBREAK_CONTROL 0xfdc0 NA/RW/RW 0x0 Instruction breakpoint control

IBREAK_UPPER 0xfdc8 NA/RW/RW 0x0
Instruction breakpoint upper
address

IBREAK_LOWER 0xfdd0 NA/RW/RW 0x0
Instruction breakpoint lower
address

MP_CORE_ID 0xfdd8 NA/RO/RO 0x0
ID of the processor within an MP
cluster

STATE1 0xfe00 NA/RW/RW 0x0 Global machine state register

TRAP_TLB 0xfe08 NA/RW/RW 0x0
PC that the core jumps to on a
TLB exception

TRAP_INTERRUPT 0xfe10 NA/RW/RW 0x0
PC that the core jumps to on an
interrupt

Table 76. Control registers - BASE: CREG_BASE (Continued)

Name Offset
Access
(U/S/D)

Reset Comment

ST240 Control registers

8059133 149/507

TRAP_BREAK 0xfe18 NA/RW/RW 0x0
PC that the core jumps to for
breakpoint exceptions

TRAP_EXCEPTION 0xfe28 NA/RW/RW 0x0
PC that the core jumps to on all
other exceptions

LOCK_ADDRESS 0xfe30 NA/RW/RW 0x0 Atomic load/store lock address

DCACHE_SETS 0xfe40 RO/RO/RO 0x100 Number of sets in the data cache

ICACHE_SETS 0xfe48 RO/RO/RO 0x80
Number of sets in the instruction
cache

DCACHE_LINESIZE 0xfe50 RO/RO/RO 0x20 Data cache line size in bytes

ICACHE_LINESIZE 0xfe58 RO/RO/RO 0x40
Instruction cache line size in
bytes

L2CACHE_DETAILS 0xfe60 RO/RO/RO
Refer to bit
field in
Table 65

Details of an L2 cache

DBREAK_CONTROL 0xfe70 NA/RW/RW 0x0 Data breakpoint control

DBREAK_UPPER 0xfe78 NA/RW/RW 0x0 Data breakpoint upper address

DBREAK_LOWER 0xfe80 NA/RW/RW 0x0 Data breakpoint lower address

TLB_ASID 0xff40 NA/RW/RW 0x0 Current address space identifier

TLB_REPLACE 0xff48 NA/RW/RW 0x40ffff TLB replacement pointer

TLB_CONTROL 0xff50 NA/RW/RW 0x0 Control bits for TLB

TLB_EXCAUSE 0xff58 NA/RW/RW 0x0
Cause of the TLB related
exception

TLB_ENTRY3 0xff60 NA/RW/RW 0x0
Bits [127:96] of the current TLB
entry

TLB_ENTRY2 0xff68 NA/RW/RW 0x0
Bits [95:64] of the current TLB
entry

TLB_ENTRY1 0xff70 NA/RW/RW 0x0
Bits [63:32] of the current TLB
entry

TLB_ENTRY0 0xff78 NA/RW/RW 0x0
Bits [31:0] of the current TLB
entry

TLB_INDEX 0xff80 NA/RW/RW 0x0
Index of the TLB entry pointed to
by TLB_ENTRY0-3

EXCAUSENO 0xff88 NA/RW/RW 0x0
Cause of last normal trap
represented as an integer

SCRATCH4 0xff90 NA/NA/RW 0x0
Scratch register reserved for use
by the debug interrupt handler

SCRATCH3 0xff98 NA/RW/RW 0x0
Scratch register reserved for use
by supervisor software

SCRATCH2 0xffa0 NA/RW/RW 0x0
Scratch register reserved for use
by supervisor software

Table 76. Control registers - BASE: CREG_BASE (Continued)

Name Offset
Access
(U/S/D)

Reset Comment

Control registers ST240

150/507 8059133

SCRATCH1 0xffa8 NA/RW/RW 0x0
Scratch register reserved for use
by supervisor software

PERIPHERAL_BASE 0xffb0 NA/RO/RO
System
defined

Base address of peripheral
registers. The top 12 bits of this
register are wired to the
peripheral base input pins

SAVED_SAVED_PC 0xffb8 NA/RW/RW 0x0
PSW saved by as part of debug
trap startup sequence

SAVED_SAVED_PSW 0xffc0 NA/RW/RW 0x0
PSW saved by as part of debug
trap startup sequence

VERSION 0xffc8 NA/RO/RO
Refer to bit
field in
Table 79

Version number of the core

EXADDRESS 0xffd0 NA/RW/RW 0x0

Virtual data address in the case of
either a DTLB, CREG or
DBREAK trap. For other trap
types this register is zero

EXCAUSE 0xffd8 NA/RO/RO 0x1

Cause of the last normal trap.
Each normal trap type is indicated
by a single bit in the register (a
one-hot value)

SAVED_PC 0xffe8 NA/RW/RW 0x0
Saved PC, saved by trap handler
startup sequence

SAVED_PSW 0xfff0 NA/RW/RW 0x0
Saved PSW, saved by trap
handler startup sequence

PSW 0xfff8 NA/RO/RO 0x0 Program Status Word

Table 76. Control registers - BASE: CREG_BASE (Continued)

Name Offset
Access
(U/S/D)

Reset Comment

ST240 Control registers

8059133 151/507

15.3 Machine state register
The machine state register controls the global state of the machine.

For more details on cache partitioning see Section 12.5.1: L1 data cache partitioning on
page 118.

15.4 MP core ID register
This register shows the hardware ID of a multi-processor core within a cache coherent
cluster. For a uniprocessor core, it reads zero.

Table 77. STATE1 bit fields

Name Bit(s) Writable Reset Comment

PARTITION [1:0] RW 0x0

Sets the maximum value for the round
robin data cache replacement
pointers as (3 - PARTITION).

00: Replace ways 0-3

01: Replace ways 0-2
10: Replace ways 0-1

11: Replace way 0 only

A full data cache purge using prgset
operations is required following the
update of the field.

RESERVED. [31:2] RO 0x0 Reserved

Table 78. MP_CORE_ID bit fields

Name Bit(s) Writable Reset Comment

MP_CORE_ID [15:0] RO 0x0
ID of an MP core within a cache
coherent cluster for future
implementations which support this.

Reserved [31:16] RO 0x0 Reserved

Control registers ST240

152/507 8059133

15.5 Version register
The VERSION register contains 3 fields which uniquely identify a particular release of the
ST240. Refer to the datasheet for the meaning of each field.

Note: The fields of the DSU version register (DSR0) are identical to the version register in
Table 79.

Table 79. VERSION bit fields

Name Bit(s) Writable Reset Comment

PRODUCT_ID [15:0] RO 0x0000 Chip ID.

CORE_VERSION [23:16] RO 0x06 Core version number.

DSU_VERSION [31:24] RO 0x04 DSU design version number.

ST240 Low power modes

8059133 153/507

16 Low power modes

The ST240 provides three low power modes:

● DTCM only mode

● idle mode

● retention mode

16.1 Low power operation with a DTCM
The ST240 provides a reduced power mode when running a program that has all of its data
within the DTCM. See Power efficiency with a DTCM on page 125.

16.2 Idle mode
The ST240 enters idle mode by executing the idle macro (providing it is in a bundle by
itself). When in idle mode, clocking is removed from the core (but not the peripherals) in
order to save power.

The idle macro is encoded as a bundle containing a goto with zero immediate offset, that is:
go to the same bundle and remain in the same bundle.

The idle macro is architecturally identical to the branch it derives from. When an interrupt or
debug interrupt occurs, the core exits idle mode and jumps to the correct handler.

The idle macro can be inferred from C code by using

//enter idle mode
while (1);

16.2.1 Behavior in idle mode

When an idle macro is executed the ST240 completes the following operations in the order
given:

1. Empties the pipeline, completing any operations issued before the idle macro.

2. Waits for all outstanding STBus transactions to complete.

3. Waits for the SDI output buffer to be become empty.

4. Enters idle mode.

Note: The write buffer is not emptied, so all outstanding memory writes are not completed. If this is
required then a sync must be executed before the idle.

A bit is set in the PM_CR register to indicate to software that the core is currently in idle
mode, seeSection 21.2: Control register (PM_CR) on page 195, and this information is also
available to the host by examining a DSU register.

The core aborts entry to idle mode and jumps to the correct handler on any of the following
conditions:

● STBus error exception

● normal interrupt

● debug interrupt

Low power modes ST240

154/507 8059133

The core exits idle mode and jumps to the correct handler on the following conditions:

● normal interrupt

● debug interrupt

While in idle mode:

● the only performance counter that increments is PM_EVENT_IDLE_CYCLES, see
Section 21.7: PM counters in idle mode on page 198

● all peripherals continue to operate normally (timers, interrupt controller, DSU); that is,
the STBus target port remains active

● access to the DTCM is still possible using the STBus target port, see DTCM access in
idle mode on page 125

● the SDI input ports do not accept data

● the SDI output ports do not send out data (they must be empty before the core enters
idle mode)

16.2.2 Latency of entry and exit of idle mode

The latency of entering idle mode depends upon the current state of the ST240, as shown in
Section 16.2.1: Behavior in idle mode on page 153. If the ST240 is not waiting for an
external interface to complete transactions (either SDI ports or STBus), entry takes only a
few cycles. Exit always incurs a short delay.

16.3 Retention mode
The implementation of the ST240 may support retention mode.

Note: If the behavior of retention mode is architecturally visible, it will be defined in a later revision
of this document.

ST240 Timers

8059133 155/507

17 Timers

The ST240 provides three timers. When enabled these timers continually count down to
zero, reload and count down again. Interrupts are raised when the timers reach zero.

There are four registers associated with each timer; these are described in Section 17.1:
Timer registers on page 155.

The timer interrupt lines are connected to internal interrupts 0, 1 and 2, see Section 19.2:
Interrupt registers on page 164.

Note: As the timers are peripherals, the clock is likely to be slower than the clock to the core. Refer
to the datasheet for the clock frequencies.

17.1 Timer registers
The timer registers are memory mapped; their addresses are listed in Chapter 18:
Peripheral addresses on page 157.

Note: In the following sections, i = [0:2].

The timer register bit fields are described in Table 80 to Table 83.

17.1.1 TIMECONSTi register

The TIMECONSTi register contains the value loaded into timeri after timeri reaches zero.
The timer will reach zero after TIMECONSTi+1 timer ticks. The bit fields of the
TIMECONSTi register are listed in Table 80.

17.1.2 TIMECOUNTi register

The TIMECOUNTi register returns the current value of the timer counter. The bit fields of the
TIMECOUNTi register are listed in Table 81.

Table 80. TIMECONSTi bit fields

Name Bit(s) Writable Reset Comment

CONST [31:0] RW 0x0
Value to be reloaded when timer
reaches zero.

Table 81. TIMECOUNTi bit fields

Name Bit(s) Writable Reset Comment

COUNT [31:0] RW 0x0 Current value of timer counter

Timers ST240

156/507 8059133

17.1.3 TIMECONTROLi register

The TIMECONTROLi register has three functions:

● enables the timer

● enables an interrupt when the timer reaches zero

● reads and resets the interrupt status of the timer

The bit fields of the TIMECONTROLi register are listed in Table 82.

17.1.4 TIMEDIVIDE register

The TIMEDIVIDE register is associated with all three timers. The value in the DIVIDE field
determines how many clock cycles are required for each timer tick and are therefore how
many clock cycles are required to decrement the timer count. It is recommended that the
TIMEDIVIDE register is set so that timer ticks occur every 1μs.

The bit fields of the TIMEDIVIDEi register are listed in Table 83.

Table 82. TIMECONTROLi bit fields

Name Bit(s) Writable Reset Comment

ENABLE 0 RW 0x0 Enable the timer.

INTENABLE 1 RW 0x0 Enable the timer interrupt.

STATUS 2 RW 0x0

Status of the timer interrupt. When 1,
a timer has expired. Writing a 0 to this
bit has no effect. Writing a 1 to this bit
clears it.

Reserved [31:3] RO 0x0 Reserved

Table 83. TIMEDIVIDE bit fields

Name Bit(s) Writable Reset Comment

DIVIDE [15:0] RW 0x0

Number of clock cycles required to
decrement the timers + 1. A value of 0
causes the timers to decrement on
every clock cycle.

Reserved [31:16] RO 0x0 Reserved.

ST240 Peripheral addresses

8059133 157/507

18 Peripheral addresses

The interrupt controller, DSU and timers are all memory mapped peripherals. The DSU
contains registers, the debug ROM and the debug RAM.

It is essential that the interrupt controller, DSU registers and timers are mapped in an
uncached region in the TLB.

The core uses the debug ROM for instruction fetch and therefore it can be mapped in either
a cached or uncached region.

The debug RAM can be mapped as cached or uncached memory as required.

18.1 Peripheral space address map
All addresses in Table 84 are relative to the value in the PERIPHERAL_BASE register.

Future implementations may increase the size of the debug ROM and debug RAM within
the 4 Kbyte address space defined for each.

Table 84. Peripheral address map

Peripheral

Address range

Description
Base

Allocated(1)
size

1. This column is used for debug resource protection checks

Populated(2)
size

2. This column shows which addresses in the address space are valid. Not all bytes in the range are valid for
address spaces containing registers.

Interrupt controller
and timer registers
address space

0x0000 0x3000 0x1304
See Table 87 for register
addresses.

DSU register
address space

0x3000 0x1000 0x0100
See Table 88 for register
addresses.

Debug ROM
address space

0x4000 0x1000 0x0800
Default debug handler code in a
2 Kbyte ROM, see Chapter 20:
Debugging support on page 169.

Debug RAM
address space

0x6000 0x1000 0x0400
1 Kbyte of RAM only accessible
in debug mode, see Chapter 20:
Debugging support on page 169.

Peripheral addresses ST240

158/507 8059133

18.2 Peripheral access
The accesses allowed to peripherals are shown in Table 85 and Table 86.

Accesses from the local core are shown inTable 85. The access types for the local core are:

● instruction fetch

● cached loads of different widths

● uncached loads of different widths

The address ranges are defined in Table 84.

Accesses from STBus initiators other than the core are shown in Table 86.

Table 85. Peripheral access from local core

Peripheral
Permitted
accesses

Non permitted access

Loads/instruction
fetch which cause

an STBus error

Stores which
cause an STBus

error

Stores which fail
silently(1)

1. The resource is not updated and no STBus error is returned.

Timers and
interrupt
controller
registers.

Uncached word
loads and stores
that map to a
register.

All cached loads, all
uncached loads
except load word.

Load words which
do not map to a
register.
Instruction fetch.

All cached stores,
all uncached stores
except store word.
Store words which
do not map to a
register.

None.

DSU
registers.

Uncached word
loads and stores
that map to a
register; subject
to permission
checks, see
Section 20.1 on
page 169.

All cached loads, all
uncached loads
except load word.
Load words which
do not map to a
register.

Instruction fetch.

All cached stores,
all uncached stores
except store word.

Store words which
do not map to a
register.

None.

debug
ROM.

Cached or
uncached loads or
instruction fetch
within 2Kbyte of
the base address.

Uncached load
except load word.

Any load above
2Kbyte from the
base address.

Any stores except
uncached word
stores.

Any store above
2Kbyte from the
base address.

Uncached word
stores within
2Kbyte of the base
address.

debug
RAM.

Full access in
debug mode (see
Section 20.1 on
page 169) to
addresses within
1Kbyte of the
base address.

Any load above
1Kbyte from the
base address.

Any store above
1Kbyte from the
base address.

None.

Other
address in
peripheral
space.

None. All. All. None.

ST240 Peripheral addresses

8059133 159/507

Table 86. Peripheral access from other STBus initiators

18.3 Peripheral addresses
The peripheral register addresses start from the peripheral base address, which can be
found by reading the PERIPHERAL_BASE register, see Chapter 15: Control registers on
page 145.

The access columns in Table 87 and Table 88 list the access rights for the listed registers.
The acronyms used in this column are:

Peripheral
Permitted
accesses

Non permitted access

Loads which
cause an STBus

error

Stores which
cause an STBus

error

Stores which fail
silently(1)

1. The resource is not updated, and no STBus error is returned.

Timers and
interrupt
controller
registers.

4-byte load/store
that maps to a
register.

Any load except
load 4-bytes.
Any 4-byte load
that does not map
to a register.

Any store other
than store 4-bytes.
Any 4-byte store
that does not map
to a register.

none.

DSU
registers.

Load/store 4-
bytes from a
trusted source
only and which
maps to a
register.

Any load except
load 4-bytes.
Any 4-byte load
that does not map
to a register.

Any store except
store 4-bytes.
Any 4-byte store
that does not map
to a register.

Store 4-bytes from
non trusted STBus
initiators which
maps to a register.

debug
ROM.

Load 4 or 32-
bytes to address
within 2Kbyte of
the base address.

Loads except 4 or
32-bytes.

Any load above
2Kbyte from the
base address.

Any stores except
store 4-bytes.

Any store above
2Kbyte from the
base address.

Store 4-bytes
within 2Kbyte of the
base address.

debug
RAM.

No access. All loads. All stores. None.

Other
address in
peripheral
space.

None. All. All. None.

RO Read only, writes silently ignored.

RW Read/write.

CFRW Configurable read/write or read only.

CFRO Configurable read only (writes silently ignored) or no access.

Peripheral addresses ST240

160/507 8059133

18.3.1 Interrupt controller and timer registers

The interrupt controller and timer registers are listed in Table 87.

Table 87. Interrupt controller - BASE: INTCR_BASE

Name Offset Access Reset Comment

INT_INTPENDING0 0x0000 RO 0x0 Internal interrupt pending bits 31:0

EXT_INTPENDING0 0x0100 RO 0x0 External interrupt pending bits 31:0

EXT_INTPENDING1 0x0108 RO 0x0 External interrupt pending bits 63:32

INT_INTMASK0 0x0200 RW 0x0 Internal interrupt mask bits 31:0

EXT_INTMASK0 0x0300 RW 0x0 External interrupt mask bits 31:0

EXT_INTMASK1 0x0308 RW 0x0 External interrupt mask bits 63:32

INT_INTTEST0 0x0400 RW 0x0 Internal interrupt test register bits 31:0

EXT_INTTEST0 0x0500 RW 0x0 External interrupt test register bits 31:0

EXT_INTTEST1 0x0508 RW 0x0
External interrupt test register bits
63:32

INT_INTTESTSET0 0x0600 RW 0x0
Internal interrupt set test register bits
31:0

EXT_INTTESTSET0 0x0700 RW 0x0
External interrupt set test register bits
31:0

EXT_INTTESTSET1 0x0708 RW 0x0
External interrupt clear test register bits
63:32

INT_INTTESTCLR0 0x0800 RW 0x0
Internal interrupt clear test register bits
31:0

EXT_INTTESTCLR0 0x0900 RW 0x0
External interrupt clear test register bits
31:0

EXT_INTTESTCLR1 0x0908 RW 0x0
External interrupt clear test register bits
63:32

INT_INTMASKSET0 0x0a00 RW 0x0 Internal interrupt mask set bits 31:0

EXT_INTMASKSET0 0x0b00 RW 0x0 External interrupt mask set bits 31:0

EXT_INTMASKSET1 0x0b08 RW 0x0 External interrupt mask set bits 63:32

INT_INTMASKCLR0 0x0c00 RW 0x0 Internal interrupt mask clear bits 31:0

EXT_INTMASKCLR0 0x0d00 RW 0x0 External interrupt mask clear bits 31:0

EXT_INTMASKCLR1 0x0d08 RW 0x0 External interrupt mask clear bits 63:32

TIMECONST0 0x1000 RW 0x0 Timer constant

TIMECOUNT0 0x1008 RW 0x0 Timer counter

TIMECONTROL0 0x1010 RW 0x0 Timer control

TIMECONST1 0x1100 RW 0x0 Timer constant

TIMECOUNT1 0x1108 RW 0x0 Timer counter

TIMECONTROL1 0x1110 RW 0x0 Timer control

TIMECONST2 0x1200 RW 0x0 Timer constant

ST240 Peripheral addresses

8059133 161/507

18.3.2 DSU registers

The DSU registers are listed in Table 88. Most register have programmable write access
configured by programming DSR1, see Table 119: DSR1 bit fields on page 179.

TIMECOUNT2 0x1208 RW 0x0 Timer counter

TIMECONTROL2 0x1210 RW 0x0 Timer control

TIMEDIVIDE 0x1300 RW 0x0 Timer divide

Table 87. Interrupt controller - BASE: INTCR_BASE (Continued)

Name Offset Access Reset Comment

Table 88. Debug support unit - BASE: DSU_BASE

Name Offset Access Reset Comment

DSR0 0x000 RO
Refer to bit fields in
Table 79 on
page 152.

DSU version

DSR1 0x008 RW
Refer to bit fields in
Table 119 on
page 179.

DSU status

DSR2 0x010 RW 0x0 DSU output

DSR3 0x018 RW 0x0 DSU communication

DSR4 0x020 RW 0x0 DSU communication

DSR5 0x028 RW 0x0 DSU communication

DSR6 0x030 RW 0x0 DSU communication

DSR7 0x038 RW 0x0 DSU communication

DSR8 0x040 RW 0x0 DSU communication

DSR9 0x048 RW 0x0 DSU communication

DSR10 0x050 RW 0x0 DSU communication

DSR11 0x058 RW 0x0 DSU communication

DSR12 0x060 RW 0x0 DSU communication

DSR13 0x068 RW 0x0 DSU communication

DSR14 0x070 RW 0x0 DSU communication

DSR15 0x078 RW 0x0 DSU communication

DSR16 0x080 RW 0x0 DSU communication

DSR17 0x088 RW 0x0 DSU communication

DSR18 0x090 RW 0x0 DSU communication

DSR19 0x098 RW 0x0 DSU communication

DSR20 0x0a0 RW 0x0 DSU communication

DSR21 0x0a8 RW 0x0 DSU communication

DSR22 0x0b0 RW 0x0 DSU communication

Peripheral addresses ST240

162/507 8059133

DSR23 0x0b8 RW 0x0 DSU communication

DSR24 0x0c0 RW 0x0 DSU communication

DSR25 0x0c8 RW 0x0 DSU communication

DSR26 0x0d0 RW 0x0 DSU communication

DSR27 0x0d8 RW 0x0 DSU communication

DSR28 0x0e0 RW 0x0 DSU communication

DSR29 0x0e8 RW 0x0 DSU communication

DSR30 0x0f0 RW 0x0 DSU communication

DSR31 0x0f8 RO 0x0 DSU virtual PC register

Table 88. Debug support unit - BASE: DSU_BASE (Continued)

Name Offset Access Reset Comment

ST240 Interrupt controller

8059133 163/507

19 Interrupt controller

The ST240 interrupt controller supports up to 68 interrupt sources:

● 64 external interrupts

● three interrupt sources from the timers

● one interrupt source from the performance monitors

Each of these 68 sources has a mask and a test bit associated with it. All interrupts handled
by the interrupt controller are normal interrupts as oppose to debug interrupts. See
Section 10.1.1: Interrupt types on page 82 for the definition of the different types.

A non maskable interrupt input (irq_master_in) enables the ST240 to use an external
interrupt controller.

The structure of the interrupt controller is shown in Figure 31.

Figure 31. Interrupt controller

19.1 Operation
An internal or external interrupt causes a pending bit to be set in the interrupt controller and
the interrupt to be sent to the core. If interrupts are enabled in the PSW (program status
word), the core is interrupted. Every normal interrupt input may be individually masked and
asserted by software for test purposes.

There is no hardware support for prioritization of interrupts. It is the responsibility of the
software to handle prioritization, assisted by the ST240’s ability to mask individual
interrupts.

An external interrupt controller can be added to the ST240. When this is the case, all normal
interrupts must be masked.

Internal and external
interrupts

68

68

INTTEST

INTPENDING
68 68

INTMASK

68

irq_master_in

ST240 core
interrupt input

Bitwise OR Bitwise AND

68

Interrupt controller ST240

164/507 8059133

19.2 Interrupt registers
For the addresses of the memory mapped interrupt controller registers see Chapter 18:
Peripheral addresses on page 157.

The registers are arranged in sets of three. In each set, two registers refer to external
interrupts and one refers to internal interrupts.

19.2.1 INTPENDING registers

The three INTPENDING registers show which interrupts are pending.

19.2.2 INTMASK registers

The three INTMASK registers are used to mask all 68 interrupt sources.

Table 89. INT_INTPENDING0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 RO 0x0 Interrupt is pending from timer 0

TIMER1 1 RO 0x0 Interrupt is pending from timer 1

TIMER2 2 RO 0x0 Interrupt is pending from timer 2

Reserved [15:3] RO 0x0 Reserved

PM_INT 16 RO 0x0
Performance monitoring interrupt is
pending

Reserved [31:17] RO 0x0 Reserved

Table 90. EXT_INTPENDING0 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_31_0 [31:0] RO 0x0
External interrupt is pending - system
defined, refer to data sheet.

Table 91. EXT_INTPENDING1 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_63_32 [31:0] RO 0x0
External interrupt is pending - system
defined, refer to data sheet.

Table 92. INT_INTMASK0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 RW 0x0 Mask bit for timer 0

TIMER1 1 RW 0x0 Mask bit for timer 1

TIMER2 2 RW 0x0 Mask bit for timer 2

Reserved [15:3] RO 0x0 Reserved

PM_INT 16 RW 0x0
Mask bit for performance monitoring
interrupt

Reserved [31:17] RO 0x0 Reserved

ST240 Interrupt controller

8059133 165/507

19.2.3 INTMASKSET and INTMASKCLR registers

These registers support bit-wise access to the INTMASK registers. A store to these
locations causes the corresponding bits in the relevant INTMASK register to be cleared or
set.

Using this method of accessing the INTMASK registers avoids problems caused by
interrupts occurring during a read-modify-write sequence and therefore avoids the need to
have interrupts disabled while modifying these registers.

Table 93. EXT_INTMASK0 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_31_0 [31:0] RW 0x0
Mask bits for external interrupts -
system defined, refer to data sheet.

Table 94. EXT_INTMASK1 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_63_32 [31:0] RW 0x0
Mask bits for external interrupts -
system defined, refer to data sheet.

Table 95. INT_INTMASKSET0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 RW 0x0 Mask set bit for timer 0

TIMER1 1 RW 0x0 Mask set bit for timer 1

TIMER2 2 RW 0x0 Mask set bit for timer 2

Reserved [15:3] RO 0x0 Reserved

PM_INT 16 RW 0x0
Mask set bit for performance
monitoring interrupt

Reserved [31:17] RO 0x0 Reserved

Table 96. EXT_INTMASKSET0 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_31_0 [31:0] RW 0x0
Mask set bits for external interrupts -
system defined, refer to data sheet.

Table 97. EXT_INTMASKSET1 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_63_32 [31:0] RW 0x0
Mask set bits for external interrupts -
system defined, refer to data sheet.

Interrupt controller ST240

166/507 8059133

19.2.4 INTTEST registers

The three INTTEST registers are used to test interrupt inputs.

Table 98. INT_INTMASKCLR0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 RW 0x0 Mask clear bit for timer 0

TIMER1 1 RW 0x0 Mask clear bit for timer 1

TIMER2 2 RW 0x0 Mask clear bit for timer 2

Reserved [15:3] RO 0x0 Reserved

PM_INT 16 RW 0x0
Mask clear bit for performance
monitoring interrupt

Reserved [31:17] RO 0x0 Reserved

Table 99. EXT_INTMASKCLR0 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_31_0 [31:0] RW 0x0
Mask clear bits for external interrupts
- system defined, refer to data sheet.

Table 100. EXT_INTMASKCLR1 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_63_32 [31:0] RW 0x0
Mask clear bits for external interrupts
- system defined, refer to data sheet.

Table 101. INT_INTTEST0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 RW 0x0 Interrupt test bit for timer 0

TIMER1 1 RW 0x0 Interrupt test bit for timer 1

TIMER2 2 RW 0x0 Interrupt test bit for timer 2

Reserved [15:3] RO 0x0 Reserved

PM_INT 16 RW 0x0
Interrupt test bit for performance
monitoring interrupt

Reserved [31:17] RO 0x0 Reserved

Table 102. EXT_INTTEST0 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_31_0 [31:0] RW 0x0
Interrupt test bits for external
interrupts - system defined, refer to
data sheet.

ST240 Interrupt controller

8059133 167/507

19.2.5 INTTESTSET and INTTESTCLR registers

These registers support bit-wise access to the INTTEST registers. A store to these locations
causes the corresponding bits in the relevant INTTEST register to be cleared or set.

Using this method of accessing the INTTEST register avoids the overhead in a direct write
of having to read, save and restore unexposed bits.

Table 103. EXT_INTTEST1 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_63_32 [31:0] RW 0x0
Interrupt test bits for external
interrupts - system defined, refer to
data sheet.

Table 104. INT_INTTESTSET0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 RW 0x0 Interrupt set bit for timer 0

TIMER1 1 RW 0x0 Interrupt set bit for timer 1

TIMER2 2 RW 0x0 Interrupt set bit for timer 2

Reserved [15:3] RO 0x0 Reserved

PM_INT 16 RW 0x0
Interrupt set bit for performance
monitoring interrupt

Reserved [31:17] RO 0x0 Reserved

Table 105. EXT_INTTESTSET0 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_31_0 [31:0] RW 0x0
Interrupt set test bits for external
interrupts - system defined, refer to
data sheet.

Table 106. EXT_INTTESTSET1 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_63_32 [31:0] RW 0x0
Interrupt set test bits for external
interrupts - system defined, refer to
data sheet.

Interrupt controller ST240

168/507 8059133

Table 107. INT_INTTESTCLR0 bit fields

Name Bit(s) Writable Reset Comment

TIMER0 0 RW 0x0 Interrupt clear bit for timer 0

TIMER1 1 RW 0x0 Interrupt clear bit for timer 1

TIMER2 2 RW 0x0 Interrupt clear bit for timer 2

Reserved [15:3] RO 0x0 Reserved

PM_INT 16 RW 0x0
Interrupt clear bit for performance
monitoring interrupt.

Reserved [31:17] RO 0x0 Reserved

Table 108. EXT_INTTESTCLR0 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_31_0 [31:0] RW 0x0
Interrupt clear test bits for external
interrupts - system defined, refer to
data sheet.

Table 109. EXT_INTTESTCLR1 bit fields

Name Bit(s) Writable Reset Comment

EXTERN_INT_63_32 [31:0] RW 0x0
Interrupt clear test bits for external
interrupts - system defined, refer to
data sheet.

ST240 Debugging support

8059133 169/507

20 Debugging support

User, supervisor and debug modes were introduced in Chapter 3: Operating modes on
page 23. Debug traps, normal traps, debug breakpoints and normal breakpoints were
introduced in Chapter 10: Traps (exceptions and interrupts) on page 82.

This chapter further describes the types of breakpoints and the set of debug features which
are available on the ST240.

All the debug mode features are available to two kinds of host:

Debugging support on the ST240 is provided by six main components:

Note: All control registers that relate to debug resources are only accessible in debug mode. The
names of these registers are prefixed with DBG_ with the exception of SCRATCH4. Access
to any such control register in user or supervisor mode raises a
CREG_ACCESS_VIOLATION exception.

20.1 Debug resource access
Debug resources have restricted access permissions, so that code running in user or
supervisor mode cannot access them. Code running in debug mode has unrestricted
access to all resources.

The debug RAM address space has no user or supervisor mode permission. The purpose of
the debug RAM address space is to allow the toolchain to install a debug handler which
cannot be overwritten by faulty code.

off-chip host a host connected through the JTAG (test access) port

on-chip host a host connected on the STBus interface

Core In debug mode the Debug Support Unit (DSU) uses the core to read
and write memory and other architectural state. Therefore debug
mode is intrusive. The core also processes breakpoints.

Debug support unit The DSU is the interface between either type of host and the core.
Commands to control the core are sent from the host to the DSU
using shared Debug Support Registers (DSRs). The core processes
commands sent from the host when in debug mode.

Debug ROM The debug ROM contains the default debug handler which is run
after the core enters debug mode. A mechanism is included to
install a user defined debug handler. The default debug handler
implements a simple set of commands to control the core as
described in this chapter.

Debug RAM 1Kbyte of memory mapped RAM. It can only be accessed by the
local core when the local core is in debug mode. This is intended for
a user defined debug handler.

Host debug interface Allows access to the DSRs from an off-chip host and supports the
sending of debug interrupts to the core.

STBus interface The STBus interface allows an on-chip host the same functionality
as an off-chip host.

Debugging support ST240

170/507 8059133

Table 110 shows whether access is permitted by the current operating mode of the ST240.
It does not show which loads and stores may access each resource, which is shown in
Table 85: Peripheral access from local core on page 158 or the protected address ranges,
which are shown in Table 84: Peripheral address map on page 157. There are two levels of
checking in this scheme:

● checks in the core against the current operating mode and current permissions (current
permissions are only relevant for write access to DSRs)

● checks in the DSU to ascertain whether the access type is suitable for the resource

20.1.1 DSR_PERMISSIONS register

DSRs have programmable permissions to allow supervisor code to signal the host using
writes to DSR2.

The DSR_PERMISSIONS register controls access to the DSR address space, see
Table 84: Peripheral address map on page 157. For a description of the DSRs, see
Section 20.3.3: Debug support registers on page 178.

Table 110. Debug resource access

Debug resource
User mode

access
Supervisor

mode access
Comment

Control registers with
DBG prefix

Denied Denied
SeeTable 76: Control registers -
BASE: CREG_BASE on page 146 for
full details of access permissions.

Read access to DSRs Allowed Allowed DSRs can always be read.

Write access to DSRs

Denied if DSR_
PERMISSIONS[
1] is 0 else
allowed

Denied if DSR_
PERMISSIONS[
1:0] is 00 else
allowed

Permissions are programmed in
DSR_PERMISIONS. Any illegal
accesses cause a DTLB
DEBUG_VIOLATION exception.

Any access to debug
RAM address space

Denied Denied
Any access (instruction or data)
outside debug mode causes a DTLB
DEBUG_VIOLATION exception.

Any access to debug
ROM address space

Allowed Allowed Debug ROM access is unrestricted.

Table 111. DSR_PERMISSIONS bit fields

Name Bit(s) Writable Reset Comment

DSR_SUPERVISOR_WRITE_ENABLE 0 RW 0x1

Enables writes to the DSRs
and DSR_PERMISSIONS if
the core is in supervisor or
debug mode.

DSR_USER_WRITE_ENABLE 1 RW 0x0

Enables writes to the DSRs
and DSR_PERMISSIONS if
the core is in user, supervisor
or debug mode.

Reserved [31:2] RO 0x0 Reserved.

ST240 Debugging support

8059133 171/507

20.2 Core debugging support
The debug ROM, RAM and the DSRs are discussed further in Section 20.3: Debug support
unit on page 177.

The DTLB DEBUG_VIOLATION exception is described in Section 11.4.11: TLB_EXCAUSE
register on page 103, Figure 25: Instruction access on page 107 and Figure 26: Data
access on page 108.

20.2.1 Breakpoint support

The ST240 provides two classes of breakpoint.

Referring to Figure 32, the OS based debugger uses normal breakpoints while the host
based debugger uses debug breakpoints. Debug breakpoints may be used to debug user
code.

Figure 32. Levels of debug what can debug what

This hierarchical scheme allows complete separation of the debugging resources between
user code and OS code. Debug mode does not depend upon the OS handlers in any way,
and the debug handler is protected from rogue software.

Debug breakpoints Used for debugging user code or an OS. Debug breakpoints trigger
debug exceptions and cause the core to enter debug mode. The
handler is described in Section 20.4.1: Default debug handler on
page 181.

Normal breakpoints Used for debugging user software under an OS. Normal breakpoints
cause normal exceptions. The handler is referenced by
TRAP_BREAK, and is conventionally configured by the OS.

user
code

OS based debug
using OS handler

Host based debug
using debug handler

Debugging support ST240

172/507 8059133

20.2.2 Types of breakpoint

There are three types of normal and debug breakpoint, these are listed in Table 112:

If a single bundle causes a debug breakpoint and a normal breakpoint of the same type then
the debug breakpoint has the highest priority. The full list of priorities is in Table 34: Trap
types and priorities on page 84.

No debug traps will be raised if the core is in debug mode already. DBG_IBREAK and
DBG_DBREAK traps will not be raised if the core is in debug mode and the dbgsbrk
operation will raise an ILL_INST exception.

20.2.3 Software breakpoints

Software breakpoints are operations that always cause exceptions. The dbgsbrk operation
either causes a debug exception of type DBG_SBREAK or a normal exception of type
ILL_INST. To raise a DBG_SBREAK debug exception the following must be the case:

● the enable bit in DBG_SBREAK_CONTROL must be set, see Table 113

● the core must be in user or supervisor mode

● debug mode must not be disabled

Debug mode is controlled using an input pin and is not visible to the software.

The sbrk operation causes a normal exception of type SBREAK and does not have an
associated control register.

Software breakpoints allow program execution to halt on a given bundle. Within the trap
handler the address which caused the breakpoint is read from SAVED_PC.

20.2.4 Hardware breakpoints

Each type of hardware breakpoint is configured by programming:

● control registers to define memory ranges

● control registers to define the behavior and to enable the breakpoints

● enable bits in the PSW for normal breakpoints only; debug breakpoints do not have
PSW enable bits

Table 112. Summary of breakpoints

Breakpoint type Debug breakpoints Normal breakpoints

Software dbgsbrk sbrk

Instruction DBG_IBREAK IBREAK

Data DBG_DBREAK DBREAK

Table 113. DBG_SBREAK_CONTROL bit fields

Name Bit(s) Writable Reset Comment

BRK_ENABLE 0 RW 0x0

Enables dbgsbrk instruction. If
enabled, dbgsbrk causes entry into
debug mode. If disabled, it causes an
ILL_INST exception.

Reserved [31:1] RO 0x0 Reserved.

ST240 Debugging support

8059133 173/507

Instruction breakpoints

Instruction breakpoints are configured by programming a range of addresses. These can
cause breakpoints to trigger when a bundle, which has a virtual address, is executed:

● within or outside the specified range

● at either limit of the range

● which matches a specified value when masked by another specified value

Any combination of the above cases can be enabled.

Two 32-bit registers are available to define addresses for instruction breakpoints:
IBREAK_LOWER and IBREAK_UPPER. Both registers reset to zero. Instruction
breakpoints compare the virtual PC of the currently executing bundle against the values
programmed in IBREAK_LOWER and IBREAK_UPPER. The comparison ignores bits [1:0]
as all bundles are word aligned.

Table 114 lists the bit fields of the control register for the normal instruction breakpoints.

Note: The limit registers are referred to as UPPER and LOWER. This is to allow reuse of the
descriptions with the debug breakpoints.

The debug equivalent of IBREAK is DBG_IBREAK. The control registers are symmetrical
with IBREAK registers, and all have a DBG_ prefix. DBG_IBREAK traps are not raised if the
core is already in debug mode.

Within the trap handler, the address that has caused the breakpoint is read from
SAVED_PC.

Data breakpoints

Data breakpoints are configured by programming a range of addresses. A breakpoint
occurs when a data access is made to a virtual address that is:

● within or outside the specified range

● at either limit of the range

● that matches a specified value when masked by another specified value

Table 114. IBREAK_CONTROL bit fields

Name Bit(s) Writable Reset Comment

BRK_IN_RANGE 0 RW 0x0
Break if virtual address is in the
inclusive range LOWER to UPPER.

BRK_OUT_RANGE 1 RW 0x0
Break if virtual address is outside the
inclusive range LOWER to UPPER.

BRK_EITHER 2 RW 0x0
Break if virtual address is equal to
either LOWER or UPPER.

BRK_MASKED 3 RW 0x0
Break if virtual address bitwise
ANDed with UPPER equals LOWER.

Reserved [31:4] RO 0x0 Reserved.

Debugging support ST240

174/507 8059133

Any combination of the above cases can be enabled for any combination of the following
operation types:

● prefetch

● load

● store

Purges and conditional load/store/prefetches that fail the condition do not trigger data
breakpoints. The stwl operation always triggers a breakpoint regardless of the state of the
lock, see Chapter 13: Multi-processor and multi-threading support on page 132.

Two 32-bit registers define addresses for the data breakpoints: DBREAK_LOWER and
DBREAK_UPPER. Both reset to zero.

Table 115 lists the bit fields of the control register for normal data breakpoints.

Note: The limit registers are referred to as UPPER and LOWER. This is to allow reuse of the
descriptions with the debug breakpoints.

When a DBREAK exception is raised the virtual address which caused the breakpoint is
written to EXADDRESS.

The debug equivalent of DBREAK is DBG_DBREAK. The control registers are symmetrical
with DBREAK registers and all have a DBG_ prefix. Therefore the DBG_EXADDRESS
register takes the virtual address which caused the breakpoint. DBG_DBREAK traps are not
raised if the core is already in debug mode. See Section 10.7.2: Debug trap startup behavior
on page 89 for further details on the DBG_EXADDRESS REGISTER.

Table 115. DBREAK_CONTROL bit fields

Name Bit(s) Writable Reset Comment

BRK_IN_RANGE 0 RW 0x0
Break if virtual address is in the
inclusive range LOWER to UPPER

BRK_OUT_RANGE 1 RW 0x0
Break if virtual address is outside the
inclusive range LOWER to UPPER

BRK_EITHER 2 RW 0x0
Break if virtual address is equal to
either LOWER or UPPER

BRK_MASKED 3 RW 0x0
Break if virtual address bitwise
ANDed with UPPER equals LOWER

BRK_NOLOAD 4 RW 0x0
Disables triggering on loads from the
address region

BRK_NOSTORE 5 RW 0x0
Disables triggering on stores from the
address region

BRK_PREFETCH 6 RW 0x0
Enables triggering on prefetches to
the address region

Reserved [31:7] RO 0x0 Reserved

ST240 Debugging support

8059133 175/507

20.2.5 Enabling and updating breakpoints

The safe way to enable or update breakpoints is to carry out the following procedure:

1. Write zero to the relevant control register.

2. Program the relevant address registers.

3. Write the required value to the relevant control register.

This sequence prevents spurious breaks due to inconsistent control and address registers.

20.2.6 Branch trace buffer

A control flow change occurs when the ST240 executes a taken conditional branch, an
unconditional branch, a procedure call/return, takes a trap or returns from a trap.

The branch trace buffer reports on the last eight control flow changes taken by the ST240,
excluding control flow changes in debug mode. The debug trap causing entry into debug
mode and the rfi causing exit from debug mode are also excluded. The associated control
registers are only accessible in debug mode.

For each control flow change the following are recorded:

● physical PC of the bundle causing the control flow change

● physical PC of the control flow change destination bundle

These are recorded in a FIFO queue. The oldest entry is lost if the queue is full when a new
control flow change occurs. The sequence of execution can be determined both from this
FIFO queue and the original program.

The branch trace buffer is updated when the bundle that caused the change in control flow,
or was interrupted, is in writeback.

Reset behavior

When the ST240 is reset:

● the entries in the branch trace buffer are not reset

● the fields in the control register that disable tracing are reset

Therefore following a reset the contents of the branch trace buffer are frozen. This allows
the information to be read and used to diagnose which state of the ST240 caused the reset.

Types of control flow change

Three types of control flow changes can be traced selectively if they are taken:

● traps: all normal traps and rfi from supervisor mode, no debug traps

● subroutine branch: All call and return operations

● general branch: br (if taken), brf (if taken), goto operations

The idle macro is not traced.

Tracing is enabled or disabled by setting the bits of the DBG_BT_CONTROL register.

Debugging support ST240

176/507 8059133

Control registers

The branch trace buffer is configured by programming DBG_BT_CONTROL. The bit fields
of the DBG_BT_CONTROL register are listed in Table 116.

Use the BT_COUNT field to check how many entries are valid. The contents of invalid trace
entries are undefined. The BT_COUNT field is only valid if the branch trace buffer has
traced at least one control flow change.

The branch trace buffer control registers are listed in Table 117.

Table 116. DBG_BT_CONTROL bit fields

Name Bit(s) Writable Reset Comment

BT_TRAP 0 RW 0x0 Enables tracing of normal traps

BT_SUBROUTINE 1 RW 0x0
Enables tracing of subroutine
branches

BT_GENERAL 2 RW 0x0 Enables tracing of general branches

Reserved [7:3] RO 0x0 Reserved

BT_COUNT [11:8] RO
Not
reset

Indicates number of valid entries in
the branch trace buffer providing at
least one control flow change has
been traced. Valid values are 0 to 8.

Reserved [15:12] RO 0x0 Reserved

BT_RESET 16 RW 0x0
Writing 1 resets all non-reset fields in
all branch target buffer registers to 0.
Always reads as 0.

Reserved [31:17] RO 0x0 Reserved

Table 117. Branch trace buffer control registers

Name Bit(s) Writable Reset Comment

DBG_BT_SRC0 [31:0] RO Not Reset Branch trace buffer entry 0 source PC

DBG_BT_DEST0 [31:0] RO Not Reset Branch trace buffer entry 0 destination PC

DBG_BT_SRC1 [31:0] RO Not Reset Branch trace buffer entry 1 source PC

DBG_BT_DEST1 [31:0] RO Not Reset Branch trace buffer entry 1 destination PC

DBG_BT_SRC2 [31:0] RO Not Reset Branch trace buffer entry 2 source PC

DBG_BT_DEST2 [31:0] RO Not Reset Branch trace buffer entry 2 destination PC

DBG_BT_SRC3 [31:0] RO Not Reset Branch trace buffer entry 3 source PC

DBG_BT_DEST3 [31:0] RO Not Reset Branch trace buffer entry 3 destination PC

DBG_BT_SRC4 [31:0] RO Not Reset Branch trace buffer entry 4 source PC

DBG_BT_DEST4 [31:0] RO Not Reset Branch trace buffer entry 4 destination PC

DBG_BT_SRC5 [31:0] RO Not Reset Branch trace buffer entry 5 source PC

DBG_BT_DEST5 [31:0] RO Not Reset Branch trace buffer entry 5 destination PC

DBG_BT_SRC6 [31:0] RO Not Reset Branch trace buffer entry 6 source PC

DBG_BT_DEST6 [31:0] RO Not Reset Branch trace buffer entry 6 destination PC

ST240 Debugging support

8059133 177/507

The entries are read from the registers in Table 117. The higher numbered entries contain
the most recent branches.

20.3 Debug support unit
The Debug support unit (DSU) enables a host to debug both software and hardware by
giving the host direct access to the ST240 core.

20.3.1 Architecture

The architecture of the DSU is shown in Figure 33.

Figure 33. DSU architecture

The DSU is controlled by either an on-chip or off-chip host and sends debug interrupts to the
core. The core accesses the DSU and the default debug handler code stored in the debug
ROM using the STBus. A user defined debug handler can be stored in the debug RAM.

DBG_BT_SRC7 [31:0] RO Not Reset Branch trace buffer entry 7 source PC

DBG_BT_DEST7 [31:0] RO Not Reset Branch trace buffer entry 7 destination PC

Table 117. Branch trace buffer control registers (Continued)

Name Bit(s) Writable Reset Comment

ST240 core

DSU

debug interrupt

Debug
RAM

Host
debug

interface

Off-chip
Host

Shared
register

bank
On-chip

Host

STBusJTAG

Debug
ROM

Debugging support ST240

178/507 8059133

20.3.2 Shared register bank

The bank of 32 shared registers consists of four reserved registers (DSR0 - 3 and DSR31)
and 28 general purpose registers (DSR3 - 30). These enable the host to control the core by
using the default debug handler software.

The shared register bank is 32-bits wide and the registers are listed in Table 118.

The STBus addresses of the DSU registers are detailed in Chapter 18: Peripheral
addresses on page 157.

DSR permissions

The DSRs have restricted write permissions to prevent accidental corruption by software
running on the local ST240. Unrestricted access is allowed to an on-chip host. Permissions
are programmed in DSR_PERMISSIONS.

There are no restrictions on read access to the DSRs. A write which fails the permission
check fails silently; an STBus error is not returned. Full details of access permissions are
shown in Table 85: Peripheral access from local core on page 158.

20.3.3 Debug support registers

The debug support registers (DSR) have restricted write access permissions as defined in
Section 20.1: Debug resource access on page 169.

DSU version register

The DSU version register (DSR0) is a read-only ID register. The fields are identical to the
version register described in Table 79: VERSION bit fields on page 152.

Table 118. DSR_REG values

Name Value Comment

DSR0 0
DSU version register, contains version number for
DSU, core and chip.

DSR1 1
DSU status register, contains DSU control and
status bits.

DSR2 2
DSU output register, supports message transfer
from ST240 to off-chip host.

DSR3-30 3-30 General purpose registers.

DSR31 31 DSU virtual PC register.

ST240 Debugging support

8059133 179/507

DSU status register

The DSU status register (DSR1) contains the DSU status and control bits. The bit fields of
DSR1 are listed in Table 119.

DSU output register (DSR2)

A value written to DSR2 is sent to the host by an event message, which is handshaken with
an event_ack message, see DSU to host events on page 190.

Table 119. DSR1 bit fields

Name Bit(s) Writable Reset Comment

DEBUG_INTERRUPT_TAKEN 0 RO 0x0
Value of
DEBUG_INTERRUPT_TAKEN
signal, active high.

Reserved [2:1] RO 0x0 Reserved

BIGENDIAN 3 RO
System
defined

1: the core is in big endian mode

0: the core is in little endian mode

HOST_EVENT_ACK_PENDING 4 RO 0x0
The host has received an event
command and an event_ack
command is pending.

OUTPUT_PENDING 5 RO 0x0
DSR2 contains data to be sent to
the off-chip host which has not yet
been sent.

TRIGGER_IN 6 RO 0x0 Current value of the trigger in pin.

TRIGGER_OUT 7 RW 0x0 Current value of the trigger out pin.

TRIGGER_ENABLE 8 RW 0x0
Enables/disables debug interrupts
on trigger in.

RAISE_DBG_INT 9 RW 0x0

Writing 1 to this bit causes a debug
interrupt to be sent to the core.
Writing zero has no effect. This bit
always reads zero.

APPLY_SOFT_RESET 10 RW 0x0
Writing 1 to this bit causes a soft
reset. This bit can only be cleared
by a reset.

Reserved 11 RO 0x0 Reserved

IN_IDLE_MODE 12 RO 0x0
This bit is set when the ST240 is in
idle mode.

Reserved [15:13] RO 0x0 Reserved

SW_FLAGS [31:16] RW 0x0 Reserved for future software use.

Table 120. DSR2 bit fields

Name Bit(s) Writable Reset Comment

DATA [31:0] RW 0x0 Output data.

Debugging support ST240

180/507 8059133

20.3.4 Debug support virtual PC register

DSR31 is the debug support virtual PC register (DSVPC). The DSVPC provides visibility of
the virtual PC of completed bundles across the debug interface. Not all PC values may be
made available by DSVPC and the update of DSVPC is always delayed relative to the
actual completion of bundles.

The DSVPC is updated after every bundle completion and is valid once the first bundle has
completed following a reset.

This feature allows time based sampling of the virtual PC using the JTAG port or STBus.

20.3.5 Soft reset

As mentioned in Table 119, the APPLY_SOFT_RESET bit of DSR1 is used to initiate a soft
reset. Soft reset waits for activity to complete before occurring, in a similar way to entering
idle mode. The target port does not lose transactions as a result of the reset; all transactions
are either completed or blocked until after the reset.

Reset requested by an on-chip host

Soft reset is requested by a writing 1 to the APPLY_SOFT_RESET bit of DSR1 using the
STBus. The APPLY_SOFT_RESET bit is sticky and is only cleared by the reset itself. The
sequence required to cause the soft reset and wait for completion is:

1. Set APPLY_SOFT_RESET bit of DSR1.

2. Poll DSR1 waiting for the reset value to be read.

Reset requested by an off-chip host

See Section 20.7: JTAG based host debug interface on page 187 for details of the JTAG
commands used in this section.

If the soft reset is requested by the JTAG port, the required sequence is:

1. poke DSR1 # write APPLY_SOFT_RESET bit.

2. nop.

3. nop # receive poked DSR1 message, reset now occurs.

The reset is scheduled to occur when the DSU receives the second nop message. The host
must either have visibility of the reset completed output pin to ensure that the reset
sequence has completed before sending any further JTAG messages to the ST240, or it
should wait for a sufficiently long time to ensure that the reset has completed. Any
messages sent after the second nop and before the reset sequence has completed have
undefined results.

ST240 Debugging support

8059133 181/507

Soft reset sequence

The actions taken by the core following a soft reset request are:

1. Wait for core to be idle, or 1000 clk_cpu cycles, whichever is shorter. The 1000 cycle
limit is sufficiently long for all STBus transactions to complete. Waiting for the core to
be idle involves:

– waiting for all STBus transactions to complete

– waiting for the SDI output buffer to be empty

– waiting for the pipeline to empty

2. Block access to target port by setting the target port grant to zero and complete all
outstanding target port transactions.

3. Reset all SDI master channels.

4. Assert reset to the core and all peripherals. Asserting reset at this stage is identical to
asserting normal reset.

20.4 Debug ROM
The debug ROM contains the default debug handler software, which allows simple
commands to be sent through the debug interface without requiring a user-defined debug
handler.

20.4.1 Default debug handler

A debug trap causes the default debug handler to be executed. If a user defined debug
handler has been installed by programming a non zero value into DSR3, the user defined
handler is executed; see Section 20.5: User defined debug handler on page 185. If DSR3 is
zero, the default debug handler waits in the command loop. The default debug handler
allocates the usage of DSRs as listed in Table 121. This section refers to the registers by
name, and not by number.

Table 121. DSU registers as used by the default debug handler

DSR
number

Designation Comment

DSR3 DSR_USER_DEBUG_HANDLER
Control switches to this address if content is non-
zero.

DSR4-8 DSU_ARG4-8 Not used in default debug handler.

DSR9 DSU_ARG3 Command argument 3

DSR10 DSU_ARG2
Command argument 2. Used by DSU_POKE and
DSU_FLUSH.

DSR11 DSU_ARG1
Command argument 1. Used by all DSU
commands.

DSR12 DSU_COMMAND
Command register. Written by host, cleared by
ST240 when command accepted.

DSR13 DSU_RESPONSE
Response register. Set by ST240 to a completion
code, cleared by host before issuing next
command.

Debugging support ST240

182/507 8059133

DSR14 Context saving Saves R13

DSR15 Context saving Saves R9

DSR16 Context saving Saves R10

DSR17 Context saving Saves R11

DSR18 Context saving Saves branch bit B0

DSR19 Context saving Saves R63

DSR20 Context saving Saves TRAP_EXCEPTION

DSR21 Context saving Saves SAVED_SAVED_PSW

DSR22 Context saving Saves SAVED_SAVED_PC

DSR23 Context saving Saves SAVED_PSW

DSR24 Context saving Saves SAVED_PC

DSR25 Context saving Saves EXCAUSENO

DSR26 Context saving Saves EXADDRESS

DSR27 Context saving Saves DSR1

DSR28 Context saving Saves TRAP_TLB

DSR29 Context saving Saves TRAP_BREAK

DSR30 Context saving Saves TRAP_INTERRUPT

Table 121. DSU registers as used by the default debug handler (Continued)

DSR
number

Designation Comment

ST240 Debugging support

8059133 183/507

Command loop

The command loop reads and processes commands from a host to the DSRs. Usage of the
designated registers is shown in Table 122.

When the command is complete, the default debug handler stores the results in the
argument registers and stores a result code in the DSU_RESPONSE register.

Default handler commands

All commands succeed if no traps occur before completion. If a trap does occur then the
default debug handler stores the value DSU_GOT_EXCEPTION into DSU_RESPONSE.

Table 122. Command register usage

Register name Host use ST240 use

DSU_COMMAND

Set with command:
1: DSU_CALL_OR_RETURN

2: DSU_FLUSH

3: DSU_POKE
4: DSU_PEEK

values greater than four are
interpreted as DSU_PEEK

Zeroed when command accepted

DSU_ARG1,2,3
Set with arguments for command,
before setting DSU_COMMAND

Set with response arguments before
setting DSU_RESPONSE

DSU_RESPONSE Zeroed after being read

Set to indicate outcome of a command:
1: DSU_PEEKED
2: DSU_POKED
3: DSU_RETURNING
4: DSU_FLUSHED
5: DSU_GOT_EXCEPTION

DSU_PEEK Reads the 32-bit memory location addressed by DSU_ARG1
and returns the data in DSU_ARG1. The address must be
word aligned. DSU_RESPONSE is set to DSU_PEEKED.

DSU_POKE Writes the 32-bit data word in DSU_ARG2 to the memory
location addressed by DSU_ARG1. DSU_RESPONSE is set
to DSU_POKED.

DSU_CALL_OR_ RETURN Execute a call operation to the user defined routine addressed
by DSU_ARG1, or return from the default debug handler if
DSU_ARG1 is zero. DSU_RESPONSE is set to
DSU_RETURNING in before the call or returning from the
handler.

This command can be used to call the fast memory transfer
routine which is described in DSU_SAVE_CONTEXT: Context
saving on page 185.

Debugging support ST240

184/507 8059133

Calling user defined routines from the default debug handler

As mentioned above the command DSU_CALL_OR_RETURN is used to call a user defined
routine or return from the default debug handler. The default debug handler saves the state
listed in Table 121 before calling a user routine. The user routine can overwrite the following
registers without the need to save and restore the state:

● registers R9, R10, R11, R13, R63

● branch register B0

The user routine must save and restore any additional required state.

If the user routine does not modify the trap vector registers and a trap occurs during the user
routine, the trap handler in the default debug handler is called as described below.

Trap handler with the default debug handler

If a normal trap occurs while a command is being processed, for example, an invalid
address supplied to a DSU_PEEK then the trap handler within the default debug handler is
called. DSU_RESPONSE is set to DSU_GOT_EXCEPTION. The default handler then
returns to the command loop. Information about the trap is written to DSRs as shown in
Table 123.

If a debug trap occurs, the default debug handler will restart.

Context restore and register usage

Before exiting the default debug handler restores any state it has altered, except for
SCRATCH4. The default debug handler overwrites SCRATCH4 as temporary storage. Any
writes to context saving DSRs during the execution of the default debug handler overwrite
the saved state and so should be avoided.

DSU_FLUSH Purges the address range starting at the value in DSU_ARG1
and ending at the value in DSU_ARG2 from data and
instruction caches. DSU_RESPONSE is set to
DSU_FLUSHED. Note that the purges are executed with a
granularity of 64 bytes.

Table 123. Trap state reporting in the default debug handler

Register Normal trap

DSU_ARG3 EXADDRESS

DSU_ARG2 EXCAUSENO

DSU_ARG1 SAVED_PC

ST240 Debugging support

8059133 185/507

20.5 User defined debug handler
As mentioned above, it is possible to install a user defined debug handler. If DSR3 is non
zero, the following sequence causes a jump to the user defined debug handler:

1. Save R9, R10, R11, R13 and R63 as shown in Table 121.

2. Save branch bit B0 as shown in Table 121.

3. Overwrite SCRATCH4.

4. Replace R13 with the base address of the DSU register block.

5. Execute a goto operation to the address in DSR3.

There is no facility for using the state restoration routine in the default debug handler for
completion of a user defined debug handler.

20.5.1 Other routines

In addition to the default debug handler the Debug ROM contains the routines listed below
to support the operation of a user defined debug handler. The addresses of the routines are
shown in Table 124. All complete with a return $r63 operation.

DSU_SAVE_CONTEXT: Context saving

This routine saves all registers and branch registers into a section of memory in the debug
RAM.

DSU_FMT: Fast memory transfer

DSU_FMT provides more efficient access to memory than sending DSU_PEEK and
DSU_POKE commands. DSU_FMT overwrites the following state:

● R9, R10, R11, R13, B0

● DSR3 to 30

Calling DSU_FMT causes a second command loop to be run, which supports the states
shown in Table 127. DSR29 stores the command state.

Table 124. Other routines in the debug ROM

Routine
Offset from debug

ROM base
Comment

DSU_FMT 0x00c Fast memory transfer

DSU_FLUSH 0x010 Purge buffer from caches

DSU_SAVE_CONTEXT 0x014 Save context

DSU_RESTORE_CONTEXT 0x018 Restore context

Table 125. Context saving in the debug RAM

Offset into debug RAM Data stored

0x28 to 0x10c R1 to R62

0x110
All branch registers.

Bits [3:0] save B0,..., bits [31:28] save B7

Debugging support ST240

186/507 8059133

The meaning of each command state is shown in Table 127.

Sequence to run a multiple poke command

The host polls DSR29 until it sees WAIT_FOR_COMMAND. Then the host writes to DSR3
to DSR28 as defined above and finally writes WRITE_CMD to DSR29 to start the command.
The ST240 updates DSR29 to WRITE_BUF_ON_GOING during the command then
updates DSR29 to WAIT_FOR_COMMAND.

Sequence to run a multiple peek command

The host polls DSR29 until it sees WAIT_FOR_COMMAND. Then the host writes to DSR3
and DSR4 as defined above and finally writes READ_CMD to DSR29 to start the command.
The ST240 updates DSR29 to READ_BUF_ON_GOING during the command then to
WAIT_FOR_COMMAND. The data is available in DSR5 to DSR28.

Sequence to exit the command loop

The host polls DSR29 until it sees WAIT_FOR_COMMAND. Then the host writes
EXIT_CMD to DSR29 to exit the command loop. The ST240 updates DSR9 and DSR29 to
EXITED and executes a return operation to R63. The host polls for the EXITED state.

Table 126. Command register usage for DSU_FMT

Register name Host use ST240 use

DSR3 Number of words to transfer (1 to 24) None

DSR4 Base address of the access None

DSR5 to 28 Data for transfer Data for transfer

DSR29

Set with command:

15: READ_CMD
11: WRITE_CMD

10: EXIT_CMD

Set to indicate status:
12: WAIT_FOR_COMMAND

13: WRITE_BUF_ON_GOING

14: READ_BUF_ON_GOING
1638: EXITED (0x666)

DSR30 Saves R3

Table 127. Command states for DSU_FMT

State Entered by Comment

READ_CMD Host The host requests a read command

WRITE_CMD Host The host requests a write command

EXIT_CMD Host The hosts requests to exit the command loop

WAIT_FOR_COMMAND ST240
The command loop is waiting for a command. All
commands have finished.

WRITE_BUF_ON_GOING ST240 A multiple poke command is running

READ_BUF_ONGOING ST240 A multiple peek command is running

ST240 Debugging support

8059133 187/507

DSU_FLUSH

This routine takes the same arguments as DSU_FLUSH as defined in Section 20.4.1:
Default debug handler on page 181. The only difference is that when called in this way the
routine executes a return operation to R63 upon completion instead of returning to the
default debug handler command loop.

DSU_RESTORE_CONTEXT: Context saving

This routine restores all registers and branch registers from a section of memory in the
debug RAM as defined in Table 125 on page 185.

20.6 Debug RAM
The ST240 core contains a 1Kbyte Debug RAM. This RAM is memory mapped, but can only
be accessed by the local ST240 in debug mode. The purpose of the RAM is to allow
installation of a user defined debug handler, which is protected from corruption by code
running in user or supervisor mode.

The Debug RAM address space is accessible from the host using the memory access
commands available in the default debug handler.

20.7 JTAG based host debug interface
Exchange of information with the off-chip host is through the host debug interface as shown
in Figure 33: DSU architecture on page 177. All references to the host in this section refer to
the off-chip host.

All JTAG based communication is done with peek, poke, peeked, poked, nop, event and
event_ack commands exchanged between the host and the DSU.

The JTAG interface provides access only to the registers within the DSU, these registers
are described in Section 20.3.2: Shared register bank on page 178.

Access is made to memory via a software convention with the core as described in
Section 20.4.1: Default debug handler on page 181.

event messages can be sent in either direction to allow software running on the core to
synchronize with software on the host.

Debugging support ST240

188/507 8059133

20.7.1 Protocol and flow control

40-bit commands are sent between the host and the DSU through the JTAG port. Whenever
a command is sent to the DSU by the host, the DSU responds with a response from a
previous command, or a nop if no response is pending.

A symmetrical protocol is employed where every action request is handshaken. Therefore:

● a peek from the host is acknowledged with a peeked

● a poke from the host is acknowledged with a poked

● an event from the host is acknowledged with an event_ack

● an event_ack from the host does not require a response and invokes a nop in reply if
no other response is pending

● a nop from the host does not require a response and invokes a nop if no other
response is pending

The DSU sends a response to the command i either after the DSU receives command (i+1),
or after it receives command (i+2).

In its initial state, the DSU responds to command i after it receives command (i+1) and
continues to do so until the processor writes to DSR2, sending an event to the host. The
sending of the event is prioritized over the sending of a response to command i which is
buffered.

In the state where there is a buffered response, DSU responds to command i after it
receives command (i+2). When the DSU receives an event_ack or a nop as command
(j+2), it sends the response to command (j+1) and then re-enters the initial state as the
buffer is now empty since neither the event_ack nor the nop require a response.

As only one event can be outstanding to the host at once, the DSU is only required to buffer
one response. As responses are not always immediately sent to incoming commands the
host must account for every peek and poke which is sent. The host must also poll the DSU
with nops to receive events.

ST240 Debugging support

8059133 189/507

20.7.2 Command format

Commands supported across the JTAG interface are as listed in Table 128. Commands are
40 bits long and consist of an 8-bit header and a 32-bit data field. The header is split into two
fields. Commands are sent over the JTAG interface bit[0] first.

Table 128. JTAG commands
C

o
m

m
an

d

h
ea

d
er

[2
:0

]

h
ea

d
er

[7
:3

]

d
at

a[
39

:8
]

C
o

m
m

an
d

 n
ee

d
s

a
re

sp
o

n
se Action / comment

Commands from the Host to the DSU

nop 0x0 0x0 0x0(1) No
No action. No command is currently
waiting to be sent. nops can be used
to poll for events.

peek 0x1 Address 0x0(1) Yes

Request to peek the DSU register
specified by the address field. The
DSU replies with peeked, address,
value(2).

poke 0x2 Address Data Yes

Request to poke a DSU register
specified by the address field with the
value specified by the data field. The
DSU replies with poked, address,
0(1).

event 0x3 0x0(3)
reason[10:8]
channel[13:11]

0x0[39:14]

Yes

If reason = 1, channel = 0 raise a
debug interrupt, otherwise a debug
interrupt is not raised. The DSU
replies with event_ack, reason,
channel, 0(1).

event_ack 0x4 0x0(1) DSR2[31:0] No

An event from the DSU to the host
has been processed. The original
word in DSR2 is returned, but is not
used.

reserved(4) 0x5-
0x7

Undefined Undefined No
Reserved commands are treated as
nops.

Commands from the DSU to the host

nop 0x0 0x0 0x0 No
No command is currently waiting to
be sent.

peeked 0x1 Address Value No
Peeked data being returned to the
host.

poked 0x2 Address 0x0 No
Response to a request to poke a DSU
register.

event 0x3 0x0 DSR2[31:0] Yes

DSR2 [31:0] is copied into the data
field and the use is software defined.
Must be eventually replied to by
event_ack.

Debugging support ST240

190/507 8059133

20.7.3 Handling events

Event messages can be sent in either direction (host to DSU and DSU to host) to allow
software running on the core to synchronize with software on the host. This section
describes how event messages are handled by the DSU and the host.

Host to DSU events

The DSU generates an event_ack in response to an event command. If reason = 1 and
channel = 0 in the event command, a debug interrupt is raised. The response to a debug
interrupt indicates only that it has been raised, not that it has been taken. The host can
determine whether the ST240 is in debug mode by peeking DSR1. Bit 0 is set on entering
debug mode and is cleared on exiting.

If the ST240 has not returned from debug mode, a subsequent event command causes an
additional debug interrupt. The controlling software must ensure that events are not sent
until previous events have been completely processed.

DSU to host events

Multiple events can be sent from the host to the DSU, but only one outstanding DSU to host
event is permitted.

Two bits in DSR1 (OUTPUT_PENDING DSR1[5] and HOST_EVENT_ACK_PENDING
DSR1[4]) provide information about the current DSU to host event status; this is illustrated in
Table 129.

event_ack 0x4 0x0

reason[10:8]

channel[13:11]

0x0[39:14]

No

An event has been processed (a
debug interrupt has been applied to
the core, it may not have been
processed yet). The data field from
the incoming command is placed in
the data field of the response
command.

reserved(4) 0x5-
0x7

Undefined Undefined No
The behavior is defined by the host
software.

1. The implementation does not check the value of this field

2. The response may be delayed by one message if an event_ack is outstanding, as described in
Section 20.7.1: Protocol and flow control on page 188.

3. The implementation checks the value of this field

4. Commands marked reserved are for future development.

Table 128. JTAG commands (Continued)

C
o

m
m

an
d

h
ea

d
er

[2
:0

]

h
ea

d
er

[7
:3

]

d
at

a[
39

:8
]

C
o

m
m

an
d

 n
ee

d
s

a
re

sp
o

n
se Action / comment

ST240 Debugging support

8059133 191/507

20.8 On-chip host debug interface
The ST240 supports debugging from an on-chip host over the STBus, by reading and
writing the DSRs. There are only two significant changes for the operation of an on-chip
host.

● Debug interrupts are raised by writing to the RAISE_DBG_INT bit of DSR1, instead of
sending an event message.

● Writes to DSR2 do not cause an event message to be sent to the on-chip host. A
replacement mechanism must be constructed in software.

The default debug handler processes exactly the same commands from either type of host.
The only difference is whether the DSRs are accessed through the JTAG port or the STBus.

20.9 Non software controllable behavior
Two operations are provided that depend upon input pins to the ST240. These are:

● causing the ST240 to come out of reset into idle mode and to wait for a debug interrupt

● disabling of debug mode on a production system

Table 129. Status of events and DSR1 bit fields

DSR1[5] DSR1[4] Comment

0 0 No outstanding DSU to host event.

1 0
DSR2 has been written to, event has not been sent yet. Writes to DSR2
before DSR1[4] is set do not cause extra events, but update the value of
DSR2 which is sent with the event.

1 1 This case does not occur, DSR1[5] and DSR1[4] are mutually exclusive.

0 1
The event has been sent, writes to DSR2 do not cause further events to
be sent.

0 0 The event_ack has been received, writes to DSR2 cause event again.

Performance monitoring ST240

192/507 8059133

21 Performance monitoring

The ST240 provides a hardware instrumentation system. This system is accessible by
several control registers:

● a register which controls the performance monitoring (PM_CR)

● a 64-bit core clock counter (PM_PCLK, PM_PCLKH)

● four event counters (PM_CNTi, i = 0, 1, 2, 3)

● an event interrupt control (PM_INT)

Of the control registers listed above only PM_PCLK and PM_PCLKH have read permission
in user mode. None have write permission in user mode.

The system allows software to simultaneously monitor up to four of the predefined events
listed in Table 130.

21.1 Events
The programmable events supported by the ST240 are listed in Table 130. All reserved
counters always read zero.

Table 130. PM_EVENT values

Name Value Comment

PM_EVENT_DHIT 0
Number of cached loads and stores that hit the
data cache.

PM_EVENT_DMISS 1
Number of cached loads and stores that miss the
data cache.

PM_EVENT_DSTALLCYCLES 2

Number of cycles the core is stalled waiting for
load/store operations to complete
These include DTLB and uncached stalls, but
excludes instruction cache purges, div/rem
operations and stalls due to DTCM access from
the target port.

PM_EVENT_PFTISSUED 3 Number of prefetches that are sent to the STBus.

PM_EVENT_PFTHITS 4
Number of cached loads that hit the prefetch
cache.

PM_EVENT_WBHITS 5 The number of writes that hit the write buffer.

PM_EVENT_IHIT 6 Number of instruction cache hits.

PM_EVENT_IMISS 7 Number of instruction cache misses.

PM_EVENT_IMISSCYCLES 8
Number of cycles the instruction cache was stalled
for waiting for the STBus.

PM_EVENT_IFETCHSTALL 9 Number of cycles of instruction fetch stall.

PM_EVENT_BUNDLES 10 Number of bundles completed.

PM_EVENT_LDST 11
Number of load/store class operations executed
(includes data cache purges, syncs).

ST240 Performance monitoring

8059133 193/507

PM_EVENT_TAKENBR 12
Number of taken branches (includes br, brf,
return, rfi, goto and call).

PM_EVENT_NOTTAKENBR 13 Number of not taken branches (br and brf).

PM_EVENT_EXCEPTIONS 14 Number of exceptions and debug traps taken.

PM_EVENT_INTERRUPTS 15 Number of normal interrupts taken.

PM_EVENT_BUSREADS 16

Number of read transactions issued to the STBus
(this is the number of uncached reads, instruction
and data cache refills and prefetches issued to the
STBus).

PM_EVENT_BUSWRITES 17

Number of write transactions issued to the STBus
(this is the number of write buffer lines evicted and
the number of uncached writes issued to the
STBus).

PM_EVENT_OPERATIONS 18 Number of completed operations.

PM_EVENT_WBMISSES 19
Number of cached writes that missed the data
cache and missed the write buffer (this excludes
cache line evictions).

PM_EVENT_BUBBLEORNOP 20

Number of completed bundles that contained only
nops plus the number of pipeline bubbles. Only
counts nops encoded as the nop macro and not,
for example, ldwc, which fails the condition check.
Bubbles are caused by fetch stalls, branch stalls
and interlock stalls.

PM_EVENT_LONGIMM 21
Number of immediates extensions in completed
bundles.

PM_EVENT_ITLBMISS 22
Number of instruction cache reads that missed the
ITLB.

PM_EVENT_DTLBMISS 23
Number of load/store operations that missed the
DTLB when the TLB is enabled. Includes
instruction cache purges that use the TLB.

PM_EVENT_UTLBHIT 24 Number of accesses to the UTLB that were hits.

PM_EVENT_ITLBWAITCYCLES 25
Number of cycles the instruction cache spends
waiting for the ITLB to fill.

PM_EVENT_DTLBWAITCYCLES 26
Number of cycles the data cache spends waiting
for the DTLB to fill.

PM_EVENT_UTLBARBITRATION
CYCLES

27
Number of cycles where the ITLB or DTLB was
waiting for access to the UTLB because the UTLB
was busy servicing a request.

Reserved 28 Reserved.

PM_EVENT_PFTEVICTIONS 29
Number of times a newly issued prefetch has
evicted an existing prefetch cache entry.

PM_EVENT_IDLECYCLES 30
Number of cycles the ST240 remained in idle
mode.

Table 130. PM_EVENT values (Continued)

Name Value Comment

Performance monitoring ST240

194/507 8059133

Reserved 31 Reserved.

PM_EVENT_DTCMARBITRATION
CYCLES

32
Number of cycles that a DTCM access from the
target port had to wait until it gained access to the
DTCM.

PM_EVENT_DTCMACCESSES 33
Number of accesses made to the DTCM from the
target port.

PM_EVENT_DTCMSTALLCYCLE
S

34
Number of cycles where access from the target
port to the DTCM caused the data cache to be
stalled.

PM_EVENT_DTCMHITS 35
Number of cached loads or stores accessing the
DTCM.

Reserved 36-39 Reserved.

PM_EVENT_NORMALTRAP 40 Number of normal traps taken.

PM_EVENT_TRAPEXCEPTION 41 Number of traps taken using TRAP_EXCEPTION.

PM_EVENT_TRAPINTERRUPT 42 Number of traps taken using TRAP_INTERRUPT.

PM_EVENT_TRAPBREAK 43 Number of traps taken using TRAP_BREAK.

PM_EVENT_TRAPTLB 44 Number of traps taken using TRAP_TLB.

PM_EVENT_DEBUGTRAP 45 Number of debug traps taken.

Reserved 46-49 Reserved.

PM_EVENT_DFILLS 50
Number of cached loads which missed the cache
and the prefetch cache and so caused an STBus
request.

PM_EVENT_DFILLCYCLES 51
Number of cycles spent waiting for the STBus due
to cached loads missing the data cache and the
prefetch cache.

PM_EVENT_DUNCACHEDLOADS 52 Number of uncached loads issued to the STBus.

PM_EVENT_DUNCACHEDLOADC
YCLES

53
Number of cycles spent waiting for the STBus due
to uncached loads.

Reserved 54-59 Reserved.

PM_EVENT_WAITLCYCLES 60
Number of cycles spent idle due to a waitl
operation waiting for the ATOMIC_LOCK to be
free.

PM_EVENT_STWLSUCCESSES 61
Number of times a stwl operation reached
writeback when the lock bit was set. Only
incremented if the stwl did not raise an exception.

PM_EVENT_STWLFAILS 62
Number of times a stwl operation reached
writeback when the lock bit was not set. Only
incremented if the stwl did not raise an exception.

PM_EVENT_DIVREMSTALLCYCL
ES

63
Number of cycles spent stalled due to executing a
divide or remainder operation.

Reserved 64-127 Reserved.

Table 130. PM_EVENT values (Continued)

Name Value Comment

ST240 Performance monitoring

8059133 195/507

The time delay between an event occurring and the count being recorded in the relevant
register is implementation dependent.

21.2 Control register (PM_CR)
The ST240 uses this control register (PM_CR) to reset and enable all the counters and
define the events of the four programmable count registers. The control register’s bit fields
are listed in Table 131.

21.3 Event counters (PM_CNTi)
Each of the four programmable event counter (PM_CNTi, i = 0 to 3) is incremented each
time the specified countable event occurs. The event counters can record any one of the
events specified in Table 130 on page 192.

Reading from an event counter register returns the current event count. Writing to an event
counter changes the current count. If a counter is enabled, read or written at the same time
as an event triggers the counter to increment, the increment is ignored.

Table 131. PM_CR bit fields

Name Bit(s) Writable Reset Comment

ENB 0 RW 0x0

1: counting is enabled
0: counting is disabled

This applies to PM_CNT0-3,
PM_PCLK and PM_PCLKH.

RST 1 RW 0x0

When a 1 is written to this field all the
counters (PM_CNT0-3, PM_PCLK
and PM_PCLKH) are reset to 0. If a 0
is written it is ignored. This field does
not retain its value and so always
reads as 0.

IDLE 2 RW 0x0

Indicates whether the core has been
in idle mode. When the core enters
idle mode this bit is set to 1. Writing a
0 to this bit has no effect. Writing a 1
to this bit clears the bit.

Reserved 3 RO 0x0 Reserved.

EVENT0 [10:4] RW 0x0
7-bit field specifying the event being
monitored for this counter.

EVENT1 [17:11] RW 0x0
7-bit field specifying the event being
monitored for this counter.

EVENT2 [24:18] RW 0x0
7-bit field specifying the event being
monitored for this counter.

EVENT3 [31:25] RW 0x0
7-bit field specifying the event being
monitored for this counter.

Performance monitoring ST240

196/507 8059133

21.4 64bit clock counter (PM_PCLK, PM_PCLKH)
The two 32-bit registers PM_PCLK and PM_PCLKH together form a 64-bit counter.
PM_PCLK contains the lower 32 bits, PM_PCLKH contains the upper 32 bits.

It is not possible to read both registers in a single, atomic operation, as 64-bit loads are not
supported to control registers. The counter must be read using two load word operations. It
must be checked that the values returned by the two loads are consistent as the sequence
may have been interrupted.

A suitable procedure for reading the counter is provided in this code fragment:

long long read_counter(void) {
unsigned int high1;
unsigned int low;
unsigned int high2;
do {

high1 = *(volatile int *)PM_PCLKH;
low = *(volatile int *)PM_PCLK;
high2 = *(volatile int *)PM_PCLKH;

}
while (high1 != high2);

return (((long long) high1) << 32) | ((long long) low);
}

ST240 Performance monitoring

8059133 197/507

21.5 Recording events
To start recording, write the desired fields to an ST240 general purpose register. This can
be achieved by first reading the PM_CR register, then modifying the fields as appropriate.

The ENB bit must be set to 1. The RST bit must be set to 1, if the counters are to be reset.
The four programmable counter fields (EVENTi (i = 0 to 3) of the PM_CR register) must be
modified to the value representing the events to be counted, see the value column of
Table 130 on page 192.

The value in the register is then written to the memory mapped PM_CR for the operation to
begin.

To stop recording, read the value of PM_CR, set the ENB bit to zero, then write back the
result to PM_CR. Do not change any other bits. If the RST bit is set to 1 then the PM_CNTi
registers are reset.

Whilst counting events over a long period of time, the 32-bit counters may overflow (the
exception to this is PM_PCLK, which has been extended to 64-bits as described in
Section 21.4). To obtain a continuous profile, it is recommended that interrupts are enabled,
see Section 21.6. If event interrupts are not enabled, the counters will overflow silently.

21.6 Interrupts generated by performance monitors
Event counters may be set up to generate interrupts upon overflow. Interrupt generation is
controlled by the PM_INT control register. The bit fields of the PM_INT register are
described in Table 132.

The value of each of the PENDING[0-3] bits is set when the associated event counter
wraps. The ENABLE[0-3] bits are masks for the four interrupt sources.

Table 132. PM_INT bit fields

Name Bit(s) Writable Reset Comment

ENABLE0 0 RW 0x0 Interrupt mask for event 0.

ENABLE1 1 RW 0x0 Interrupt mask for event 1.

ENABLE2 2 RW 0x0 Interrupt mask for event 2.

ENABLE3 3 RW 0x0 Interrupt mask for event 3.

Reserved [7:4] RO 0x0 Reserved.

PENDING0 8 RW 0x0

When 1 an interrupt is pending for
event 0. Writing a 0 to this bit has no
effect. Writing 1 to this bit clears the
bit. When PM_CNT0 overflows and
the value wraps this bit is set to 1.

PENDING1 9 RW 0x0 As for PENDING0, but for PM_CNT1.

PENDING2 10 RW 0x0 As for PENDING0, but for PM_CNT2.

PENDING3 11 RW 0x0 As for PENDING0, but for PM_CNT3.

Reserved [31:12] RO 0x0 Reserved

Performance monitoring ST240

198/507 8059133

The PM_INT interrupt in the interrupt controller (see Chapter 19: Interrupt controller on
page 163) will be raised if one of the following is true:

● PENDING0 and ENABLE0 are set

● PENDING1 and ENABLE1 are set

● PENDING2 and ENABLE2 are set

● PENDING3 and ENABLE3 are set

Three usage models are suggested.

● For a complete count of an event that may overflow, the counter is reset to zero and the
interrupt is used to record the number of overflows.

● To count n events the counter may be set to -n. It will then cause an interrupt after n
events.

● The PENDING[0-3] bits are used to extend the counters to 33 bits as they indicate
overflow. In this mode all ENABLE[0-3] bits are zero if interrupts are not required.

Note: Interrupts cannot be triggered by PM_PCLK or PM_PCLKH overflowing.

21.7 PM counters in idle mode
When in idle mode, only the PM_EVENT_IDLECYCLES counter increments. No other
counters will change state.

21.8 STBus latency measurement
The performance monitors can be used to measure the latency of STBus transactions.The
latency of the STBus for instruction cache fills, data cache fills and uncached loads can be
calculated as follows:

PM_EVENT_IMISSCYCLES / PM_EVENT_IMISS

PM_EVENT_DFILLCYCLES / PM_EVENT_DFILLS

PM_EVENT_DUNCACHEDLOADCYCLES / PM_EVENT_DUNCACHEDLOADS

ST240 Execution model

8059133 199/507

22 Execution model

This chapter describes how bundles are executed in terms of their component operations.

In the absence of traps, the core fetches a bundle from memory, decodes the operations
within it and reads their operands. It then executes the operations in parallel and writes the
results back to the architectural state of the machine. All operations in a bundle commit their
results to the state of the machine at the same point in time; this is known as the commit
point.

In the presence of traps, the core uses the commit point to distinguish between recoverable
and non-recoverable traps.

Traps that are detected prior to the commit point are treated as recoverable. They are
recoverable because the machine state has not been updated, which means that the state
prior to the execution of the bundle can be recovered. In some cases, the cause of the trap
can be corrected and the bundle restarted.

Traps detected after the commit point are non-recoverable. The machine state has been
updated and in some cases it may not be clear which bundle caused the trap. Non-
recoverable traps are consequently of a serious nature and cannot be restarted. On the
ST240, the only class of non-recoverable trap is an STBus error resulting from a store
operation.

22.1 Bundle fetch, decode, and execute
The ST240 specifies the fetch, decode and execution of bundles using an abstract
sequential model to show the effects on the architectural state of the machine. In this
abstract model, each bundle is executed sequentially with respect to other bundles. This
means that the core completes all actions associated with a specific bundle before starting
any action associated with the following bundle.

Specific implementations of the ST240 are generally designed to deliver substantial
optimizations on the scheme provided by this abstract model. However, for legal bundle
sequences that permit execution latency, these optimizations are not visible architecturally.
The behavior in illegal cases is defined by the Chapter 10: Traps (exceptions and interrupts)
on page 82. Operation latencies are described in Chapter 6: Execution pipeline and
latencies on page 33.

The execution flow shown in Figure 34 uses the notation defined in Chapter 23:
Specification notation on page 202. There are additional functions available that can be
used to extract details from bundles; these are described in Section 22.2: Functions on
page 201.

Execution model ST240

200/507 8059133

Figure 34. Execution model

REPEAT oper FROM 1 FOR NUM_OPERS
 Commit(oper);

Bus error?

Yes

THROW
EXTERN_INT

Fetch bundle from memory

Start

Yes

Exception
detected?

No

NumWords(PC) >
NumWordsMax()

No

THROW
ILL_INST

Yes

InitiateDebugIntHandler(); InitiateExceptionHandler();

REPEAT oper FROM 1 FOR NUM_OPERS
 Pre-commit(oper);

Interrupt?

No

No

THROW
STBUS_IC_ERROR

Data Cache?

THROW
STBUS_DC_ERROR

No

YesYes

BUNDLE_PC ZeroExtend32(PC);

NUM_OPERS NumWords(PC) - NumExtImms(PC);

BUNDLE_SIZE NumWords(PC) x 4;

PC Register(BUNDLE_PC + BUNDLE_SIZE);

Debug
interrupt?

No

Yes, normal
exception

Yes, debug
exception

ST240 Execution model

8059133 201/507

22.2 Functions
The flow chart in Figure 34 includes a number of functions. Those functions are described in
this section.

22.2.1 Bundle decode

The ST240 uses the functions listed in Table 133 in the bundle decode phase.

22.2.2 Operation execution

The ST240 uses the functions listed in Table 134 in the operation execution phase.

22.2.3 Exceptional cases

The ST240 uses the functions listed in Table 135 in exceptional cases.

Table 133. Bundle decode functions

Function Description

NumWords(address)

Returns the number of words in the bundle starting at
address. The return value is equal to the number of
contiguous words, starting from address, without their stop bit
set +1.

NumExtImms(address)
Returns the number of extended immediates in the bundle
starting at address.

NumWordsMax()
Returns the maximum number of words in a bundle. This is
equivalent to the issue width of the core.

Table 134. Operation execution functions

Function Description

Pre-commit(n)
For the nth operation in the bundle, execute the pre-commit
phase, see Section 24.2: Operation specifications on
page 223(1).

1. n is a value in the range [1... number of operations in the bundle].

Commit(n)
For the nth operation in the bundle, execute the commit phase,
see Section 24.2: Operation specifications on page 223(1).

Table 135. Operation execution functions

Function Description

InitiateExceptionHandler()
Execute the statements defined in Section 10.7: Saving and
restoring execution state on page 87.

InitiateDebugIntHandler()
Execute the statements defined in Section 20.2.1: Breakpoint
support on page 171.

Specification notation ST240

202/507 8059133

23 Specification notation

This chapter describes the formal language used in this manual for describing operations,
exceptions and interrupts. The language has the following features:

● a simple variable and type system, see Section 23.1

● expressions, see Section 23.2

● statements, see Section 23.3

● notation for the architectural state of the machine, see Section 23.4

Additional mechanisms are defined to model memory (Section 23.5.2), for control registers
(Section 23.5.3), and cache instructions (Section 23.5.4).

Chapter 24: Instruction set describes each instruction using informal text as well as the
formal language. Occasionally it is not appropriate for one of these descriptions to describe
the full semantics of the instruction; in such cases, both descriptions must be taken into
account to constitute the full specification. In the case of an ambiguity or a conflict, the
notational language takes precedence over the text.

Note: This chapter does not currently contain all the functions listed in the instruction pages.

23.1 Variables and types
Variables are used to hold state. The type of a variable determines the set of values that the
variable can hold and the operators that can be applied to it. The scalar types are integers,
booleans and bit fields. One-dimensional arrays of scalar types are also supported.

The architectural state of the machine is represented by a set of variables. Each of these
variables has an associated type, which is either a bit field or an array of bit fields. Bit fields
provide a bit-accurate representation of the variables.

The core uses additional variables to hold temporary values. The type of a temporary
variable is determined by its context rather than explicit declaration. The type of a temporary
variable can be an integer, a boolean or an array of integers or booleans.

23.1.1 Integer

An integer variable can take the value of any mathematical integer. No limits are imposed
on the range of integers supported. Integers obey their standard mathematical properties.
Integer operations do not overflow. The integer operators are defined so that singularities
cannot occur. For example, no definition is given to the result of divide by zero; the operator
is simply not available when the divisor is zero.

The representation of literal integer values is achieved using the following notations:

● unsigned decimal numbers are represented by the regular expression: [0-9]+

● signed decimal numbers are represented by the regular expression: -[0-9]+

● hexadecimal numbers are represented by the regular expression: 0x[0-9a-fA-F]+

● binary numbers are represented by the regular expression: 0b[0-1]+

These notations are standard and map onto integer values in the obvious way. Underscore
characters (‘_’) can be inserted into any of the above literal representations to aid
readability. They do not change the represented value.

ST240 Specification notation

8059133 203/507

23.1.2 Boolean

A boolean variable can take two values.

● Boolean false. The literal representation of boolean false is FALSE.

● Boolean true. The literal representation of boolean true is TRUE.

23.1.3 Bit fields

Bit fields are provided to define ‘bit-accurate’ storage.

Bit fields containing arbitrary numbers of bits are supported. A bit field of b bits contains bits
numbered from 0 (the least significant bit) up to b-1 (the most significant bit). Each bit can
take the value 0 or the value 1.

Bit fields are mapped to, and from, unsigned integers in the conventional way. If bit i of a b-
bit bit field, where i is in [0, b), is set then it contributes 2i to the integral value of the bit field.
The integral value of the bit field as a whole is an integer in the range [0, 2b).

Bit fields are mapped to, and from, signed integers using two’s complement representation.
This is as above, except that the bit b-1 of a b-bit bit field contributes -2(b-1) to the integral
value of the bit field. The integral value of the bit field as a whole is an integer in the range
[-2b-1, 2b-1].

A bit field may be used in place of an integer value. In this case the integral value of the bit
field is used. A bit field variable may be used in place of an integer variable as the target of
an assignment. In this case the integer must be in the range of values supported by the bit
field.

23.1.4 Arrays

One-dimensional arrays of the above types are also available. Indexing into an n-element
array A is achieved using the notation A[i] where A is an array of some type and i is an
integer in the range [0, n). This selects the ith. element of the array A. If i is zero this selects
the first entry, and if i is n-1 then this selects the last entry. The type of the selected element
is the base type of the array.

Multi-dimensional arrays are not provided.

23.2 Expressions
Expressions are constructed from monadic operators, dyadic operators and functions
applied to variables and literal values.

There are no defined precedence and associativity rules for the operators. Parentheses are
used to specify the expression unambiguously.

Sub-expressions can be evaluated in any order. If a particular evaluation order is required,
then sub-expressions must be split into separate statements.

Specification notation ST240

204/507 8059133

23.2.1 Integer arithmetic operators

For arithmetic, the notation uses common mathematical operators. The standard dyadic
operators are listed in Table 136.

The division operator truncates towards zero. The remainder operator is consistent with this.
The sign of the result of the remainder operator follows the sign of the dividend. Division and
remainder are not defined for a divisor of zero.

For a numerator (n) and a denominator (d), the following properties apply where d≠0:

The standard monadic operators are described in Table 137.

Table 136. Standard dyadic operators

Operation Description

i + j Integer addition

i - j Integer subtraction

i × j Integer multiplication

i / j Integer division(1)

1. These operators are defined only where j <> 0

i \ j Integer remainder(1)

Table 137. Standard monadic operators

Operator Description

- i Integer negation

|i| Integer modulus (absolute value)

n d n d⁄()× n\d()+=

n–() d⁄ n d⁄()– n d–()⁄= =

n–()\d n\d()–=

n\ d–() n\d=

0 n\d() d<≤ where n 0≥ and d 0>

ST240 Specification notation

8059133 205/507

23.2.2 Integer shift operators

The available integer shift operators are listed in Table 138.

The shift operators are defined on integers as follows where b ≥ 0:

Note that right shifting by b places is a division by 2b with the result rounded towards minus
infinity. This contrasts with division, which rounds towards zero, and is the reason why there
are separate right shift definitions for positive and negative n.

23.2.3 Integer bitwise operators

The available integer bitwise operators are listed in Table 139.

In order to define bitwise operations, all integers are considered as having an infinitely long
two’s complement representation. Bit 0 is the least significant bit of this representation, bit 1
is the next higher bit, and so on. The value of bit b, where b ≥ 0, in integer n is given by:

Care must be taken whenever the infinitely long two’s complement representation of a
negative number is constructed. This representation contains an infinite number of higher
bits with the value 1 representing the sign. Typically, a subsequent conversion operation is
used to discard these upper bits and return the result back to a finite value.

Table 138. Shift operators

Operation Description

n << b Integer left shift

n >> b Integer right shift

n b« n 2
b×=

n b»
n 2

b⁄ where n 0≥

n 2
b

1+–() 2
b⁄ where n 0<⎩

⎪
⎨
⎪
⎧

=

Table 139. Bitwise operators

Operation Description

i ∧ j Integer bitwise AND

i ∨ j Integer bitwise OR

i ⊕ j Integer bitwise XOR

~ i Integer bitwise NOT

n<b FOR m> Integer bit field extraction: extract m bits starting at bit b from integer n

n Integer bit field extraction: extract 1 bit starting at bit b from integer n

BIT n b,() n 2⁄ b()\2 where n 0≥=

BIT n b,() 1 BIT n– 1–() b,()– where n 0<=

Specification notation ST240

206/507 8059133

Bitwise AND (∧), OR (∨), XOR (⊕) and NOT (∼) are defined on integers as follows, where b
takes all values such that b ≥ 0:

Note: Bitwise NOT of any finite positive i results in a value containing an infinite number of higher
bits with the value 1 representing the sign.

Bitwise extraction is defined on integers as follows, where b ≥ 0 and m > 0:

The result of n<b FOR m> is an integer in the range [0, 2m).

23.2.4 Relational operators

Relational operators compare integral values and give a boolean result.

23.2.5 Boolean operators

Boolean operators perform logical AND, OR, XOR and NOT. These operators have boolean
sources and result. Additionally, the conversion operator INT is defined to convert a boolean
source into an integer result.

BIT i j∧ b,() BIT i b,() BIT j b,()×=

BIT i j∨ b,() BIT i j∧ b,() BIT i j⊕ b,()+=

BIT i j⊕ b,() BIT i b,() BIT j b,()+()\2=

BIT ~i b,() 1 BIT i b,()–=

n b FOR m〈 〉 n b»() 2
m

1–()∧=

n b〈 〉 n b FOR 1〈 〉=

Table 140. Relational operators

Operation Description

i = j Result is TRUE if i is equal to j, otherwise FALSE

i ≠ j Result is TRUE if i is not equal to j, otherwise FALSE

i < j Result is TRUE if i is less than j, otherwise FALSE

i > j Result is TRUE if i is greater than j, otherwise FALSE

i ≤ j Result is TRUE if i is less than or equal to j, otherwise FALSE

i ≥ j Result is TRUE if i is greater than or equal to j, otherwise FALSE

Table 141. Boolean operators

Operation Description

i AND j Result is TRUE if i and j are both true, otherwise FALSE

i OR j Result is TRUE if either/both i and j are true, otherwise FALSE

i XOR j Result is TRUE if exactly one of i and j are true, otherwise FALSE

NOT i Result is TRUE if i is false, otherwise FALSE

INT i Result is 0 if i is false, otherwise 1

ST240 Specification notation

8059133 207/507

23.2.6 Single-value functions

In some cases, it is inconvenient or inappropriate to describe an expression directly in the
specification language. In these cases a function call is used to reference the undescribed
behavior.

A single-value function evaluates to a single value (the result), which can be used in an
expression. The type of the result value can be determined by the expression context from
which the function is called. There are also multiple-value functions which evaluate to
multiple values. These are only available in an assignment context, and are described in
Section 23.3.2: Assignment on page 210.

Functions may generate side-effects.

Arithmetic functions

Scalar conversions

Two monadic functions are defined to support conversion from integers to bit-limited signed
and unsigned number ranges. For a bit-limited integer representation containing n bits, the
signed number range is [-2n-1, 2n-1] while the unsigned number range is [0, 2n].

These functions are often used to convert between signed and unsigned bit-limited integers
and between bit fields and integer values.

These two functions are defined as follows, where n > 0:

For syntactic convenience, conversion functions are also defined for converting an integer
or boolean to a single bit and to a value which can be stored as a 32-bit register. Table 144
shows the additional functions provided.

Table 142. Arithmetic functions

Function Description

CountLeadingZeros(i)

Convert integer i to 32-bit bit field and return the number of leading
zeros in the bit field. For example:
If i<31> is 1 then the return value is 0.
If all bits are 0 then the return value is 32.

Table 143. Integer conversion operators

Function Description

ZeroExtendn(i) Convert integer i to an n-bit 2’s complement unsigned range

SignExtendn(i) Convert integer i to an n-bit 2’s complement signed range

ZeroExtendn i() i 0 FOR n〈 〉=

SignExtendn i()

i 0 FOR n〈 〉 where i n 1–〈 〉 0=

i 0 FOR n 1–()〈 〉 2
n

– where i n 1–〈 〉 1=
⎩
⎪
⎨
⎪
⎧

=

Specification notation ST240

208/507 8059133

Logical functions

The logical functions provided by the ST240 are listed in Table 145.

Saturating functions

The saturating functions provided by the ST240 are listed in Table 146.

Table 144. Conversion operators from integers to bit fields

Operation Description

Bit(i)

If i is a boolean, this is equivalent to Bit(INT i)
Otherwise, convert lowest bit of integer i to a 1-bit value

This is a convenient notation for i<0>

BranchRegister(i)

If i is a boolean, this is equivalent to BranchRegister(INT i)
Otherwise, convert lowest 4 bits of integer i to an unsigned 4-bit
value. This is a convenient notation for i<0 FOR 4>

Register(i)

If i is a boolean, this is equivalent to Register(INT i)
Otherwise, convert lowest 32 bits of integer i to an unsigned 32-bit
value. This is a convenient notation for i<0 FOR 32>

Table 145. Logical functions

Function Description

MaskAndShiftn(i,j) Returns (ZeroExtendn(i))<<(j*n)

UnsignedExtractn(i,j) Returns ZeroExtendn(i>>(j*n))

SignedExtractn(i,j) Returns SignExtendn(i>>(j*n))

Table 146. Saturating functions

Function Description

Saturaten(i) Clamp the value of i to an n bit signed integer and sign extend.

UnsignedSaturaten(i) Clamp the value of i to an n bit signed integer and zero extend.

Overflown(i)
Returns true if the value of i cannot be represented by an n bit
signed integer.

ST240 Specification notation

8059133 209/507

Floating point functions

The behavior of floating point operations is described in Section 7.8: Floating point
operations on page 51. The floating point functions provided by the ST240 are listed in
Table 147.

Divide and remainder functions

The behavior of divide and remainder operations is described in Section 7.10: Divide and
remainder operations on page 57. The divide and remainder functions provided by the
ST240 are listed in Table 148.

23.3 Statements
An instruction specification consists of a sequence of statements. These statements are
processed sequentially in order to specify the effect of the instruction on the architectural
state of the machine. The available statements are discussed in this section.

Each statement is terminated with a semi-colon. A sequence of statements can be
aggregated into a statement block using ‘{’ to introduce the block and ‘}’ to terminate the
block. A statement block can be used anywhere that a statement can.

Table 147. Floating point functions

Function Description

FAddSNonIeee(i,j) Single precision floating point IEEE format addition

FSubSNonIeee(i,j) Single precision floating point IEEE format subtraction

FCompEqNonIeee(i,j) Single precision floating point IEEE format equality comparison

FCompGENonIeee(i,j)
Single precision floating point IEEE format greater than or equal to
comparison

FCompGtNonIeee(i,j) Single precision floating point IEEE format greater than comparison

FMulSNonIeee(i,j) Single precision floating point IEEE format multiplication

IntToSFloatNonIeee(i)
Signed integer to single precision floating point IEEE format
conversion

SFloatToIntNonIeee(i)
Single precision floating point IEEE format to signed integer
conversion

Table 148. Divide and remainder functions

Function Description

IDivIeee(i,j) Signed integer divide

IRemIeee(i,j) Signed integer remainder

UIDivIeee(i,j) Unsigned integer divide

UIRemIeee(i,j) Unsigned integer remainder

Specification notation ST240

210/507 8059133

23.3.1 Undefined behavior

The statement:

UNDEFINED();

indicates that the resultant behavior is architecturally undefined.

A particular implementation can choose to specify an implementation-defined behavior in
such cases. It is very likely that implementation-defined behavior will vary from
implementation to implementation. Exploitation of implementation-defined behavior should
be avoided to allow software to be portable between implementations.

In cases where architecturally undefined behavior can occur in user mode, the
implementation ensures that implemented behavior does not break the protection model.
Thus, the implemented behavior is some execution flow that is permitted for that user mode
thread.

23.3.2 Assignment

The notation uses the ‘←’ operator to denote assignment of an expression to a variable. An
example assignment statement is:

variable ← expression;

The expression can be constructed from variables, literals, operators and functions as
described in Section 23.2: Expressions on page 203. The expression is fully evaluated
before the assignment takes place. The variable can be an integer, a boolean, a bit field or
an array of any one of these types.

Assignment to architectural state

This is where the variable is part of the architectural state, as described in Table 149: Scalar
architectural state on page 213. The type of the expression and the type of the variable
must match, or the type of the variable must be able to represent all possible values of the
expression.

Assignment to a temporary variable

Alternatively, if the variable is not part of the architectural state, then it is a temporary
variable. The type of the variable is determined by the type of expression. A temporary
variable must be assigned to, before it is used in the instruction specification.

Assignment of an undefined value

An assignment of the following form results in a variable being initialized with an
architecturally undefined value:

variable ← UNDEFINED;

After assignment the variable holds a value that is valid for its type. However, the value is
architecturally undefined. The actual value can be unpredictable; that is to say the value
indicated by UNDEFINED can vary with each use of UNDEFINED. Architecturally-undefined
values can occur in both user and privileged modes.

A particular implementation can choose to specify an implementation-defined value in such
cases. It is very likely that any implementation-defined values will vary from implementation
to implementation. If software is intended to be portable between ST240 implementations,
then exploitation of implementation-defined values should be avoided.

ST240 Specification notation

8059133 211/507

Assignment of multiple values

Multi-value functions return multiple values, and are only available when used in a multiple
assignment context. The syntax of a multiple assignment consists of a list of comma-
separated variables, an assignment symbol followed by a function call. The function is
evaluated and returns multiple results into the variables listed. The number of variables and
the number of results of the function must match. The assigned variables must all be
distinct, that is, no aliases.

For example, a two-valued assignment from a function call with three parameters can be
represented as:

variable1, variable2 ← call(param1, param2, param3);

23.3.3 Conditional

Conditional behavior is specified using the keywords IF, ELSE IF and ELSE.

Conditions are expressions that result in a boolean value. If the condition after an IF is true,
then its block of statements is executed and the whole conditional is considered complete,
ignoring any ELSE IF or ELSE clauses, if they exist. If the condition is false, then each
ELSE IF clauses are processed, in turn, in the same manner. If no conditions are met and
an ELSE clause exists, then its statement block is executed. Finally, if no conditions are met
and there is no ELSE clause, then the statement has no effect apart from the evaluation of
the condition expressions.

The ELSE IF and ELSE clauses are optional. In ambiguous cases, the ELSE matches with
the preceeding IF or ELSE IF.

For example:
IF (condition1)

block1
ELSE IF (condition2)

block2
ELSE

block3

23.3.4 Repetition

Repetitive behavior is specified with the following construct:

REPEAT i FROM m FOR n STEP s
block

The block of statements is iterated n times, with the integer i taking the values:

m, m + s, m + 2s, m + 3s, up to m + (n - 1)s.

The behavior is equivalent to textually writing the block n times with i being substituted with
the appropriate value in each copy of the block.

The value of n must be greater or equal to 0, and the value of s must be non-zero. The
values of the expressions for m, n and s must be constant across the iteration. The integer i
must not be assigned with a new value within the iterated block. The STEP clause can be
omitted, in which case the step-size takes the default value of 1.

Specification notation ST240

212/507 8059133

23.3.5 Exceptions

Exception handling is triggered by a THROW statement (for normal exceptions) or a
DbgThrow() procedure call (for debug exceptions). When an exception is thrown, no
further statements are executed from the operation specification; no architectural state is
updated. Furthermore, if any one of the operations in a bundle triggers an exception, none
of the operations in that bundle update the architectural state.

If any operation in a bundle triggers an exception then the exception is taken. The actions
associated with the taking of an exception are described in Section 10.7.1: Normal trap
startup behavior on page 87 and Section 10.7.2: Debug trap startup behavior on page 89.

There are two forms of throw statement:

THROW type;

and:

THROW type, value;

where type indicates the type of exception that is launched, and value is an optional
argument to the exception handling sequence. If value is not given, then it is undefined.

There is only one form of DbgThrow():

DbgThrow(type);

The exception types and priorities are described in Chapter 10: Traps (exceptions and
interrupts) on page 82.

23.3.6 Procedures

Procedure statements contain a procedure name followed by a list of comma-separated
arguments contained within parentheses and followed by a semi-colon. The execution of
procedures typically causes side-effects to the architectural state of the machine.

Procedures are generally used when it is difficult or inappropriate to specify the effect of an
instruction using the abstract execution model. A fuller description of the effect of the
instruction is given in the surrounding text.

An example procedure with two parameters is:

proc(param1, param2);

ST240 Specification notation

8059133 213/507

23.4 Architectural state
Chapter 4: Architectural state on page 27 contains a full description of the visible state of the
ST240. The notations used in the specification to refer to this state are summarized in
Table 149 (for scalar variables) and Table 150 (for arrays). Each item of scalar architectural
state is a bit field of a particular width. Each item of array architectural state is an array of bit
fields of a particular width.

Table 149. Scalar architectural state

Architectural state
Type is a bit field
containing:

Description

PC 32 bits

Program counter. During bundle execution
PC points to the next bundle in the instruction
stream as shown in Figure 34: Execution
model on page 200.

PSW 32 bits Program status word.

SAVED_PC 32 bits Copy of the PC used during interrupts.

SAVED_PSW 32 bits Copy of the PSW used during interrupts.

SAVED_SAVED_PC 32 bits
Copy of the PC used during debug
interrupts.

SAVED_SAVED_PSW 32 bits
Copy of the PSW used during debug
interrupts

Ri where i is in [0, 63] 32 bits
64 x 32-bit general purpose registers.
R0 reads as zero.
Assignments to R0 are ignored.

Pi where i is even and
within the range [0, 60]

64 bits

31 x 64 bit general purpose registers, which
access the 32-bit general purpose registers
in pairs. P0 reads 64 bits of zero. P62 is
forbidden due to link register restrictions.

LR 32 bits Link register, synonym for R63.

Bi where i is in [0, 7] 4 bit 8 x 4-bit branch registers.

Table 150. Array architectural state

Architectural state
Type is an array of bit-
fields each containing:

Description

CRi where i is index of the
control register

32 bits

Control registers, for which some
specifications refer to individual control
registers by their names, as defined in the
Chapter 15: Control registers on page 145.

MEM[i] where i is in [0, 232] 8 bits 232 bytes of memory.

Specification notation ST240

214/507 8059133

23.5 Memory and control registers
This section describes the additional formal language defined to model memory
(Section 23.5.2), for control registers (Section 23.5.3), and cache instructions
(Section 23.5.4).

23.5.1 Support functions

The functions used in the memory and control register descriptions are listed in Table 151.

Table 151. Support functions

Function Description

Misalignedn(address)
Result is TRUE if address is not n-bit aligned,
otherwise FALSE.

NoTranslation(address)
Result is TRUE if the TLB is enabled and has no
mapping for address, otherwise FALSE.

MultiMapping(address)
Results is TRUE if the TLB has more than one
mapping for address, otherwise FALSE.

Translate(address)
Looks up address in the TLB and returns the
associated physical address.

SCUHit(paddress)
Results is TRUE if the physical address, paddress,
hit the SCU, otherwise FALSE.

ReadAccessViolation(address)
Result is TRUE if the TLB is enabled and a read
access to address is not permitted by the TLB,
otherwise FALSE.

WriteAccessViolation(address)
Result is TRUE if the TLB is enabled and a write
access to address is not permitted by the TLB,
otherwise FALSE.

IsCRegSpace(address)
Result is TRUE if address is in the control register
space, otherwise FALSE.

UndefinedCReg(address)
Result is TRUE if address does not correspond to
a defined control register, otherwise FALSE.

CRegIndex(address)
Returns the index of the control register which maps
to address.

CRegReadAccessViolation(index)
Result is TRUE if read access is not permitted to the
given control register, otherwise FALSE.

CRegWriteAccessViolation(index)
Result is TRUE if write access is not permitted to
given control register, otherwise FALSE.

BusReadError(paddress)
Result is TRUE if reading from physical address,
paddress, generates a Bus Error, otherwise
FALSE.

IsDBreakHit(address)
Result is TRUE if address triggers a data
breakpoint, otherwise it is FALSE.

IsDBreakPrefetchHit(address)
Result is TRUE if address triggers a prefetch
breakpoint, otherwise it is FALSE.

ST240 Specification notation

8059133 215/507

23.5.2 Memory model

The instruction specification uses a simple model of memory access to define the
relationship between the content of a logical memory and the values manipulated by
instructions. The simple model ignores any caches that may be present; their operation is
defined by the text of the architecture manual.

The processor's view of logical memory is defined in terms of an array MEM[i] defined in
Table 150 on page 213. The mapping between the logical memory and a physical memory
is described in STBus endian behavior on page 494.

The notation MEM[s FOR n] is used to denote an 8*n-bit bit field created from the
concatenation of the n elements MEM[s] through MEM[s+i-1], where i (the byte number)
varies in the range [0, n). The value of MEM[s FOR n] depends on the endianness of the
processor.

● If the processor is operating in little endian mode then:

This equivalence states that byte number i in the bit field MEM[s FOR n] is the ith. byte
in memory counting upwards from MEM[s].

● If the processor is operating in big endian mode then:

This equivalence states that byte number i, using big endian byte numbering (that is,
byte 0 is bits 8n-8 to 8n-1), in the bit field MEM[s FOR n] is the ith. byte in memory
counting downwards from MEM[n].

For syntactic convenience, functions and procedures are provided to read and write
memory.

Support functions

The specification of the memory instructions relies on the support functions listed in
Table 151: Support functions on page 214. These functions are used to model the behavior
of the TLB described in Chapter 11: Memory translation and protection on page 93.

Reading memory

The following functions are provided to support the reading of memory:

Table 152. Memory read functions

Function Description

ReadCheckMemoryn(address)
Throws any non-Bus Error exception generated by an n-bit
read from address

PrefetchCheckMemory(address)
Throws any BusError exceptions generated by a prefetch
from address

ReadMemoryn(address)
Issues an n-bit read to address (can generate BusError
exception)

ReadMemResponse() Returns the value of the read request issued

MEM s FOR n[]() 8i FOR 8〈 〉 MEM s i+[]=

MEM s FOR n[]() 8i FOR 8〈 〉 MEM s n 1–+() i–[]=

Specification notation ST240

216/507 8059133

The ReadCheckMemoryn procedure takes an integer parameter to indicate the address
being accessed. The number of bits being read (n) is either 8, 16, or 32. The procedure
throws any alignment or access violation exceptions generated by a read access to that
address.

ReadCheckMemoryn(a);

is equivalent to:
IF (Misalignedn(a))
 THROW MISALIGNED_TRAP, a;

IF (PSW[TLB_ENABLE])
 IF (NoTranslation(a) OR
 MultiMapping(a) OR
 ReadAccessViolation(a))
 THROW DTLB, a;

The ReadMemoryn procedure takes an integer parameter to indicate the address being
accessed. The number of bits being read (n) is either 8, 16, or 32. The required bytes are
read from memory, interpreted according to endianness, and the read bit field value
assigned to a temporary integer. If the read memory value is to be interpreted as signed,
then use a sign-extension when accessing the result using ReadMemResponse. The
procedure call:

ReadMemoryn(a);

is equivalent to:

pa = Translate(a);
width ← n / 8;
IF (BusReadError(pa))
 THROW BUS_DC_ERROR, a; // Non-recoverable

mem_response ← MEM[pa FOR width];

The function ReadMemResponse returns the data that has been read from memory. The
assignment:

result ← ReadMemResponse();

is equivalent to:

result ← mem_response;

ST240 Specification notation

8059133 217/507

Prefetching memory

The following procedure is provided to denote memory prefetch.

This is used for a software-directed data prefetch from a specified effective address. This is
a hint to give advance notice that particular data will be required. PrefetchMemory,
performs the implementation-specific prefetch when the address is valid:

PrefetchMemory(a);

This is equivalent to:

IF (NOT NoTranslation(a) AND
 NOT MultiMapping(a) AND
 NOT ReadAccessViolation(a)) {
 pa = Translate(a);
 IF (SCUHit(pa))
 Prefetch(a);
 }

where Prefetch is a cache operation defined in Section 23.5.4: Cache model on
page 219. Prefetching memory does not generate any exceptions.

Writing memory

The procedures listed in Table 154 are provided to write memory.

The WriteCheckMemoryn procedure takes an integer parameter to indicate the address
being accessed. The number of bits being written (n) is either 8, 16, or 32. The procedure
throws any alignment or access violation exceptions generated by a write access to that
address.

WriteCheckMemoryn(a);

is equivalent to:

IF (Misalignedn(a))
 THROW MISALIGNED_TRAP, a;

IF (NoTranslation(a) OR
 MultiMapping(a) OR
 WriteAccessViolation(a))
 THROW DTLB, a;

Table 153. Memory prefetch procedure

Function Description

PrefetchMemory(address) Prefetch memory if possible

Table 154. Memory write procedures

Function Description

WriteCheckMemoryn(address)
Throws any exception generated by an n-bit write to
address

WriteMemoryn(address, value) Aligned n-bit write to memory

Specification notation ST240

218/507 8059133

The WriteMemoryn procedure takes an integer parameter to indicate the address being
accessed, followed by an integer parameter containing the value to be written. The number
of bits being written (n) is either 8, 16, 32 or 64 bits. The written value is interpreted as a bit
field of the required size; all higher bits of the value are discarded. The bytes are written to
memory, ordered according to endianness. The statement:

WriteMemoryn(a, value);

is equivalent to:

pa = Translate(a);
width ← n / 8;
MEM[pa FOR width] ← value<0 FOR n>;

23.5.3 Control register model

This section describes the procedures for reading and writing to control registers.

Reading control registers

The following procedures are provided for reading from control registers.

Note: Only word (32-bit) control register accesses are supported.

The ReadCheckCReg procedure takes an integer parameter to indicate the address being
accessed. The procedure throws any alignment or non-mapping exception generated by
reading from the control register space.

ReadCheckCReg(a);

is equivalent to:

IF (UndefinedCReg(a))
 THROW CREG_NO_MAPPING, a;

index ← CRegIndex(a);
IF (CRegReadAccessViolation(index))
 THROW CREG_ACCESS_VIOLATION, a;

The control register file is denoted CR. The function ReadCReg is provided:

ReadCReg(a);

is equivalent to:

index ← CRegIndex(a);
mem_response ← CRindex;

Table 155. Control register read functions

Function Description

ReadCheckCReg(address)
Throws any exception generated by reading from address in
the control register space

ReadCReg(address) Issues a read from the control register mapped to address

ST240 Specification notation

8059133 219/507

Writing control registers

The following procedures are provided for writing to control registers.

Note: Only word (32-bit) control register accesses are supported.

The WriteCheckCReg procedure takes an integer parameter to indicate the address being
accessed. The procedure throws any alignment, non-mapping or access violation
exceptions generated by writing to the control register space:

WriteCheckCReg(a);

This is equivalent to:

IF (UndefinedCReg(a))
 THROW CREG_NO_MAPPING, a;

index ← CRegIndex(a);
IF (CRegWriteAccessViolation(index))
 THROW CREG_ACCESS_VIOLATION, a;

A procedure called WRITECREG is provided to write control registers:

WriteCReg(a, value);

is equivalent to:

index ← CRegIndex(a);
CRindex ← value;

23.5.4 Cache model

Cache operations are used to prefetch and purge lines in caches. The effects of these
operations are beyond the scope of the specification language, and are therefore modelled
using procedure calls. The behavior of these procedure calls is elaborated in the
Chapter 12: Memory subsystem on page 110.

Table 156. Control registers write procedures

Function Description

WriteCheckCReg(address)
Throws any exception generated by writing to the address in
the control register space

WriteCReg(address, value) Writes value to the control register mapped to address

Table 157. Procedures to model cache operations

Procedure Description

PurgeInsAddress()
Purge address from the L1 instruction cache
and any L2 cache, seePurging the L1
instruction cache by address on page 116.

PurgeInsAddressL1()
Purge address from the L1 instruction and
not from any L2 cache, see Purging the L1
instruction cache by address on page 116.

PurgeInsSet()

Purge a set of lines from the L1 instruction
cache and the corresponding section of any
L2 cache, seePurging a memory range from
the data cache on page 123.

Specification notation ST240

220/507 8059133

PurgeInsSetL1()

Purge a set of lines from the L1 instruction
cache excluding any L2 cache, see Purging
a memory range from the data cache on
page 123.

Sync()
Data memory subsystem synchronization
function, see Section 12.5.3: Memory
ordering on page 122).

PurgeInsAddressCheckMemory(address)

Throws any exceptions generated by purging
addresses from the instruction cache, see
Purging the L1 instruction cache by address
on page 116.

PurgeAddressCheckMemory(address)
Throws any exceptions generated by purging
addresses from the data cache, see Purging
data by address on page 122.

PurgeAddress(address)
Purge address from the L1 data cache and
any L2 cache, see Purging data by address
on page 122.

PurgeAddressL1(address)
Purge address from the L1 data cache and
not from any L2 cache, see Purging data by
address on page 122.

FlushAddress(address)
Flush address from the L1 data cache and
any L2 cache, seeFlushing data by address
on page 123.

FlushAddressL1(address)
Flush address from the L1 data cache and
not from any L2 cache, see Flushing data by
address on page 123.

InvalidateAddress(address)
Invalidate address from the L1 data cache
and any L2 cache, seeInvalidating data by
address on page 123.

InvalidateAddressL1(address)
Invalidate address from the L1 data cache
and not from any L2 cache, see Invalidating
data by address on page 123.

PurgeSet(address)

Purge a set of lines from the L1 data cache
and a corresponding section of any L2
cache, see Purging the L1 instruction cache
and L2 cache by set on page 117.

PurgeSetL1 (address)

Purge a set of lines from the L1 data cache
and not from any L2 cache, see Purging the
L1 instruction cache and L2 cache by set on
page 117.

Prefetch(address)
Prefetch a data cache line if it is in cacheable
memory, see Prefetching data on page 121.

Table 157. Procedures to model cache operations (Continued)

Procedure Description

ST240 Specification notation

8059133 221/507

23.5.5 Architectural state model

Architectural state such as the PC and PSW is modified by a number of procedures. These
procedures also have the effect of flushing the pipeline; this is beyond the scope of the
specification language.

23.5.6 Other functions

The functions in this section do not fit into the other categories listed in this chapter.

Wmb()
Write memory barrier. See Table 70:
Summary of operation behavior for MP, MT
and UP on page 138 for the function.

Dib()
Data/instruction barrier. See Table 70:
Summary of operation behavior for MP, MT
and UP on page 138 for the function.

Table 157. Procedures to model cache operations (Continued)

Procedure Description

Table 158. Procedures to model changing architectural state

Procedure Description

Rfi()
Return From Interrupt. This flushes the pipeline, see Section 10.7.3:
Restoring execution state on page 90.

PswMask(value1,value2)
PSW <- (PSW & (~value2)) | (value1 & value2). This flushes the
pipeline, see Section 4.4.2: PSW access on page 29.

Table 159. Procedures to model changing architectural state

Procedure Description

SyncIns()
Flush the pipeline and remove any unexecuted syllables from the
instruction fetch logic, seeSection 12.4.3: Instruction cache control
operations on page 116.

WaitForLink()
Wait until the atomic sequence lock bit is cleared, or until an interrupt
occurs, see waitl on page 138.

Retention()
Place the ST240 into a low power state as defined inSection 16.3:
Retention mode on page 154.

Instruction set ST240

222/507 8059133

24 Instruction set

This chapter contains descriptions of all the operations and macros (pseudo-operations) in
the ST240 instruction set. Section 24.1: Bundle encoding describes how operations are
encoded in the context of bundles.

24.1 Bundle encoding
An instruction bundle consists of between one and four consecutive 32-bit words, known as
syllables. Each syllable encodes either an operation or an extended immediate value. The
most significant bit of each syllable (bit 31) is a stop bit, which is set for a syllable to indicate
that it is the last syllable in the bundle, as shown in Figure 35.

Figure 35. Syllable

24.1.1 Extended immediates
Many operations have an Immediate form. In general, only small (that is, 9-bit) immediates
can be directly encoded within a single word syllable. If a larger immediate is required, the
instruction uses an immediate extension. This extension is encoded in an adjacent word in
the bundle, making the operation effectively a two-word operation.

These immediate extensions are associated either with the operation to their left or their
right in the bundle. Bit 23 is used to indicate the association:

● 0 indicates left association (word address - 1) (imml)

● 1 indicates right association (word address + 1) (immr)

The semantic descriptions of Immediate form operations use the following function to take
into account possible immediate extensions:

293031 0

STOP bit OPERATIONReserved

Table 160. Extended immediate functions

Function Description

Imm(i)
Given short immediate value i, return an integer value that
represents the full immediate.

ST240 Instruction set

8059133 223/507

This function effectively performs the following:

If there is an immr word to the left (word address - 1) or an imml word to the right (word
address + 1) in the bundle, then Imm returns:

(ZeroExtend23(extension) << 9) + ZeroExtend9(i);

Where extension represents the lower 23 bits of the associated immr or imml.

Otherwise Imm returns:
SignExtend9(i);

24.1.2 Encoding restrictions

There are a number of restrictions placed on the encoding of bundles. The assembler is
responsible for ensuring that these restrictions are obeyed, see Chapter 5: Bundling rules
on page 31.

24.2 Operation specifications
The specification of each operation contains the following fields.

● Name: the name of the operation with an optional subscript. The subscript
distinguishes between operations with different operand types. For example, integer
operations can have either Register and Immediate formats. If no subscript exists for
an operation, then it has only one format.

● Syntax: presents the assembly syntax of the operation.

● Encoding: the binary encoding is summarized in a table. It shows which bits are used
for the opcode, which bits are reserved (empty fields) and which bit fields encode the
operands. The operands are either register designators or immediate constants.

● Semantics: a table containing the statements (Section 23.3: Statements on page 209)
that define the operation. The notation used is defined in Chapter 23: Specification
notation on page 202. The table is divided into two parts by the commit point, see
Chapter 22: Execution model on page 199.

● Description: a brief textual description of the operation.

● Restrictions: contains any details of restrictions, which may be of the following types:

– Address/bundle: In encoding a bundle with the operation there are a number of
possible restrictions which may apply. They are detailed in Section 24.1.2:
Encoding restrictions on page 223.

– Latency: certain operands have latency constraints that must be observed.

– Destination restrictions: certain operations are not allowed to use the link register
(LR) as a destination.

● Exceptions: if this operation is able to throw any exceptions, they will be listed here.
The semantics of the operation detail how and when they are thrown.

Pre-commit phase:

● No architectural state of the machine is updated.

● Any recoverable exceptions are thrown here.
← Commit point

Commit phase - executed if no exceptions have been thrown:

● All architectural state is updated.

● Any exceptions thrown here are non-recoverable.

Instruction set ST240

224/507 8059133

24.3 Example operations

add Immediate
add RIDEST = RSRC1, ISRC2

Semantics:

Description: Scalar 32-bit addition. Operands may be signed or unsigned integers or fractional
1.31 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

Interpretation

The operation is given the subscript Immediate to indicate that one of its source operands is
an immediate rather than both operands being registers.

The next line of the description shows the assembly syntax of the operation.

Just below is the binary encoding table with fields showing:

● an s in bit 31, which represents the stop bit (see Section 24.1: Bundle encoding on
page 222)

● an unused bit (bit 30)

● the opcode, bits 29:21, which in this case is 001000000

● the operands:

– the 9-bit immediate constant, bits 20:12

– the destination register designator, bits 11:6

– the source register designator, bits 5:0

s 00 1 0 00000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 + operand2;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 225/507

The semantics table specifies the effects of the executing this operation. The table is divided
into two parts. The first half contains statements which do not affect the architectural state of
the machine (before the commit point). The second half contains statements that will not be
executed if an exception occurs in the bundle (after the commit point).

The statements themselves are organized into three stages as follows:

1. The first two statements read the required source information:

operand1 <- SignExtend32(RSRC1);

operand2 <- Imm(ISRC2);

The first statement reads the value of the RSRC1 register, interprets it as a signed 32-bit
value and assigns this to a temporary integer called operand1. The second statement
passes the value of ISRC2 to the immediate handling function Imm (Section 24.1.1:
Extended immediates). The result of the function is interpreted as a signed 32-bit value
and assigned to a temporary integer called operand2.

2. The next statement implements the addition:

result <- operand1 + operand2;

This statement does not refer to any architectural state. It adds the two integers
operand1 and operand2 together, and assigns the result to a temporary integer called
result.

Note: Since this is a conventional mathematical addition, the result can contain more significant
bits of information than the sources.

3. The final statement, executed if no exceptions have been thrown in the bundle, updates
the architectural state:

RIDEST <- Register(result);

The function Register (see Section 23.2.6: Single-value functions on page 207)
converts the integer result back to a bit field, discarding any redundant higher bits.
This value is then assigned to the RIDEST register.

Following the semantic description is a simple textual description of the operation.

The restrictions section shows that this operation has no restrictions. This means that up to
four of these operations can be used in a bundle, and that all operands are ready for use by
operations in the next bundle.

Finally, this operation cannot generate any exceptions.

Instruction set ST240

226/507 8059133

24.4 Macros
Table 161 is a list of the currently implemented pseudo-operations or ‘macros’. Each macro
is essentially a simplified synomym for another, less intuitive operation.

Table 161. Macros

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bswap
s 01 1 0 1 0 000 000011011 IDEST SRC1

perm.pb RIDEST = RSRC1, 27

convbi
s 01 1 1 01

SCON
D

000000001 IDEST 000000

slctf RIDEST = BSCOND, R0, 1

convib
s 00 0 1 1 1100 000000

BDEST
2

000000 SRC1

orl BBDEST2 = RSRC1, R0

cmpgeCmp3R_Reg
s 00 0 1 0 0110 000 DEST SRC2 SRC1
cmple RDEST = RSRC1, RSRC2

cmpgeCmp3R_Br
s 00 0 1 1 0110 000000

BDEST
2

SRC2 SRC1

cmple BBDEST2 = RSRC1, RSRC2

cmpgeuCmp3R_Reg
s 00 0 1 0 0111 000 DEST SRC2 SRC1

cmpleu RDEST = RSRC1, RSRC2

cmpgeuCmp3R_Br
s 00 0 1 1 0111 000000

BDEST
2

SRC2 SRC1

cmpleu BBDEST2 = RSRC1, RSRC2

cmpgtCmp3R_Reg
s 00 0 1 0 1000 000 DEST SRC2 SRC1

cmplt RDEST = RSRC1, RSRC2

cmpgtCmp3R_Br
s 00 0 1 1 1000 000000

BDEST
2

SRC2 SRC1

cmplt BBDEST2 = RSRC1, RSRC2

cmpgtuCmp3R_Reg
s 00 0 1 0 1001 000 DEST SRC2 SRC1

cmpltu RDEST = RSRC1, RSRC2

cmpgtuCmp3R_Br
s 00 0 1 1 1001 000000

BDEST
2

SRC2 SRC1

cmpltu BBDEST2 = RSRC1, RSRC2

cmplef.nCmp3R_Reg
s 00 0 1 0 0010 000 DEST SRC2 SRC1

cmpgef.n RDEST = RSRC1, RSRC2

cmplef.nCmp3R_Br
s 00 0 1 1 0010 000000

BDEST
2

SRC2 SRC1

cmpgef.n BBDEST2 = RSRC1, RSRC2

cmpltf.nCmp3R_Reg
s 00 0 1 0 0100 000 DEST SRC2 SRC1

cmpgtf.n RDEST = RSRC1, RSRC2

cmpltf.nCmp3R_Br
s 00 0 1 1 0100 000000

BDEST
2

SRC2 SRC1

cmpgtf.n BBDEST2 = RSRC1, RSRC2

idle
1 11 0 001 0 00000000000000000000000

goto 0

ST240 Instruction set

8059133 227/507

mfb
s 01 1 1 01

SCON
D

000000001 IDEST 000000

slctf RIDEST = BSCOND, R0, 1

movInt3R
s 00 0 0 00000 000 DEST SRC2 000000

add RDEST = R0, RSRC2

movInt3I
s 00 1 0 00000 ISRC2 IDEST 000000
add RIDEST = R0, ISRC2

mtb
s 00 0 1 1 1100 000000

BDEST
2

000000 SRC1

orl BBDEST2 = RSRC1, R0

mull
s 00 1 0 10110 ISRC2 IDEST SRC1
mul32 RNLIDEST = RSRC1, ISRC2

nop
s 00 0 0 00000 000 000000 000000 000000

add R0 = R0, R0

slctf
s 01 0 1 10

SCON
D

001 DEST SRC2 SRC1

slct RDEST = BSCOND, RSRC1, RSRC2

sxtb
s 01 1 0 0 0 101 000001000 IDEST SRC1

sxt RIDEST = RSRC1, 8

sxth
s 01 1 0 0 0 101 000010000 IDEST SRC1
sxt RIDEST = RSRC1, 16

zxtb
s 00 1 0 01001 011111111 IDEST SRC1

and RIDEST = RSRC1, 255

zxth
s 01 1 0 0 0 110 000010000 IDEST SRC1

zxt RIDEST = RSRC1, 16

slctf.pb
s 01 0 1 10

SCON
D

000 DEST SRC2 SRC1

slct.pb RDEST = BSCOND, RSRC1, RSRC2

unpacku.pbh
s 01 0 0 1 0 000 001 DEST 000000 SRC1

shuff.pbh RDEST = RSRC1, R0

unpacku.pbl
s 01 0 0 1 0 001 001 DEST 000000 SRC1
shuff.pbl RDEST = RSRC1, R0

pack.ph
s 01 0 0 1 1 001 010 DEST SRC2 SRC1

shuff.phl RDEST = RSRC1, RSRC2

Table 161. Macros (Continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction set ST240

228/507 8059133

24.5 Operations
This section specifies all the operations in the instruction set. For ease of use, the
operations are listed in alphabetical order. The semantics of each operation is written using
the notational language defined in Chapter 23: Specification notation on page 202.

abss.ph Register
abss.ph RDEST = RSRC1

Semantics:

Description: Packed 16-bit signed absolute with saturation. Operands may be signed 16-bit
integers or fractional 1.15 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 1 001 001 DEST 000000 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd← SignedExtract16(operand1, j);
IF (unpacked_opd< 0)

unpacked_opd← (-unpacked_opd);
unpacked_opd← Saturate16(unpacked_opd);
result1 ← result1 ∨ MaskAndShift16(unpacked_opd, j);

}

RDEST ← Register(result1);

ST240 Instruction set

8059133 229/507

absubu.pb Register
absubu.pb RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 8-bit unsigned absolute difference.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 0 001 010 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

subresult ← UnsignedExtract8(operand1, j) - UnsignedExtract8(operand2, j);
IF (subresult > 0)

result1 ← result1 ∨ MaskAndShift8(subresult, j);
ELSE

result1 ← result1 ∨ MaskAndShift8(-subresult, j);
}

RDEST ← Register(result1);

Instruction set ST240

230/507 8059133

add Immediate
add RIDEST = RSRC1, ISRC2

Semantics:

Description: Scalar 32-bit addition. Operands may be signed or unsigned integers or fractional
1.31 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 00000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 + operand2;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 231/507

add Register
add RDEST = RSRC1, RSRC2

Semantics:

Description: Scalar 32-bit addition. Operands may be signed or unsigned integers or fractional
1.31 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 00000 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 + operand2;

RDEST ← Register(result1);

Instruction set ST240

232/507 8059133

add.ph Register
add.ph RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit addition. Operands may be signed or unsigned 16-bit integers or
fractional 1.15 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 1 000 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

addresult ← SignedExtract16(operand1, j) + SignedExtract16(operand2, j);
result1 ← result1 ∨ MaskAndShift16(addresult, j);

}

RDEST ← Register(result1);

ST240 Instruction set

8059133 233/507

addcg
addcg RDEST, BBDEST = RSRC1, RSRC2, BSCOND

Semantics:

Description: 32bit scalar addition with carry input and generate a carry output. Operands may be
signed or unsigned integers or fractional 1.31 format.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST is available for reading by br/brf.
No other latency restrictions before BBDEST is available for reading by any other
operation.

Exceptions: None.

s 01 0 1 00
SCON

D
BDEST DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
operand3 ← ZeroExtend4(BSCOND);
result1 ← (operand1 + operand2) + (operand3 ≠ 0);
result2 ← Bit(result1, 32);

RDEST ← Register(result1);
BBDEST ← BranchRegister(result2);

Instruction set ST240

234/507 8059133

addf.n Floating point - Register
addf.n RNLDEST = RSRC1, RSRC2

Semantics:

Description: IEEE754 format single precision floating point addition.

Restrictions: Must be encoded at an even word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 00 10000 010 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← FAddSNonIeee(operand1, operand2);
RNLDEST ← Register(result1);

ST240 Instruction set

8059133 235/507

addpc Immediate
addpc RIDEST = ISRC2

Semantics:

Description: Scalar 32bit addition of immediate value and virtual PC of the current bundle.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 01000 ISRC2 IDEST 000000

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand2 ← SignExtend32(Imm(ISRC2));
result1 ← ZeroExtend32(BUNDLE_PC) + operand2;

RIDEST ← Register(result1);

Instruction set ST240

236/507 8059133

adds Register
adds RDEST = RSRC1, RSRC2

Semantics:

Description: Scalar 32-bit addition with saturation. Operands may be signed or unsigned integers
or fractional 1.31 values.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 10000 100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← Saturate32(operand1 + operand2);

RDEST ← Register(result1);

ST240 Instruction set

8059133 237/507

adds.ph Register
adds.ph RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit signed absolute with saturation. Operands may be signed 16-bit
integers or fractional 1.15 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 10101 100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

addresult ← SignedExtract16(operand1, j) + SignedExtract16(operand2, j);
addresult ← Saturate16(addresult);
result1 ← result1 ∨ MaskAndShift16(addresult, j);

}

RDEST ← Register(result1);

Instruction set ST240

238/507 8059133

addso Register
addso RDEST = RSRC1, RSRC2

Semantics:

Description: Indicates whether an adds operation with the given input operands causes a
saturation.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 11000 100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← Overflow32(operand1 + operand2);

RDEST ← Register(result1);

ST240 Instruction set

8059133 239/507

and Immediate
and RIDEST = RSRC1, ISRC2

Semantics:

Description: Bitwise AND.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 01001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ∧ operand2;

RIDEST ← Register(result1);

Instruction set ST240

240/507 8059133

and Register
and RDEST = RSRC1, RSRC2

Semantics:

Description: Bitwise AND.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 01001 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ∧ operand2;

RDEST ← Register(result1);

ST240 Instruction set

8059133 241/507

andc Immediate
andc RIDEST = RSRC1, ISRC2

Semantics:

Description: Negate operand 1 and then bitwise AND.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 01010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (~operand1) ∧ operand2;

RIDEST ← Register(result1);

Instruction set ST240

242/507 8059133

andc Register
andc RDEST = RSRC1, RSRC2

Semantics:

Description: Negate operand 1 and then bitwise AND.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 01010 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← (~operand1) ∧ operand2;

RDEST ← Register(result1);

ST240 Instruction set

8059133 243/507

andl Branch Register - Branch Register
andl BBDEST2 = BBSRC1, BBSRC2

Semantics:

Description: Logical AND.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0000 000001
BDEST

2
BSRC2 BSRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 9 8 6 5 3 2 0

operand1 ← ZeroExtend4(BBSRC1);
operand2 ← ZeroExtend4(BBSRC2);
result1 ← (operand1 ≠ 0) AND (operand2 ≠ 0);

BBDEST2 ← BranchRegister(result1);

Instruction set ST240

244/507 8059133

andl Branch Register - Register
andl BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Logical AND.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 1010 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 ≠ 0) AND (operand2 ≠ 0);

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 245/507

andl Register - Register
andl RDEST = RSRC1, RSRC2

Semantics:

Description: Logical AND.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 1010 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 ≠ 0) AND (operand2 ≠ 0);

RDEST ← Register(result1);

Instruction set ST240

246/507 8059133

avg4u.pb Register
avg4u.pb RNLDEST = BSCOND, RSRC1, RSRC2

Semantics:

Description: Packed 8-bit unsigned 4-way average with selectable rounding mode (round zero,
round nearest negative, round nearest positive or round positive).

Restrictions: No address or bundle restrictions.
RNLDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLDEST is available for reading.

Exceptions: None.

s 01 0 1 11
SCON

D
101 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend4(BSCOND);
operand2 ← ZeroExtend32(RSRC1);
operand3 ← ZeroExtend32(RSRC2);
sum1 ← ZeroExtend2(operand1);
sum2 ← sum1;
REPEAT j FROM 0 FOR 2 {

sum1 ← sum1 + UnsignedExtract8(operand2, j);
sum1 ← sum1 + UnsignedExtract8(operand3, j);
sum2 ← sum2 + UnsignedExtract8(operand2, j + 2);
sum2 ← sum2 + UnsignedExtract8(operand3, j + 2);

}
result1 ← (sum1 >> 2) ∨ MaskAndShift16(sum2 >> 2, 1);

RNLDEST ← Register(result1);

ST240 Instruction set

8059133 247/507

avgu.pb Register
avgu.pb RDEST = BSCOND, RSRC1, RSRC2

Semantics:

Description: Packed 8-bit unsigned average with selectable rounding mode (round zero or round
positive).

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 1 11
SCON

D
100 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend4(BSCOND);
operand2 ← ZeroExtend32(RSRC1);
operand3 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

sum ← (operand1 ≠ 0);
sum ← sum + UnsignedExtract8(operand2, j);
sum ← sum + UnsignedExtract8(operand3, j);
result1 ← result1 ∨ MaskAndShift8(sum >> 1, j);

}

RDEST ← Register(result1);

Instruction set ST240

248/507 8059133

br
br BBCOND, BTARG

Semantics:

Description: Branch.

Restrictions: Must be the first syllable of a bundle.
No latency constraints.

Exceptions: None.

s 11 1 0
BCON

D
BTARG

31 30 29 28 27 26 25 23 22 0

operand1 ← ZeroExtend4(BBCOND);
operand2 ← SignExtend23(BTARG)<< 2;
IF (operand1 ≠ 0)

PC ← Register(ZeroExtend32(BUNDLE_PC) + operand2);

ST240 Instruction set

8059133 249/507

break
break

Semantics:

Description: Causes illegal instruction exception.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: ILL_INST

s 10 1111111 000001011 000000000000

31 30 29 28 27 21 20 12 11 0

THROW ILL_INST;

Instruction set ST240

250/507 8059133

brf
brf BBCOND, BTARG

Semantics:

Description: Branch false.

Restrictions: Must be the first syllable of a bundle.
No latency constraints.

Exceptions: None.

s 11 1 1
BCON

D
BTARG

31 30 29 28 27 26 25 23 22 0

operand1 ← ZeroExtend4(BBCOND);
operand2 ← SignExtend23(BTARG)<< 2;
IF (operand1 = 0)

PC ← Register(ZeroExtend32(BUNDLE_PC) + operand2);

ST240 Instruction set

8059133 251/507

call Immediate
call $r63 = BTARG

Semantics:

Description: Jump and link.

Restrictions: Must be the first syllable of a bundle.
No latency constraints.

Exceptions: None.

s 11 0 000 0 BTARG

31 30 29 28 27 26 24 23 22 0

operand1 ← SignExtend23(BTARG)<< 2;
NEXT_PC← PC;
PC ← Register(ZeroExtend32(BUNDLE_PC) + operand1);
LR ← NEXT_PC;

Instruction set ST240

252/507 8059133

call Link Register
call $r63 = $r63

Semantics:

Description: Jump (using Link Register) and link.

Restrictions: Must be the first syllable of a bundle.
There are no latency constraints between a call updating the LR and this operation.
There is a latency of 3 cycles between a load writing to the LR and this operation.
There is a latency of 2 cycles between any other operation updating the LR and this
operation.

Exceptions: None.

s 11 0 000 1 00000000000000000000000

31 30 29 28 27 26 24 23 22 0

NEXT_PC← PC;
PC ← Register(ZeroExtend32(LR));
LR ← NEXT_PC;

ST240 Instruction set

8059133 253/507

clz
clz RIDEST = RSRC1

Semantics:

Description: Count leading zeros.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 01110 000000100 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
result1 ← CountLeadingZeros(operand1);

RIDEST ← Register(result1);

Instruction set ST240

254/507 8059133

cmpeq Branch Register - Immediate
cmpeq BIBDEST = RSRC1, ISRC2

Semantics:

Description: Test for equality.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BIBDEST is available for reading by br/brf.
No other latency restrictions before BIBDEST is available for reading by any other
operation.

Exceptions: None.

s 00 1 1 1 0000 ISRC2
IBDES

T
SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 = operand2;

BIBDEST ← BranchRegister(result1);

ST240 Instruction set

8059133 255/507

cmpeq Register - Immediate
cmpeq RIDEST = RSRC1, ISRC2

Semantics:

Description: Test for equality.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 1 0 0000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 = operand2;

RIDEST ← Register(result1);

Instruction set ST240

256/507 8059133

cmpeq Branch Register - Register
cmpeq BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Test for equality.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0000 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 = operand2;

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 257/507

cmpeq Register - Register
cmpeq RDEST = RSRC1, RSRC2

Semantics:

Description: Test for equality.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 0000 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 = operand2;

RDEST ← Register(result1);

Instruction set ST240

258/507 8059133

cmpeq.pb Branch Register - Register
cmpeq.pb BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Packed 8-bit test for equality writing result to branch register.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0 000 001000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 15 14 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

unpacked_opd1← UnsignedExtract8(operand1, j);
unpacked_opd2← UnsignedExtract8(operand2, j);
unpacked_res← (unpacked_opd1= unpacked_opd2);
result1 ← result1 ∨ MaskAndShift1(unpacked_res, j);

}

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 259/507

cmpeq.pb Register
cmpeq.pb RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 8-bit test for equality.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 0 000 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

unpacked_opd1← SignedExtract8(operand1, j);
unpacked_opd2← SignedExtract8(operand2, j);
unpacked_res← (unpacked_opd1= unpacked_opd2);
result1 ← result1 ∨ MaskAndShift8(unpacked_res, j);

}

RDEST ← Register(result1);

Instruction set ST240

260/507 8059133

cmpeq.ph Branch Register - Register
cmpeq.ph BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit test for equality to branch register.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 1 000 001000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 15 14 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← SignedExtract16(operand1, j);
unpacked_opd2← SignedExtract16(operand2, j);
unpacked_res← SignExtend1(unpacked_opd1= unpacked_opd2);
result1 ← result1 ∨ MaskAndShift2(unpacked_res, j);

}

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 261/507

cmpeq.ph Register
cmpeq.ph RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit test for equality.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 1 000 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← SignedExtract16(operand1, j);
unpacked_opd2← SignedExtract16(operand2, j);
unpacked_res← (unpacked_opd1= unpacked_opd2);
result1 ← result1 ∨ MaskAndShift16(unpacked_res, j);

}

RDEST ← Register(result1);

Instruction set ST240

262/507 8059133

cmpeqf.n Branch Register - Register
cmpeqf.n BBDEST2 = RSRC1, RSRC2

Semantics:

Description: IEEE754 format single precision floating point equality comparison.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0011 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← FCompEqNonIeee(operand1, operand2);

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 263/507

cmpeqf.n Register - Register
cmpeqf.n RDEST = RSRC1, RSRC2

Semantics:

Description: IEEE754 format single precision floating point equality comparison.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 0011 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← FCompEqNonIeee(operand1, operand2);

RDEST ← Register(result1);

Instruction set ST240

264/507 8059133

cmpge Branch Register - Immediate
cmpge BIBDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare equal or greater than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BIBDEST is available for reading by br/brf.
No other latency restrictions before BIBDEST is available for reading by any other
operation.

Exceptions: None.

s 00 1 1 1 0010 ISRC2
IBDES

T
SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ≥ operand2;

BIBDEST ← BranchRegister(result1);

ST240 Instruction set

8059133 265/507

cmpge Register - Immediate
cmpge RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare equal or greater than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 1 0 0010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ≥ operand2;

RIDEST ← Register(result1);

Instruction set ST240

266/507 8059133

cmpgef.n Branch Register - Register
cmpgef.n BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Floating point compare equal or greater than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0010 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← FCompGENonIeee(operand1, operand2);

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 267/507

cmpgef.n Register - Register
cmpgef.n RDEST = RSRC1, RSRC2

Semantics:

Description: Floating point compare equal or greater than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 0010 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← FCompGENonIeee(operand1, operand2);

RDEST ← Register(result1);

Instruction set ST240

268/507 8059133

cmpgeu Branch Register - Immediate
cmpgeu BIBDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare equal or greater than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BIBDEST is available for reading by br/brf.
No other latency restrictions before BIBDEST is available for reading by any other
operation.

Exceptions: None.

s 00 1 1 1 0011 ISRC2
IBDES

T
SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 ≥ operand2;

BIBDEST ← BranchRegister(result1);

ST240 Instruction set

8059133 269/507

cmpgeu Register - Immediate
cmpgeu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare equal or greater than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 1 0 0011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 ≥ operand2;

RIDEST ← Register(result1);

Instruction set ST240

270/507 8059133

cmpgt Branch Register - Immediate
cmpgt BIBDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare greater than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BIBDEST is available for reading by br/brf.
No other latency restrictions before BIBDEST is available for reading by any other
operation.

Exceptions: None.

s 00 1 1 1 0100 ISRC2
IBDES

T
SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 > operand2;

BIBDEST ← BranchRegister(result1);

ST240 Instruction set

8059133 271/507

cmpgt Register - Immediate
cmpgt RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare greater than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 1 0 0100 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 > operand2;

RIDEST ← Register(result1);

Instruction set ST240

272/507 8059133

cmpgt.ph Branch Register - Register
cmpgt.ph BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit greater than test to branch register.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 1 001 001000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 15 14 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← SignedExtract16(operand1, j);
unpacked_opd2← SignedExtract16(operand2, j);
unpacked_res← SignExtend1(unpacked_opd1> unpacked_opd2);
result1 ← result1 ∨ MaskAndShift2(unpacked_res, j);

}

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 273/507

cmpgt.ph Register
cmpgt.ph RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit signed greater than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 1 001 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← SignedExtract16(operand1, j);
unpacked_opd2← SignedExtract16(operand2, j);
unpacked_res← (unpacked_opd1> unpacked_opd2);
result1 ← result1 ∨ MaskAndShift16(unpacked_res, j);

}

RDEST ← Register(result1);

Instruction set ST240

274/507 8059133

cmpgtf.n Branch Register - Register
cmpgtf.n BBDEST2 = RSRC1, RSRC2

Semantics:

Description: IEEE754 format single precision floating point greater than comparison.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0100 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← FCompGtNonIeee(operand1, operand2);

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 275/507

cmpgtf.n Register - Register
cmpgtf.n RDEST = RSRC1, RSRC2

Semantics:

Description: IEEE754 format single precision floating point greater than comparison.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 0100 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← FCompGtNonIeee(operand1, operand2);

RDEST ← Register(result1);

Instruction set ST240

276/507 8059133

cmpgtu Branch Register - Immediate
cmpgtu BIBDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare greater than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BIBDEST is available for reading by br/brf.
No other latency restrictions before BIBDEST is available for reading by any other
operation.

Exceptions: None.

s 00 1 1 1 0101 ISRC2
IBDES

T
SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 > operand2;

BIBDEST ← BranchRegister(result1);

ST240 Instruction set

8059133 277/507

cmpgtu Register - Immediate
cmpgtu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare greater than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 1 0 0101 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 > operand2;

RIDEST ← Register(result1);

Instruction set ST240

278/507 8059133

cmpgtu.pb Branch Register - Register
cmpgtu.pb BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Packed 8-bit unsigned greater than writing result to branch register.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0 001 001000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 15 14 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

unpacked_opd1← UnsignedExtract8(operand1, j);
unpacked_opd2← UnsignedExtract8(operand2, j);
unpacked_res← (unpacked_opd1> unpacked_opd2);
result1 ← result1 ∨ MaskAndShift1(unpacked_res, j);

}

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 279/507

cmpgtu.pb Register
cmpgtu.pb RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 8-bit unsigned greater than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 0 010 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

unpacked_opd1← UnsignedExtract8(operand1, j);
unpacked_opd2← UnsignedExtract8(operand2, j);
unpacked_res← (unpacked_opd1> unpacked_opd2);
result1 ← result1 ∨ MaskAndShift8(unpacked_res, j);

}

RDEST ← Register(result1);

Instruction set ST240

280/507 8059133

cmple Branch Register - Immediate
cmple BIBDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare equal or less than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BIBDEST is available for reading by br/brf.
No other latency restrictions before BIBDEST is available for reading by any other
operation.

Exceptions: None.

s 00 1 1 1 0110 ISRC2
IBDES

T
SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ≤ operand2;

BIBDEST ← BranchRegister(result1);

ST240 Instruction set

8059133 281/507

cmple Register - Immediate
cmple RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare equal or less than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 1 0 0110 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ≤ operand2;

RIDEST ← Register(result1);

Instruction set ST240

282/507 8059133

cmple Branch Register - Register
cmple BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Signed compare equal or less than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0110 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ≤ operand2;

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 283/507

cmple Register - Register
cmple RDEST = RSRC1, RSRC2

Semantics:

Description: Signed compare equal or less than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 0110 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ≤ operand2;

RDEST ← Register(result1);

Instruction set ST240

284/507 8059133

cmpleu Branch Register - Immediate
cmpleu BIBDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare equal or less than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BIBDEST is available for reading by br/brf.
No other latency restrictions before BIBDEST is available for reading by any other
operation.

Exceptions: None.

s 00 1 1 1 0111 ISRC2
IBDES

T
SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 ≤ operand2;

BIBDEST ← BranchRegister(result1);

ST240 Instruction set

8059133 285/507

cmpleu Register - Immediate
cmpleu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare equal or less than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 1 0 0111 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 ≤ operand2;

RIDEST ← Register(result1);

Instruction set ST240

286/507 8059133

cmpleu Branch Register - Register
cmpleu BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Unsigned compare equal or less than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0111 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 ≤ operand2;

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 287/507

cmpleu Register - Register
cmpleu RDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned compare equal or less than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 0111 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 ≤ operand2;

RDEST ← Register(result1);

Instruction set ST240

288/507 8059133

cmplt Branch Register - Immediate
cmplt BIBDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare less than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BIBDEST is available for reading by br/brf.
No other latency restrictions before BIBDEST is available for reading by any other
operation.

Exceptions: None.

s 00 1 1 1 1000 ISRC2
IBDES

T
SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 < operand2;

BIBDEST ← BranchRegister(result1);

ST240 Instruction set

8059133 289/507

cmplt Register - Immediate
cmplt RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed compare less than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 1 0 1000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 < operand2;

RIDEST ← Register(result1);

Instruction set ST240

290/507 8059133

cmplt Branch Register - Register
cmplt BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Signed compare less than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 1000 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 < operand2;

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 291/507

cmplt Register - Register
cmplt RDEST = RSRC1, RSRC2

Semantics:

Description: Signed compare less than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 1000 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 < operand2;

RDEST ← Register(result1);

Instruction set ST240

292/507 8059133

cmpltu Branch Register - Immediate
cmpltu BIBDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare less than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BIBDEST is available for reading by br/brf.
No other latency restrictions before BIBDEST is available for reading by any other
operation.

Exceptions: None.

s 00 1 1 1 1001 ISRC2
IBDES

T
SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 < operand2;

BIBDEST ← BranchRegister(result1);

ST240 Instruction set

8059133 293/507

cmpltu Register - Immediate
cmpltu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned compare less than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 1 0 1001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
result1 ← operand1 < operand2;

RIDEST ← Register(result1);

Instruction set ST240

294/507 8059133

cmpltu Branch Register - Register
cmpltu BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Unsigned compare less than.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 1001 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 < operand2;

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 295/507

cmpltu Register - Register
cmpltu RDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned compare less than.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 1001 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← operand1 < operand2;

RDEST ← Register(result1);

Instruction set ST240

296/507 8059133

cmpne Branch Register - Immediate
cmpne BIBDEST = RSRC1, ISRC2

Semantics:

Description: Test for inequality.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BIBDEST is available for reading by br/brf.
No other latency restrictions before BIBDEST is available for reading by any other
operation.

Exceptions: None.

s 00 1 1 1 0001 ISRC2
IBDES

T
SRC1

31 30 29 28 27 26 25 24 21 20 12 11 9 8 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ≠ operand2;

BIBDEST ← BranchRegister(result1);

ST240 Instruction set

8059133 297/507

cmpne Register - Immediate
cmpne RIDEST = RSRC1, ISRC2

Semantics:

Description: Test for inequality.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 1 0 0001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ≠ operand2;

RIDEST ← Register(result1);

Instruction set ST240

298/507 8059133

cmpne Branch Register - Register
cmpne BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Test for inequality.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0001 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ≠ operand2;

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 299/507

cmpne Register - Register
cmpne RDEST = RSRC1, RSRC2

Semantics:

Description: Test for inequality.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 0001 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ≠ operand2;

RDEST ← Register(result1);

Instruction set ST240

300/507 8059133

convfi.n Floating point - Register
convfi.n RNLDEST = RSRC1

Semantics:

Description: IEEE754 format single precision floating point to signed integer conversion.

Restrictions: Must be encoded at an even word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 00 10100 010 NLDEST SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

result1 ← SFloatToIntNonIeee(operand1);
RNLDEST ← Register(result1);

ST240 Instruction set

8059133 301/507

convif.n Floating point - Register
convif.n RNLDEST = RSRC1

Semantics:

Description: Signed integer to IEEE754 format single precision floating point conversion.

Restrictions: Must be encoded at an even word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 00 10011 010 NLDEST SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);

result1 ← IntToSFloatNonIeee(operand1);
RNLDEST ← Register(result1);

Instruction set ST240

302/507 8059133

dbgsbrk
dbgsbrk BRKNUM

Semantics:

Description: Debug software breakpoint. Causes immediate entry into debug mode.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles between an operation writing
DBG_SBREAK_CONTROL and this operation being issued.
There is a latency of 2 cycles between an operation writing PSW and this operation
being issued.

Exceptions: ILL_INST

1 10 1111111 000001000 BRKNUM

31 30 29 28 27 21 20 12 11 0

operand1 ← ZeroExtend12(BRKNUM);
IF (((DBG_SBREAK_CONTROL∧ 1)≠ 0) AND (NOT(PSW[DEBUG_MODE])))

DbgThrow(DBG_SBREAK);
ELSE

THROW ILL_INST;

ST240 Instruction set

8059133 303/507

dib
dib

Semantics:

Description: Data-instruction barrier.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: None.

s 10 1111 111 000000110 000000 000000

31 30 29 28 27 24 23 21 20 12 11 6 5 0

Dib();

Instruction set ST240

304/507 8059133

div Register
div RNLDEST = RSRC1, RSRC2

Semantics:

Description: Signed integer division. May stall the pipeline, see definition of IDivIeee().

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 00 11000 010 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← IDivIeee(operand1, operand2);
RNLDEST ← Register(result1);

ST240 Instruction set

8059133 305/507

divu Register
divu RNLDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned integer division. May stall the pipeline, see definition of UIDivIeee().

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 00 11010 010 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← UIDivIeee(operand1, operand2);
RNLDEST ← Register(result1);

Instruction set ST240

306/507 8059133

ext1.pb Register
ext1.pb RDEST = RSRC1, RSRC2

Semantics:

Description: Extract word starting from byte 1.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 0 100 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← MaskAndShift8(operand2, 3);
REPEAT j FROM 0 FOR 3 {

unpacked_opd1← UnsignedExtract8(operand1, j + 1);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd1, j);

}

RDEST ← Register(result1);

ST240 Instruction set

8059133 307/507

ext2.pb Register
ext2.pb RDEST = RSRC1, RSRC2

Semantics:

Description: Extract word starting from byte 2.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 0 101 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← UnsignedExtract16(operand1, 1) ∨ MaskAndShift16(operand2, 1);

RDEST ← Register(result1);

Instruction set ST240

308/507 8059133

ext3.pb Register
ext3.pb RDEST = RSRC1, RSRC2

Semantics:

Description: Extract word starting from byte 3.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 0 110 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← UnsignedExtract8(operand1, 3);
REPEAT j FROM 0 FOR 3 {

unpacked_opd2← UnsignedExtract8(operand2, j);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd2, j + 1);

}

RDEST ← Register(result1);

ST240 Instruction set

8059133 309/507

extl.pb Register
extl.pb RDEST = BSCOND, RSRC1, RSRC2

Semantics:

Description: Dynamic extract left operation.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 1 11
SCON

D
010 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend4(BSCOND);
operand2 ← ZeroExtend32(RSRC1);
operand3 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

index ← j + ZeroExtend2(operand1);
IF (index < 4)

byte ← UnsignedExtract8(operand2, index);
ELSE

byte ← UnsignedExtract8(operand3, index - 4);
result1 ← result1 ∨ MaskAndShift8(byte, j);

}

RDEST ← Register(result1);

Instruction set ST240

310/507 8059133

extr.pb Register
extr.pb RDEST = BSCOND, RSRC1, RSRC2

Semantics:

Description: Dynamic extract right operation.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 1 11
SCON

D
011 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend4(BSCOND);
operand2 ← ZeroExtend32(RSRC1);
operand3 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

index ← (j + 4) - ZeroExtend2(operand1);
IF (index ≥ 4)

byte ← UnsignedExtract8(operand2, index - 4);
ELSE

byte ← UnsignedExtract8(operand3, index);
result1 ← result1 ∨ MaskAndShift8(byte, j);

}

RDEST ← Register(result1);

ST240 Instruction set

8059133 311/507

extract Immediate
extract RIDEST = RSRC1, ISRC2

Semantics:

Description: Generalised signed bit field extract for small fields (1-16 bits).

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: ILL_INST

s 01 1 0 0 0 011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend9(Imm(ISRC2));
position ← UnsignedExtract5(operand2, 0);
bitCount ← ZeroExtend4(operand2 >> 5) + 1;
IF ((bitCount + position) > 32)

THROW ILL_INST;
sign ← (1 << (bitCount - 1));
mask ← (1 << (bitCount - 1)) - 1;
result1 ← (operand1 >> position);
IF (result1 ∧ sign)

result1 ← result1 ∨ (~mask);
ELSE

result1 ← result1 ∧ mask;

RIDEST ← Register(result1);

Instruction set ST240

312/507 8059133

extractl Immediate
extractl RIDEST = RSRC1, ISRC2

Semantics:

Description: Generalized signed bit field extract for large fields (>= 17 bits).

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: ILL_INST

s 01 1 0 0 1 011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend9(Imm(ISRC2));
position ← UnsignedExtract5(operand2, 0);
bitCount ← ZeroExtend4(operand2 >> 5) + 17;
IF ((bitCount + position) > 32)

THROW ILL_INST;
sign ← (1 << (bitCount - 1));
mask ← (1 << (bitCount - 1)) - 1;
result1 ← (operand1 >> position);
IF (result1 ∧ sign)

result1 ← result1 ∨ (~mask);
ELSE

result1 ← result1 ∧ mask;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 313/507

extractlu Immediate
extractlu RIDEST = RSRC1, ISRC2

Semantics:

Description: Generalized unsigned bit field extract for large fields (>= 17 bits).

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: ILL_INST

s 01 1 0 0 1 100 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend9(Imm(ISRC2));
position ← UnsignedExtract5(operand2, 0);
bitCount ← ZeroExtend4(operand2 >> 5) + 17;
IF ((bitCount + position) > 32)

THROW ILL_INST;
mask ← (1 << bitCount) - 1;
result1 ← (operand1 >> position) ∧ mask;

RIDEST ← Register(result1);

Instruction set ST240

314/507 8059133

extractu Immediate
extractu RIDEST = RSRC1, ISRC2

Semantics:

Description: Generalized unsigned bit field extract for small fields (1 - 16 bits).

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: ILL_INST

s 01 1 0 0 0 100 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend9(Imm(ISRC2));
position ← UnsignedExtract5(operand2, 0);
bitCount ← ZeroExtend4(operand2 >> 5) + 1;
IF ((bitCount + position) > 32)

THROW ILL_INST;
mask ← (1 << bitCount) - 1;
result1 ← (operand1 >> position) ∧ mask;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 315/507

flushadd
flushadd ISRC2[RSRC1]

Semantics:

Description: Flush the address given in the L1 data memory subsystem and L2 cache (if present).

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: DTLB

s 10 1111 100 ISRC2 000000 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
PurgeAddressCheckMemory(ea);

FlushAddress(ea);

Instruction set ST240

316/507 8059133

flushadd.l1
flushadd.l1 ISRC2[RSRC1]

Semantics:

Description: Flush the address given in the L1 data memory subsystem only.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: DTLB

s 10 1111 100 ISRC2 000001 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
PurgeAddressCheckMemory(ea);

FlushAddressL1(ea);

ST240 Instruction set

8059133 317/507

goto Link Register
goto $r63

Semantics:

Description: Jump (using Link Register).

Restrictions: Must be the first syllable of a bundle.
There are no latency constraints between a call updating the LR and this operation.
There is a latency of 3 cycles between a load writing to the LR and this operation.
There is a latency of 2 cycles between any other operation updating the LR and this
operation.

Exceptions: None.

s 11 0 001 1 00000000000000000000000

31 30 29 28 27 26 24 23 22 0

PC ← Register(ZeroExtend32(LR));

Instruction set ST240

318/507 8059133

goto Immediate
goto BTARG

Semantics:

Description: Jump.

Restrictions: Must be the first syllable of a bundle.
No latency constraints.

Exceptions: None.

s 11 0 001 0 BTARG

31 30 29 28 27 26 24 23 22 0

operand1 ← SignExtend23(BTARG)<< 2;
PC ← Register(ZeroExtend32(BUNDLE_PC) + operand1);

ST240 Instruction set

8059133 319/507

imml
imml IMM

Semantics:

Description: Long immediate for previous syllable.

Restrictions: Must be encoded at an even word address.
No latency constraints.

Exceptions: None.

s 01 0 1 01 0 IMM

31 30 29 28 27 26 25 24 23 22 0

extension ← ZeroExtend23(IMM);

Instruction set ST240

320/507 8059133

immr
immr IMM

Semantics:

Description: Long immediate for next syllable.

Restrictions: Must be encoded at an even word address.
No latency constraints.

Exceptions: None.

s 01 0 1 01 1 IMM

31 30 29 28 27 26 25 24 23 22 0

extension ← ZeroExtend23(IMM);

ST240 Instruction set

8059133 321/507

invadd
invadd ISRC2[RSRC1]

Semantics:

Description: Invalidate the address given in the L1 data memory subsystem and L2 cache (if
present).

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: DTLB

s 10 1111 110 ISRC2 000000 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
PurgeAddressCheckMemory(ea);

InvalidateAddress(ea);

Instruction set ST240

322/507 8059133

invadd.l1
invadd.l1 ISRC2[RSRC1]

Semantics:

Description: Invalidate the address given in the L1 data memory subsystem only.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: DTLB

s 10 1111 110 ISRC2 000001 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
PurgeAddressCheckMemory(ea);

InvalidateAddressL1(ea);

ST240 Instruction set

8059133 323/507

ldb
ldb RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Signed load byte.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB

s 10 0100 000 ISRC2 NLIDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))
{

THROW CREG_ACCESS_VIOLATION;
}
ELSE
{

ReadCheckMemory8(ea);
}

ReadMemory8(ea);
result1 ← SignExtend8(ReadMemResponse());
RNLIDEST ← Register(result1);

Instruction set ST240

324/507 8059133

ldbc
ldbc RNLIDEST = BPCOND, ISRC2[RSRC1]

Semantics:

Description: Conditional signed load byte.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
BPCOND can be any branch register except zero.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB

s 10 0100
PCON

D
ISRC2 NLIDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend4(BPCOND);
operand2 ← SignExtend32(Imm(ISRC2));
operand3 ← SignExtend32(RSRC1);
IF (operand1 ≠ 0)
{

ea ← ZeroExtend32(operand2 + operand3);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))
{

THROW CREG_ACCESS_VIOLATION;
}
ELSE
{

ReadCheckMemory8(ea);
}

}

IF (operand1 ≠ 0)
ReadMemory8(ea);

IF (operand1 ≠ 0)
result1 ← SignExtend8(ReadMemResponse());

IF (operand1)
RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 325/507

ldbu
ldbu RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Unsigned load byte.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB

s 10 0101 000 ISRC2 NLIDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))
{

THROW CREG_ACCESS_VIOLATION;
}
ELSE
{

ReadCheckMemory8(ea);
}

ReadMemory8(ea);
result1 ← ZeroExtend8(ReadMemResponse());
RNLIDEST ← Register(result1);

Instruction set ST240

326/507 8059133

ldbuc
ldbuc RNLIDEST = BPCOND, ISRC2[RSRC1]

Semantics:

Description: Conditional unsigned load byte.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
BPCOND can be any branch register except zero.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB

s 10 0101
PCON

D
ISRC2 NLIDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend4(BPCOND);
operand2 ← SignExtend32(Imm(ISRC2));
operand3 ← SignExtend32(RSRC1);
IF (operand1 ≠ 0)
{

ea ← ZeroExtend32(operand2 + operand3);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))
{

THROW CREG_ACCESS_VIOLATION;
}
ELSE
{

ReadCheckMemory8(ea);
}

}

IF (operand1 ≠ 0)
ReadMemory8(ea);

IF (operand1 ≠ 0)
result1 ← ZeroExtend8(ReadMemResponse());

IF (operand1)
RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 327/507

ldh
ldh RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Signed load half-word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 0010 000 ISRC2 NLIDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))
{

THROW CREG_ACCESS_VIOLATION;
}
ELSE
{

ReadCheckMemory16(ea);
}

ReadMemory16(ea);
result1 ← SignExtend16(ReadMemResponse());
RNLIDEST ← Register(result1);

Instruction set ST240

328/507 8059133

ldhc
ldhc RNLIDEST = BPCOND, ISRC2[RSRC1]

Semantics:

Description: Conditional signed load half-word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
BPCOND can be any branch register except zero.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 0010
PCON

D
ISRC2 NLIDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend4(BPCOND);
operand2 ← SignExtend32(Imm(ISRC2));
operand3 ← SignExtend32(RSRC1);
IF (operand1 ≠ 0)
{

ea ← ZeroExtend32(operand2 + operand3);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))
{

THROW CREG_ACCESS_VIOLATION;
}
ELSE
{

ReadCheckMemory16(ea);
}

}

IF (operand1 ≠ 0)
ReadMemory16(ea);

IF (operand1 ≠ 0)
result1 ← SignExtend16(ReadMemResponse());

IF (operand1)
RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 329/507

ldhu
ldhu RNLIDEST = ISRC2[RSRC1]

Semantics:

Description: Unsigned load half-word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 0011 000 ISRC2 NLIDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))
{

THROW CREG_ACCESS_VIOLATION;
}
ELSE
{

ReadCheckMemory16(ea);
}

ReadMemory16(ea);
result1 ← ZeroExtend16(ReadMemResponse());
RNLIDEST ← Register(result1);

Instruction set ST240

330/507 8059133

ldhuc
ldhuc RNLIDEST = BPCOND, ISRC2[RSRC1]

Semantics:

Description: Conditional unsigned load half-word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
BPCOND can be any branch register except zero.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 0011
PCON

D
ISRC2 NLIDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend4(BPCOND);
operand2 ← SignExtend32(Imm(ISRC2));
operand3 ← SignExtend32(RSRC1);
IF (operand1 ≠ 0)
{

ea ← ZeroExtend32(operand2 + operand3);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))
{

THROW CREG_ACCESS_VIOLATION;
}
ELSE
{

ReadCheckMemory16(ea);
}

}

IF (operand1 ≠ 0)
ReadMemory16(ea);

IF (operand1 ≠ 0)
result1 ← ZeroExtend16(ReadMemResponse());

IF (operand1)
RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 331/507

ldl
ldl PIDESTP = ISRC2[RSRC1]

Semantics:

Description: Load double word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
PIDESTP can be any register pair except zero.
There is a latency of 2 cycles before PIDESTP is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 0000 000 ISRC2 IDESTP SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))
{

THROW CREG_ACCESS_VIOLATION;
}
ELSE
{

ReadCheckMemory64(ea);
}

ReadMemory64(ea);
result1 ← SignExtend64(ReadMemResponse64());
IF (IDESTP ≠ 0)
{

RIDESTP ← Register(result1);
R(IDESTP + 1) ← Register(result1 >> 32);

}

Instruction set ST240

332/507 8059133

ldlc
ldlc PIDESTP = BPCOND, ISRC2[RSRC1]

Semantics:

Description: Conditional load double word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
BPCOND can be any branch register except zero.
PIDESTP can be any register pair except zero.
There is a latency of 2 cycles before PIDESTP is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 0000
PCON

D
ISRC2 IDESTP SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend4(BPCOND);
operand2 ← SignExtend32(Imm(ISRC2));
operand3 ← SignExtend32(RSRC1);
IF (operand1 ≠ 0)
{

ea ← ZeroExtend32(operand2 + operand3);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))
{

THROW CREG_ACCESS_VIOLATION;
}
ELSE
{

ReadCheckMemory64(ea);
}

}

IF (operand1 ≠ 0)
ReadMemory64(ea);

IF (operand1 ≠ 0)
result1 ← SignExtend64(ReadMemResponse64());

IF (operand1)
{

IF (IDESTP ≠ 0)
{

RIDESTP ← Register(result1);
R(IDESTP + 1) ← Register(result1 >> 32);

}
}

ST240 Instruction set

8059133 333/507

ldw
ldw RIDEST = ISRC2[RSRC1]

Semantics:

Description: Load word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
There is a latency of 2 cycles before RIDEST is available for reading.
If writing the LR, there is a latency of 3 cycles before a call LR or goto LR is issued.

Exceptions: DBREAK, DTLB, CREG_ACCESS_VIOLATION, CREG_NO_MAPPING,
MISALIGNED_TRAP

s 10 0001 000 ISRC2 IDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

ReadCheckCReg(ea);
ELSE

ReadCheckMemory32(ea);

IF (IsCRegSpace(ea))
ReadCReg(ea);

ELSE
ReadMemory32(ea);

result1 ← SignExtend32(ReadMemResponse());
RIDEST ← Register(result1);

Instruction set ST240

334/507 8059133

ldwc
ldwc RIDEST = BPCOND, ISRC2[RSRC1]

Semantics:

Description: Conditional load word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
BPCOND can be any branch register except zero.
There is a latency of 2 cycles before RIDEST is available for reading.
If writing the LR, there is a latency of 3 cycles before a call LR or goto LR is issued.

Exceptions: DBREAK, DTLB, CREG_ACCESS_VIOLATION, CREG_NO_MAPPING,
MISALIGNED_TRAP

s 10 0001
PCON

D
ISRC2 IDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend4(BPCOND);
operand2 ← SignExtend32(Imm(ISRC2));
operand3 ← SignExtend32(RSRC1);
IF (operand1 ≠ 0)
{

ea ← ZeroExtend32(operand2 + operand3);
IF (IsDBreakLoadHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

ReadCheckCReg(ea);
ELSE

ReadCheckMemory32(ea);
}

IF (operand1 ≠ 0)
{

IF (IsCRegSpace(ea))
ReadCReg(ea);

ELSE
ReadMemory32(ea);

}
IF (operand1 ≠ 0)

result1 ← SignExtend32(ReadMemResponse());
IF (operand1)

RIDEST ← Register(result1);

ST240 Instruction set

8059133 335/507

ldwl
ldwl RNLIDEST = [RSRC1]

Semantics:

Description: Load word linked. Forms part of atomic read/modify/write sequence with stwl.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 1111 111 000000101 NLIDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
ATOMIC_LOCK← 0x3;
IF (IsDBreakLoadHit(operand1))

THROW DBREAK;
IF (IsCRegSpace(operand1))

THROW CREG_ACCESS_VIOLATION;
ReadCheckMemory32(operand1);
ATOMIC_ADDRESS← Translate(operand1) ∧ 0xFFFFFFE0;

ReadMemory32(operand1);
result1 ← SignExtend32(ReadMemResponse());
RNLIDEST ← Register(result1);

Instruction set ST240

336/507 8059133

max Immediate
max RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed maximum.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 10000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
IF (operand1 > operand2)

result1 ← operand1;
ELSE

result1 ← operand2;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 337/507

max Register
max RDEST = RSRC1, RSRC2

Semantics:

Description: Signed maximum.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 10000 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
IF (operand1 > operand2)

result1 ← operand1;
ELSE

result1 ← operand2;

RDEST ← Register(result1);

Instruction set ST240

338/507 8059133

max.ph Register
max.ph RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit signed maximum. Operands may be signed 16-bit integers or fractional
1.15 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 1 010 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← SignedExtract16(operand1, j);
unpacked_opd2← SignedExtract16(operand2, j);
IF (unpacked_opd1> unpacked_opd2)

result1 ← result1 ∨ MaskAndShift16(unpacked_opd1, j);
ELSE

result1 ← result1 ∨ MaskAndShift16(unpacked_opd2, j);
}

RDEST ← Register(result1);

ST240 Instruction set

8059133 339/507

maxu Immediate
maxu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned maximum.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 10001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
IF (operand1 > operand2)

result1 ← operand1;
ELSE

result1 ← operand2;

RIDEST ← Register(result1);

Instruction set ST240

340/507 8059133

maxu Register
maxu RDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned maximum.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 10001 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
IF (operand1 > operand2)

result1 ← operand1;
ELSE

result1 ← operand2;

RDEST ← Register(result1);

ST240 Instruction set

8059133 341/507

min Immediate
min RIDEST = RSRC1, ISRC2

Semantics:

Description: Signed minimum.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 10010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
IF (operand1 < operand2)

result1 ← operand1;
ELSE

result1 ← operand2;

RIDEST ← Register(result1);

Instruction set ST240

342/507 8059133

min Register
min RDEST = RSRC1, RSRC2

Semantics:

Description: Signed minimum.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 10010 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
IF (operand1 < operand2)

result1 ← operand1;
ELSE

result1 ← operand2;

RDEST ← Register(result1);

ST240 Instruction set

8059133 343/507

min.ph Register
min.ph RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit signed minimum. Operands may be signed 16-bit integers or fractional
1.15 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 1 011 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← SignedExtract16(operand1, j);
unpacked_opd2← SignedExtract16(operand2, j);
IF (unpacked_opd1< unpacked_opd2)

result1 ← result1 ∨ MaskAndShift16(unpacked_opd1, j);
ELSE

result1 ← result1 ∨ MaskAndShift16(unpacked_opd2, j);
}

RDEST ← Register(result1);

Instruction set ST240

344/507 8059133

minu Immediate
minu RIDEST = RSRC1, ISRC2

Semantics:

Description: Unsigned minimum.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 10011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));
IF (operand1 < operand2)

result1 ← operand1;
ELSE

result1 ← operand2;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 345/507

minu Register
minu RDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned minimum.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 10011 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
IF (operand1 < operand2)

result1 ← operand1;
ELSE

result1 ← operand2;

RDEST ← Register(result1);

Instruction set ST240

346/507 8059133

mov Branch Register - Branch Register
mov BBDEST2 = BBSRC1

Semantics:

Description: Move a branch register value into branch register.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0000 000010
BDEST

2
BSRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 3 2 0

operand1 ← ZeroExtend4(BBSRC1);
result1 ← operand1;

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 347/507

mov Branch Register - Register
mov BBDEST2 = RSRC1

Semantics:

Description: Move general register value into a branch register.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 1110 000000
BDEST

2
000000 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
result1 ← ZeroExtend4(operand1);

BBDEST2 ← BranchRegister(result1);

Instruction set ST240

348/507 8059133

mov Register - Branch Register
mov RDEST = BSCOND

Semantics:

Description: Move branch register value into a general purpose register.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 1 11
SCON

D
001 DEST 000000 000000

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend4(BSCOND);
result1 ← operand1;

RDEST ← Register(result1);

ST240 Instruction set

8059133 349/507

mul.ph Register
mul.ph RNLDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit multiplication. Operands may be signed or unsigned 16-bit integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 1 1 100 001 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← 0;
REPEAT j FROM 0 FOR 2 {

mulresult ← SignedExtract16(operand1, j) × SignedExtract16(operand2, j);
result1 ← result1 ∨ MaskAndShift16(mulresult, j);

}
RNLDEST ← Register(result1);

Instruction set ST240

350/507 8059133

mul32 Immediate
mul32 RNLIDEST = RSRC1, ISRC2

Semantics:

Description: 32x32-bit signed multiplication, returns lower 32 bits of the intermediate 64bit result.
Operands are signed or unsigned integers.

Restrictions: Must be encoded at an odd word address.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 10110 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

result1 ← operand1 × operand2;
RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 351/507

mul32 Register
mul32 RNLDEST = RSRC1, RSRC2

Semantics:

Description: 32x32-bit signed multiplication, returns lower 32 bits of the intermediate 64bit result.
Operands are signed or unsigned integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 10110 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result1 ← operand1 × operand2;
RNLDEST ← Register(result1);

Instruction set ST240

352/507 8059133

mul64h Immediate
mul64h RNLIDEST = RSRC1, ISRC2

Semantics:

Description: 32x32-bit signed multiplication, returns upper 32 bits of the intermediate 64bit result.
Operands are signed integers.

Restrictions: Must be encoded at an odd word address.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 01111 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

result1 ← (operand1 × operand2) >> 32;
RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 353/507

mul64h Register
mul64h RNLDEST = RSRC1, RSRC2

Semantics:

Description: 32x32-bit signed multiplication, returns upper 32 bits of the intermediate 64bit result.
Operands are signed integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 01111 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result1 ← (operand1 × operand2) >> 32;
RNLDEST ← Register(result1);

Instruction set ST240

354/507 8059133

mul64hu Immediate
mul64hu RNLIDEST = RSRC1, ISRC2

Semantics:

Description: 32x32-bit unsigned multiplication, returns upper 32 bits of the intermediate 64bit
result. Operands are signed integers.

Restrictions: Must be encoded at an odd word address.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 10100 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(Imm(ISRC2));

result1 ← (operand1 × operand2) >> 32;
RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 355/507

mul64hu Register
mul64hu RNLDEST = RSRC1, RSRC2

Semantics:

Description: 32x32-bit unsigned multiplication, returns upper 32 bits of the intermediate 64bit
result. Operands are signed integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 10100 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← (operand1 × operand2) >> 32;
RNLDEST ← Register(result1);

Instruction set ST240

356/507 8059133

muladd.ph Register
muladd.ph RNLDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit signed multiplication and add across with saturation. Operands are
signed 16-bit integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 1 1 101 001 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← 0;
REPEAT j FROM 0 FOR 2 {

mulresult ← SignedExtract16(operand1, j) × SignedExtract16(operand2, j);
result1 ← result1 + mulresult;

}
result1 ← Saturate32(result1);
RNLDEST ← Register(result1);

ST240 Instruction set

8059133 357/507

muladdus.pb Register
muladdus.pb RNLDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned 8-bit integer multiplied by signed 8-bit integer value and add across.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 1 0 010 010 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← 0;
REPEAT j FROM 0 FOR 4 {

mulresult ← UnsignedExtract8(operand1, j) × SignedExtract8(operand2, j);
result1 ← result1 + mulresult;

}
RNLDEST ← Register(result1);

Instruction set ST240

358/507 8059133

mulf.n Floating point - Register
mulf.n RNLDEST = RSRC1, RSRC2

Semantics:

Description: IEEE754 format single precision floating point multiplication.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 00 10010 010 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← FMulSNonIeee(operand1, operand2);
RNLDEST ← Register(result1);

ST240 Instruction set

8059133 359/507

mulfrac Immediate
mulfrac RNLIDEST = RSRC1, ISRC2

Semantics:

Description: 32-bit fractional multiplication with round nearest positive and saturation. Operands
are fractional 1.31 format.

Restrictions: Must be encoded at an odd word address.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 11111 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));

IF (((-operand1) = 0x80000000) AND ((-operand2) = 0x80000000))
{

result1 ← 0x7FFFFFFF;
}
ELSE
{

result1 ← operand1 × operand2;
result1 ← result1 + (1 << 30);
result1 ← result1 >> 31;

}
RNLIDEST ← Register(result1);

Instruction set ST240

360/507 8059133

mulfrac Register
mulfrac RNLDEST = RSRC1, RSRC2

Semantics:

Description: 32-bit fractional multiplication with round nearest positive and saturation. Operands
are fractional 1.31 format.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11111 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

IF (((-operand1) = 0x80000000) AND ((-operand2) = 0x80000000))
{

result1 ← 0x7FFFFFFF;
}
ELSE
{

result1 ← operand1 × operand2;
result1 ← result1 + (1 << 30);
result1 ← result1 >> 31;

}
RNLDEST ← Register(result1);

ST240 Instruction set

8059133 361/507

mulfracadds.ph Register
mulfracadds.ph RNLDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit signed fractional multiplication and add across with saturation.
Operands are 1.15 fractional format.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 1 1 011 010 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← 0;
REPEAT j FROM 0 FOR 2 {

extractedoperand1 ← SignedExtract16(operand1, j);
extractedoperand2 ← SignedExtract16(operand2, j);
IF (((-extractedoperand1) = 0x8000) AND ((-extractedoperand2) = 0x8000))
{

mulresult ← 0x7FFFFFFF;
}
ELSE
{

mulresult ← (extractedoperand1 × extractedoperand2) << 1;
}
result1 ← result1 + mulresult;

}
result1 ← Saturate32(result1);
RNLDEST ← Register(result1);

Instruction set ST240

362/507 8059133

mulfracrm.ph Register
mulfracrm.ph RNLDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit fractional multiplication with round minus and saturation. Operands are
fractional 1.15 format.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 1 1 110 001 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← 0;
REPEAT j FROM 0 FOR 2 {

mulresult ← SignedExtract16(operand1, j) × SignedExtract16(operand2, j);
mulresult ← Saturate16(mulresult >> 15);
result1 ← result1 ∨ MaskAndShift16(mulresult, j);

}
RNLDEST ← Register(result1);

ST240 Instruction set

8059133 363/507

mulfracrne.ph Register
mulfracrne.ph RNLDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit fractional multiplication with round nearest even and saturation.
Operands are fractional 1.15 format.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 1 1 111 001 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← 0;
REPEAT j FROM 0 FOR 2 {

mulresult ← SignedExtract16(operand1, j) × SignedExtract16(operand2, j);
rounding ← ((1 << 14) - 1) + Bit(mulresult, 15);
mulresult ← Saturate16((mulresult + rounding) >> 15);
result1 ← result1 ∨ MaskAndShift16(mulresult, j);

}
RNLDEST ← Register(result1);

Instruction set ST240

364/507 8059133

mulh Register
mulh RNLDEST = RSRC1, RSRC2

Semantics:

Description: Word by upper-half-word signed multiplication. Operands are 16-bit and 32-bit signed
integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 10111 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result1 ← operand1 × (operand2 >> 16);
RNLDEST ← Register(result1);

ST240 Instruction set

8059133 365/507

mulhh Register
mulhh RNLDEST = RSRC1, RSRC2

Semantics:

Description: Upper-half-word by upper-half-word signed multiplication. Operands are 16-bit signed
integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11101 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result1 ← (operand1 >> 16) × (operand2 >> 16);
RNLDEST ← Register(result1);

Instruction set ST240

366/507 8059133

mulhhu Register
mulhhu RNLDEST = RSRC1, RSRC2

Semantics:

Description: Upper-half-word by upper-half-word unsigned multiplication. Operands are 16-bit
unsigned integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11110 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);

result1 ← ZeroExtend16(operand1 >> 16) × ZeroExtend16(operand2 >> 16);
RNLDEST ← Register(result1);

ST240 Instruction set

8059133 367/507

mull Register
mull RNLDEST = RSRC1, RSRC2

Semantics:

Description: Word by half-word signed multiplication. Operands are 16-bit and 32-bit unsigned
integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 10101 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend16(RSRC2);

result1 ← operand1 × operand2;
RNLDEST ← Register(result1);

Instruction set ST240

368/507 8059133

mullh Register
mullh RNLDEST = RSRC1, RSRC2

Semantics:

Description: Half-word by upper-half-word signed multiplication. Operands are 16-bit and 32-bit
signed integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11011 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);
operand2 ← SignExtend32(RSRC2);

result1 ← operand1 × (operand2 >> 16);
RNLDEST ← Register(result1);

ST240 Instruction set

8059133 369/507

mullhu Register
mullhu RNLDEST = RSRC1, RSRC2

Semantics:

Description: Half-word by upper-half-word unsigned multiplication. Operands are 16-bit and 32-bit
unsigned integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11100 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);
operand2 ← SignExtend32(RSRC2);

result1 ← operand1 × ZeroExtend16(operand2 >> 16);
RNLDEST ← Register(result1);

Instruction set ST240

370/507 8059133

mulll Immediate
mulll RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Half-word by half-word signed multiplication. Operands are 16-bit signed integers.

Restrictions: Must be encoded at an odd word address.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 11001 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);
operand2 ← SignExtend16(Imm(ISRC2));

result1 ← operand1 × operand2;
RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 371/507

mulll Register
mulll RNLDEST = RSRC1, RSRC2

Semantics:

Description: Half-word by half-word signed multiplication. Operands are 16-bit signed integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11001 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend16(RSRC1);
operand2 ← SignExtend16(RSRC2);

result1 ← operand1 × operand2;
RNLDEST ← Register(result1);

Instruction set ST240

372/507 8059133

mulllu Immediate
mulllu RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Half-word by half-word unsigned multiplication. Operands are 16-bit unsigned
integers.

Restrictions: Must be encoded at an odd word address.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.

Exceptions: None.

s 00 1 0 11010 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);
operand2 ← ZeroExtend16(Imm(ISRC2));

result1 ← operand1 × operand2;
RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 373/507

mulllu Register
mulllu RNLDEST = RSRC1, RSRC2

Semantics:

Description: Half-word by half-word unsigned multiplication. Operands are 16-bit unsigned
integers.

Restrictions: Must be encoded at an odd word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 0 0 11010 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend16(RSRC1);
operand2 ← ZeroExtend16(RSRC2);

result1 ← operand1 × operand2;
RNLDEST ← Register(result1);

Instruction set ST240

374/507 8059133

nandl Branch Register - Branch Register
nandl BBDEST2 = BBSRC1, BBSRC2

Semantics:

Description: Logical NAND.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0001 000001
BDEST

2
BSRC2 BSRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 9 8 6 5 3 2 0

operand1 ← ZeroExtend4(BBSRC1);
operand2 ← ZeroExtend4(BBSRC2);
result1 ← NOT ((operand1 ≠ 0) AND (operand2 ≠ 0));

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 375/507

nandl Branch Register - Register
nandl BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Logical NAND.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 1011 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← NOT ((operand1 ≠ 0) AND (operand2 ≠ 0));

BBDEST2 ← BranchRegister(result1);

Instruction set ST240

376/507 8059133

nandl Register - Register
nandl RDEST = RSRC1, RSRC2

Semantics:

Description: Logical NAND.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 1011 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← NOT ((operand1 ≠ 0) AND (operand2 ≠ 0));

RDEST ← Register(result1);

ST240 Instruction set

8059133 377/507

norl Branch Register - Branch Register
norl BBDEST2 = BBSRC1, BBSRC2

Semantics:

Description: Logical NOR.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0011 000001
BDEST

2
BSRC2 BSRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 9 8 6 5 3 2 0

operand1 ← ZeroExtend4(BBSRC1);
operand2 ← ZeroExtend4(BBSRC2);
result1 ← NOT((operand1 ≠ 0) OR (operand2 ≠ 0));

BBDEST2 ← BranchRegister(result1);

Instruction set ST240

378/507 8059133

norl Branch Register - Register
norl BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Logical NOR.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 1101 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← NOT ((operand1 ≠ 0) OR (operand2 ≠ 0));

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 379/507

norl Register - Register
norl RDEST = RSRC1, RSRC2

Semantics:

Description: Logical NOR.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 1101 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← NOT ((operand1 ≠ 0) OR (operand2 ≠ 0));

RDEST ← Register(result1);

Instruction set ST240

380/507 8059133

or Immediate
or RIDEST = RSRC1, ISRC2

Semantics:

Description: Bitwise OR.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 01011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ∨ operand2;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 381/507

or Register
or RDEST = RSRC1, RSRC2

Semantics:

Description: Bitwise OR.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 01011 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ∨ operand2;

RDEST ← Register(result1);

Instruction set ST240

382/507 8059133

orc Register
orc RDEST = RSRC1, RSRC2

Semantics:

Description: Negate operand 1 and then bitwise OR.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 01100 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← (~operand1) ∨ operand2;

RDEST ← Register(result1);

ST240 Instruction set

8059133 383/507

orl Branch Register - Branch Register
orl BBDEST2 = BBSRC1, BBSRC2

Semantics:

Description: Logical OR.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 0010 000001
BDEST

2
BSRC2 BSRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 9 8 6 5 3 2 0

operand1 ← ZeroExtend4(BBSRC1);
operand2 ← ZeroExtend4(BBSRC2);
result1 ← (operand1 ≠ 0) OR (operand2 ≠ 0);

BBDEST2 ← BranchRegister(result1);

Instruction set ST240

384/507 8059133

orl Branch Register - Register
orl BBDEST2 = RSRC1, RSRC2

Semantics:

Description: Logical OR.

Restrictions: No address or bundle restrictions.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: None.

s 00 0 1 1 1100 000000
BDEST

2
SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 15 14 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 ≠ 0) OR (operand2 ≠ 0);

BBDEST2 ← BranchRegister(result1);

ST240 Instruction set

8059133 385/507

orl Register - Register
orl RDEST = RSRC1, RSRC2

Semantics:

Description: Logical OR.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 1 0 1100 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 ≠ 0) OR (operand2 ≠ 0);

RDEST ← Register(result1);

Instruction set ST240

386/507 8059133

pack.pb Register
pack.pb RDEST = RSRC1, RSRC2

Semantics:

Description: Pack 4 16-bit values to 8-bit results ignoring upper bits.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 0 011 010 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← SignedExtract16(operand1, j);
unpacked_opd2← SignedExtract16(operand2, j);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd1, j);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd2, j + 2);

}

RDEST ← Register(result1);

ST240 Instruction set

8059133 387/507

packrnp.phh Register
packrnp.phh RDEST = RSRC1, RSRC2

Semantics:

Description: Pack high part of 32-bit signed value into 16-bit signed results with round nearest
positive.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 1 110 010 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
rounded_opd1← (operand1 + 0x8000) >> 16;
rounded_opd2← (operand2 + 0x8000) >> 16;
saturated_opd1← Saturate16(rounded_opd1);
saturated_opd2← Saturate16(rounded_opd2);
result1 ← MaskAndShift16(saturated_opd1, 0) ∨ MaskAndShift16(saturated_opd2, 1);

RDEST ← Register(result1);

Instruction set ST240

388/507 8059133

packs.ph Register
packs.ph RDEST = RSRC1, RSRC2

Semantics:

Description: Pack 32-bit signed values into 16-bit signed results with saturation.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 1 111 010 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
saturated_opd1← Saturate16(operand1);
saturated_opd2← Saturate16(operand2);
result1 ← MaskAndShift16(saturated_opd1, 0) ∨ MaskAndShift16(saturated_opd2, 1);

RDEST ← Register(result1);

ST240 Instruction set

8059133 389/507

packsu.pb Register
packsu.pb RDEST = RSRC1, RSRC2

Semantics:

Description: Pack 16-bit signed values into 8-bit unsigned results with saturation.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 0 111 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← UnsignedSaturate8(SignedExtract16(operand1, j));
unpacked_opd2← UnsignedSaturate8(SignedExtract16(operand2, j));
result1 ← result1 ∨ MaskAndShift8(unpacked_opd1, j);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd2, j + 2);

}

RDEST ← Register(result1);

Instruction set ST240

390/507 8059133

perm.pb Immediate
perm.pb RIDEST = RSRC1, ISRC2

Semantics:

Description: Packed 8-bit permute.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 1 0 1 0 000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

byteselect ← UnsignedExtract2(operand2, j);
unpacked_opd1← UnsignedExtract8(operand1, byteselect);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd1, j);

}

RIDEST ← Register(result1);

ST240 Instruction set

8059133 391/507

perm.pb Register
perm.pb RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 8-bit permute.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 0 000 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

byteselect ← UnsignedExtract2(operand2, j);
unpacked_opd1← UnsignedExtract8(operand1, byteselect);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd1, j);

}

RDEST ← Register(result1);

Instruction set ST240

392/507 8059133

pft
pft ISRC2[RSRC1]

Semantics:

Description: Prefetch.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
RNLIDEST can be any general register except the link register.
No latency constraints.

Exceptions: DBREAK, DTLB

s 10 0000 000 ISRC2 000000 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakPrefetchHit(ea))

THROW DBREAK;
PrefetchCheckMemory(ea);

PrefetchMemory(ea);

ST240 Instruction set

8059133 393/507

pftc
pftc BPCOND, ISRC2[RSRC1]

Semantics:

Description: Conditional prefetch.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
BPCOND can be any branch register except zero.
RNLIDEST can be any general register except the link register.
No latency constraints.

Exceptions: DBREAK, DTLB

s 10 0000
PCON

D
ISRC2 000000 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend4(BPCOND);
operand2 ← SignExtend32(Imm(ISRC2));
operand3 ← SignExtend32(RSRC1);
IF (operand1 ≠ 0)
{

ea ← ZeroExtend32(operand2 + operand3);
IF (IsDBreakPrefetchHit(ea))

THROW DBREAK;
PrefetchCheckMemory(ea);

}

IF (operand1 ≠ 0)
PrefetchMemory(ea);

Instruction set ST240

394/507 8059133

prgadd
prgadd ISRC2[RSRC1]

Semantics:

Description: Purge the address from the data memory subsystem.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: DTLB

s 10 1111 000 ISRC2 000000 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
PurgeAddressCheckMemory(ea);

PurgeAddress(ea);

ST240 Instruction set

8059133 395/507

prgadd.l1
prgadd.l1 ISRC2[RSRC1]

Semantics:

Description: Purge the address from the L1 data memory subsystem only (excluding any L2
cache).

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: DTLB

s 10 1111 000 ISRC2 000001 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
PurgeAddressCheckMemory(ea);

PurgeAddressL1(ea);

Instruction set ST240

396/507 8059133

prginsadd
prginsadd ISRC2[RSRC1]

Semantics:

Description: Purge the address from the instruction memory subsystem.

Restrictions: Must be the only operation in a bundle.
No latency constraints.

Exceptions: ITLB

s 10 1111 010 ISRC2 000000 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
PurgeInsAddressCheckMemory(ea);

PurgeInsAddress(ea);

ST240 Instruction set

8059133 397/507

prginsadd.l1
prginsadd.l1 ISRC2[RSRC1]

Semantics:

Description: Purge the address from the L1 instruction memory subsystem (excluding any L2
cache).

Restrictions: Must be the only operation in a bundle.
No latency constraints.

Exceptions: ITLB

s 10 1111 010 ISRC2 000001 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);
PurgeInsAddressCheckMemory(ea);

PurgeInsAddressL1(ea);

Instruction set ST240

398/507 8059133

prginsset
prginsset ISRC2[RSRC1]

Semantics:

Description: Purge a set of cache lines from the instruction memory subsystem.

Restrictions: Must be the only operation in a bundle.
No latency constraints.

Exceptions: None.

s 10 1111 011 ISRC2 000000 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

PurgeInsSet(ea);

ST240 Instruction set

8059133 399/507

prginsset.l1
prginsset.l1 ISRC2[RSRC1]

Semantics:

Description: Purge a set of cache lines from the L1 instruction memory subsystem only (excluding
any L2 cache).

Restrictions: Must be the only operation in a bundle.
No latency constraints.

Exceptions: None.

s 10 1111 011 ISRC2 000001 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

PurgeInsSetL1(ea);

Instruction set ST240

400/507 8059133

prgset
prgset ISRC2[RSRC1]

Semantics:

Description: Purge a set of cache lines from the data memory subsystem.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: None.

s 10 1111 001 ISRC2 000000 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

PurgeSet(ea);

ST240 Instruction set

8059133 401/507

prgset.l1
prgset.l1 ISRC2[RSRC1]

Semantics:

Description: Purge a set of cache lines from the L1 data memory subsystem only (excluding any
L2 cache).

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: None.

s 10 1111 001 ISRC2 000001 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
ea ← ZeroExtend32(operand1 + operand2);

PurgeSetL1(ea);

Instruction set ST240

402/507 8059133

pswmask
pswmask RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Atomic psw update. The immediate value specifies a bit mask. The masked bits of the
PSW are replaced by the corresponding bit of the register. Returns the unmodified
PSW.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
RNLIDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLIDEST is available for reading.
There is a latency of 2 cycles between an operation writing PSW and this operation
being issued.

Exceptions: ILL_INST

s 10 1111 101 ISRC2 NLIDEST SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
IF ((PSW[USER_MODE]) AND (NOT(PSW[DEBUG_MODE])))

THROW ILL_INST;

result1 ← PswMask(operand1, operand2);
RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 403/507

rem Register
rem RNLDEST = RSRC1, RSRC2

Semantics:

Description: Signed integer remainder. May stall the pipeline, see definition of IRemIeee().
Operands are signed integers.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 00 11001 010 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← IRemIeee(operand1, operand2);
RNLDEST ← Register(result1);

Instruction set ST240

404/507 8059133

remu Register
remu RNLDEST = RSRC1, RSRC2

Semantics:

Description: Unsigned integer remainder. May stall the pipeline, see definition of UIRemIeee().
Operands are unsigned integers.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 00 11011 010 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← UIRemIeee(operand1, operand2);
RNLDEST ← Register(result1);

ST240 Instruction set

8059133 405/507

retention
retention

Semantics:

Description: Enter retention power saving mode.

Restrictions: Must be the only operation in a bundle.
No latency constraints.

Exceptions: None.

1 10 1111 111 000001100 000000 000000

31 30 29 28 27 24 23 21 20 12 11 6 5 0

Retention();

Instruction set ST240

406/507 8059133

return Link Register
return $r63

Semantics:

Description: Return (to Link Register).

Restrictions: Must be the first syllable of a bundle.
There are no latency constraints between a call updating the LR and this operation.
There is a latency of 3 cycles between a load writing to the LR and this operation.
There is a latency of 2 cycles between any other operation updating the LR and this
operation.

Exceptions: None.

s 11 0 011 1 00000000000000000000000

31 30 29 28 27 26 24 23 22 0

PC ← Register(ZeroExtend32(LR));

ST240 Instruction set

8059133 407/507

rfi
rfi

Semantics:

Description: Return from interrupt.

Restrictions: Must be the first in a bundle and uses the ld/st unit for which only one operation is
allowed per bundle.
Operations writing SAVED_PC must be followed by 4 bundles before this operation
can be issued.
Operations writing SAVED_PSW must be followed by 4 bundles before this operation
can be issued.
Operations writing SAVED_SAVED_PC must be followed by 4 bundles before this
operation can be issued.
Operations writing SAVED_SAVED_PSW must be followed by 4 bundles before this
operation can be issued.
Operations writing PSW must be followed by 4 bundles before this operation can be
issued.

Exceptions: ILL_INST

s 11 0 010 0 00000000000000000000000

31 30 29 28 27 26 24 23 22 0

IF ((PSW[USER_MODE]) AND (NOT(PSW[DEBUG_MODE])))
THROW ILL_INST;

PC ← Register(ZeroExtend32(SAVED_PC));

PSW ← SAVED_PSW;
SAVED_PC← SAVED_SAVED_PC;
SAVED_PSW← SAVED_SAVED_PSW;
ATOMIC_LOCK← 0;
Rfi();

Instruction set ST240

408/507 8059133

rotl Immediate
rotl RIDEST = RSRC1, ISRC2

Semantics:

Description: Scalar 32bit rotate left.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 1 0 0 0 111 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend5(Imm(ISRC2));
result1 ← (operand1 << operand2) ∨ (operand1 >> (32 - operand2));

RIDEST ← Register(result1);

ST240 Instruction set

8059133 409/507

rotl Register
rotl RDEST = RSRC1, RSRC2

Semantics:

Description: Scalar 32bit rotate left.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 0 0 111 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend5(RSRC2);
result1 ← (operand1 << operand2) ∨ (operand1 >> (32 - operand2));

RDEST ← Register(result1);

Instruction set ST240

410/507 8059133

sadu.pb Register
sadu.pb RNLDEST = RSRC1, RSRC2

Semantics:

Description: Sum of absolute differences on packed unsigned 8-bit values.

Restrictions: No address or bundle restrictions.
RNLDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 1 0 000 010 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

subresult ← UnsignedExtract8(operand1, j) - UnsignedExtract8(operand2, j);
IF (subresult > 0)

result1 ← result1 + subresult;
ELSE

result1 ← result1 - subresult;
}

RNLDEST ← Register(result1);

ST240 Instruction set

8059133 411/507

sats Register
sats RDEST = RSRC1

Semantics:

Description: Saturate from 32bit scalar to 16bit scalar. The operand is a signed integer or is
fractional 1.31 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 10100 100 DEST 000000 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
result1 ← Saturate16(operand1);

RDEST ← Register(result1);

Instruction set ST240

412/507 8059133

satso Register
satso RDEST = RSRC1

Semantics:

Description: Indicate if a sats operation with the same operands would saturate.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 11100 100 DEST 000000 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
result1 ← Overflow16(operand1);

RDEST ← Register(result1);

ST240 Instruction set

8059133 413/507

sbrk
sbrk BRKNUM

Semantics:

Description: Software breakpoint.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: SBREAK

1 10 1111111 000001001 BRKNUM

31 30 29 28 27 21 20 12 11 0

operand1 ← ZeroExtend12(BRKNUM);
THROW SBREAK;

Instruction set ST240

414/507 8059133

sh1add Immediate
sh1add RIDEST = RSRC1, ISRC2

Semantics:

Description: Shift the first operand left one place and perform a 32bit scalar addition with the
second operand. Operands may be signed or unsigned integers or fractional 1.31
format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 00101 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (operand1 << 1) + operand2;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 415/507

sh1add Register
sh1add RDEST = RSRC1, RSRC2

Semantics:

Description: Shift the first operand left one place and perform a 32bit scalar addition with the
second operand. Operands may be signed or unsigned integers or fractional 1.31
format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 00101 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 << 1) + operand2;

RDEST ← Register(result1);

Instruction set ST240

416/507 8059133

sh1adds Register
sh1adds RDEST = RSRC2, RSRC1

Semantics:

Description: Shift Rsrc1 left one place, saturate to 32 bits and then add to Rsrc2 and saturate
again. Operands may be signed integers or fractional 1.31 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 10010 100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
shiftresult ← Saturate32(operand1 << 1);
result1 ← Saturate32(shiftresult + operand2);

RDEST ← Register(result1);

ST240 Instruction set

8059133 417/507

sh1addso Register
sh1addso RDEST = RSRC2, RSRC1

Semantics:

Description: Indicates whether a sh1adds operation with the given input operands causes a
saturation.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 11010 100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
shiftresult ← operand1 << 1;
addresult ← shiftresult + operand2;
result1 ← Overflow32(shiftresult) OR Overflow32(addresult);

RDEST ← Register(result1);

Instruction set ST240

418/507 8059133

sh1subs Register
sh1subs RDEST = RSRC2, RSRC1

Semantics:

Description: Shift Rsrc1 left one place, saturate to 32 bits and then subtract from Rsrc2 and
saturate again. Operands may be signed integers or fractional 1.31 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 10011 100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
shiftresult ← Saturate32(operand1 << 1);
result1 ← Saturate32(operand2 - shiftresult);

RDEST ← Register(result1);

ST240 Instruction set

8059133 419/507

sh1subso Register
sh1subso RDEST = RSRC2, RSRC1

Semantics:

Description: Indicates whether a sh1subs operation with the given input operands causes a
saturation.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 11011 100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
shiftresult ← operand1 << 1;
subresult ← operand2 - shiftresult;
result1 ← Overflow32(shiftresult) OR Overflow32(subresult);

RDEST ← Register(result1);

Instruction set ST240

420/507 8059133

sh2add Immediate
sh2add RIDEST = RSRC1, ISRC2

Semantics:

Description: Shift the first operand left two places and perform a 32bit scalar addition with the
second operand. Operands may be signed or unsigned integers or fractional 1.31
format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 00110 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (operand1 << 2) + operand2;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 421/507

sh2add Register
sh2add RDEST = RSRC1, RSRC2

Semantics:

Description: Shift the first operand left two places and perform a 32bit scalar addition with the
second operand. Operands may be signed or unsigned integers or fractional 1.31
format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 00110 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 << 2) + operand2;

RDEST ← Register(result1);

Instruction set ST240

422/507 8059133

sh3add Immediate
sh3add RIDEST = RSRC1, ISRC2

Semantics:

Description: Shift the first operand left three places and perform a 32bit scalar addition with the
second operand. Operands may be signed or unsigned integers or fractional 1.31
format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 00111 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← (operand1 << 3) + operand2;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 423/507

sh3add Register
sh3add RDEST = RSRC1, RSRC2

Semantics:

Description: Shift the first operand left three places and perform a 32bit scalar addition with the
second operand. Operands may be signed or unsigned integers or fractional 1.31
format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 00111 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← (operand1 << 3) + operand2;

RDEST ← Register(result1);

Instruction set ST240

424/507 8059133

shl Immediate
shl RIDEST = RSRC1, ISRC2

Semantics:

Description: Scalar 32bit arithmetic or logical left shift. Operands may be signed or unsigned
integers or fractional 1.31 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 00010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
IF (operand2 > 31)

result1 ← 0;
ELSE

result1 ← operand1 << operand2;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 425/507

shl Register
shl RDEST = RSRC1, RSRC2

Semantics:

Description: Scalar 32bit arithmetic or logical left shift. Operands may be signed or unsigned
integers or fractional 1.31 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 00010 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
IF (operand2 > 31)

result1 ← 0;
ELSE

result1 ← operand1 << operand2;

RDEST ← Register(result1);

Instruction set ST240

426/507 8059133

shl.ph Immediate
shl.ph RIDEST = RSRC1, ISRC2

Semantics:

Description: Packed 16-bit left shift. Operands may be signed or unsigned 16-bit integers or
fractional 1.15 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 1 0 1 1 000 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
result1 ← 0;
IF (operand2 < 16)

REPEAT j FROM 0 FOR 2 {
unpacked_opd1← SignedExtract16(operand1, j);
result1 ← result1 ∨ MaskAndShift16(unpacked_opd1<< operand2, j);

}

RIDEST ← Register(result1);

ST240 Instruction set

8059133 427/507

shl.ph Register
shl.ph RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit left shift. Operands may be signed or unsigned 16-bit integers or
fractional 1.15 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 1 000 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
result1 ← 0;
IF (operand2 < 16)

REPEAT j FROM 0 FOR 2 {
unpacked_opd1← SignedExtract16(operand1, j);
result1 ← result1 ∨ MaskAndShift16(unpacked_opd1<< operand2, j);

}

RDEST ← Register(result1);

Instruction set ST240

428/507 8059133

shls Immediate
shls RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Scalar 32bit left shift with saturation. Operands may be signed integers or fractional
1.31 format.

Restrictions: No address or bundle restrictions.
RNLIDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLIDEST is available for reading.

Exceptions: None.

s 01 1 0 0 0 000 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
IF (operand2 > 32)

shiftdistance ← 32;
ELSE

shiftdistance ← operand2;
result1 ← Saturate32(operand1 << shiftdistance);

RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 429/507

shls Register
shls RNLDEST = RSRC1, RSRC2

Semantics:

Description: Scalar 32bit left shift with saturation. Operands may be signed integers or fractional
1.31 format.

Restrictions: No address or bundle restrictions.
RNLDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 0 0 000 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
IF (operand2 > 32)

shiftdistance ← 32;
ELSE

shiftdistance ← operand2;
result1 ← Saturate32(operand1 << shiftdistance);

RNLDEST ← Register(result1);

Instruction set ST240

430/507 8059133

shls.ph Immediate
shls.ph RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Packed 16-bit signed shift left with saturation. Operands may be signed or unsigned
16-bit integers or fractional 1.15 format.

Restrictions: No address or bundle restrictions.
RNLIDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLIDEST is available for reading.

Exceptions: None.

s 01 1 0 1 1 001 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
result1 ← 0;
IF (operand2 > 16)

shiftdistance ← 16;
ELSE

shiftdistance ← operand2;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← SignedExtract16(operand1, j);
satresult ← Saturate16(unpacked_opd1<< shiftdistance);
result1 ← result1 ∨ MaskAndShift16(satresult, j);

}

RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 431/507

shls.ph Register
shls.ph RNLDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit signed shift left with saturation. Operands may be signed or unsigned
16-bit integers or fractional 1.15 format.

Restrictions: No address or bundle restrictions.
RNLDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 1 1 001 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
result1 ← 0;
IF (operand2 > 16)

shiftdistance ← 16;
ELSE

shiftdistance ← operand2;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← SignedExtract16(operand1, j);
satresult ← Saturate16(unpacked_opd1<< shiftdistance);
result1 ← result1 ∨ MaskAndShift16(satresult, j);

}

RNLDEST ← Register(result1);

Instruction set ST240

432/507 8059133

shlso Immediate
shlso RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Indicates whether a shls operation with the same input operands would have
saturated.

Restrictions: No address or bundle restrictions.
RNLIDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLIDEST is available for reading.

Exceptions: None.

s 01 1 0 0 0 001 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
IF (operand2 > 32)

shiftdistance ← 32;
ELSE

shiftdistance ← operand2;
result1 ← Overflow32(operand1 << shiftdistance);

RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 433/507

shlso Register
shlso RNLDEST = RSRC1, RSRC2

Semantics:

Description: Indicates whether a shls operation with the same input operands would have
saturated.

Restrictions: No address or bundle restrictions.
RNLDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 0 0 001 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
IF (operand2 > 32)

shiftdistance ← 32;
ELSE

shiftdistance ← operand2;
result1 ← Overflow32(operand1 << shiftdistance);

RNLDEST ← Register(result1);

Instruction set ST240

434/507 8059133

shr Immediate
shr RIDEST = RSRC1, ISRC2

Semantics:

Description: Scalar 32bit arithmetic right shift. Operands may be signed integers or fractional 1.31
format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 00011 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
IF (operand2 > 31)

result1 ← SignExtend1(Bit(operand1,31));
ELSE
{

IF (operand2 > 0)
result1 ← operand1 >> operand2;

ELSE
result1 ← operand1;

}

RIDEST ← Register(result1);

ST240 Instruction set

8059133 435/507

shr Register
shr RDEST = RSRC1, RSRC2

Semantics:

Description: Scalar 32bit arithmetic right shift. Operands may be signed integers or fractional 1.31
format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 00011 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
IF (operand2 > 31)

result1 ← SignExtend1(Bit(operand1,31));
ELSE
{

IF (operand2 > 0)
result1 ← operand1 >> operand2;

ELSE
result1 ← operand1;

}

RDEST ← Register(result1);

Instruction set ST240

436/507 8059133

shr.ph Immediate
shr.ph RIDEST = RSRC1, ISRC2

Semantics:

Description: Packed 16bit arithmetic right shift. Operands may be signed 16-bit integer or
fractional 1.15 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 1 0 1 1 010 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
result1 ← 0;
IF (operand2 > 15)

shiftdistance ← 15;
ELSE

shiftdistance ← operand2;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← SignedExtract16(operand1, j);
result1 ← result1 ∨ MaskAndShift16(unpacked_opd1>> shiftdistance, j);

}

RIDEST ← Register(result1);

ST240 Instruction set

8059133 437/507

shr.ph Register
shr.ph RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16bit arithmetic right shift. Operands may be signed 16-bit integer or
fractional 1.15 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 1 010 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
result1 ← 0;
IF (operand2 > 15)

shiftdistance ← 15;
ELSE

shiftdistance ← operand2;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← SignedExtract16(operand1, j);
result1 ← result1 ∨ MaskAndShift16(unpacked_opd1>> shiftdistance, j);

}

RDEST ← Register(result1);

Instruction set ST240

438/507 8059133

shrrne.ph Immediate
shrrne.ph RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Packed 16-bit signed shift right with round nearest even rounding. Operands may be
signed 16-bit integer or fractional 1.15 format.

Restrictions: No address or bundle restrictions.
RNLIDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLIDEST is available for reading.

Exceptions: None.

s 01 1 0 1 1 100 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
result1 ← 0;
IF (operand2 > 16)

shiftdistance ← 16;
ELSE

shiftdistance ← operand2;
IF (shiftdistance > 0)

REPEAT j FROM 0 FOR 2 {
unpacked_opd1← SignedExtract16(operand1, j);
rounding ← (1 << (shiftdistance - 1)) + (Bit(unpacked_opd1, shiftdistance) - 1) ;
result1 ← result1 ∨ MaskAndShift16((unpacked_opd1+ rounding) >> shiftdistance, j);

}
ELSE

result1 ← operand1;

RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 439/507

shrrne.ph Register
shrrne.ph RNLDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit signed shift right with round nearest even rounding. Operands may be
signed 16-bit integer or fractional 1.15 format.

Restrictions: No address or bundle restrictions.
RNLDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 1 1 100 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
result1 ← 0;
IF (operand2 > 16)

shiftdistance ← 16;
ELSE

shiftdistance ← operand2;
IF (shiftdistance > 0)

REPEAT j FROM 0 FOR 2 {
unpacked_opd1← SignedExtract16(operand1, j);
rounding ← (1 << (shiftdistance - 1)) + (Bit(unpacked_opd1, shiftdistance) - 1) ;
result1 ← result1 ∨ MaskAndShift16((unpacked_opd1+ rounding) >> shiftdistance, j);

}
ELSE

result1 ← operand1;

RNLDEST ← Register(result1);

Instruction set ST240

440/507 8059133

shrrnp Immediate
shrrnp RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Scalar 32bit arithmetic right shift with round nearest positive rounding. Operands may
be signed or unsigned integers or fractional 1.31 format.

Restrictions: No address or bundle restrictions.
RNLIDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLIDEST is available for reading.

Exceptions: None.

s 01 1 0 0 0 010 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
result1 ← 0;
IF (operand2 > 32)

shiftdistance ← 32;
ELSE

shiftdistance ← operand2;
IF (shiftdistance > 0)
{

rounding ← 1 << (shiftdistance - 1);
result1 ← (operand1 + rounding) >> shiftdistance;

}
ELSE

result1 ← operand1;

RNLIDEST ← Register(result1);

ST240 Instruction set

8059133 441/507

shrrnp.ph Immediate
shrrnp.ph RNLIDEST = RSRC1, ISRC2

Semantics:

Description: Packed 16-bit signed shift right with round nearest positive rounding. Operands may
be signed 16-bit integer or fractional 1.15 format.

Restrictions: No address or bundle restrictions.
RNLIDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLIDEST is available for reading.

Exceptions: None.

s 01 1 0 1 1 011 ISRC2 NLIDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
result1 ← 0;
IF (operand2 > 16)

shiftdistance ← 16;
ELSE

shiftdistance ← operand2;
IF (shiftdistance > 0)

REPEAT j FROM 0 FOR 2 {
unpacked_opd1← SignedExtract16(operand1, j);
rounding ← 1 << (shiftdistance - 1);
result1 ← result1 ∨ MaskAndShift16((unpacked_opd1+ rounding) >> shiftdistance, j);

}
ELSE

result1 ← operand1;

RNLIDEST ← Register(result1);

Instruction set ST240

442/507 8059133

shrrnp.ph Register
shrrnp.ph RNLDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit signed shift right with round nearest positive rounding. Operands may
be signed 16-bit integer or fractional 1.15 format.

Restrictions: No address or bundle restrictions.
RNLDEST can be any general register except the link register.
There is a latency of 1 cycle before RNLDEST is available for reading.

Exceptions: None.

s 01 0 0 1 1 011 000 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
result1 ← 0;
IF (operand2 > 16)

shiftdistance ← 16;
ELSE

shiftdistance ← operand2;
IF (shiftdistance > 0)

REPEAT j FROM 0 FOR 2 {
unpacked_opd1← SignedExtract16(operand1, j);
rounding ← 1 << (shiftdistance - 1);
result1 ← result1 ∨ MaskAndShift16((unpacked_opd1+ rounding) >> shiftdistance, j);

}
ELSE

result1 ← operand1;

RNLDEST ← Register(result1);

ST240 Instruction set

8059133 443/507

shru Immediate
shru RIDEST = RSRC1, ISRC2

Semantics:

Description: Scalar 32bit logical right shift. Operands are unsigned integers.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 00100 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
IF (operand2 > 31)
{

result1 ← 0;
}
ELSE
{

IF (operand2 > 0)
result1 ← operand1 >> operand2;

ELSE
result1 ← operand1;

}

RIDEST ← Register(result1);

Instruction set ST240

444/507 8059133

shru Register
shru RDEST = RSRC1, RSRC2

Semantics:

Description: Scalar 32bit logical right shift. Operands are unsigned integers.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 00100 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
IF (operand2 > 31)
{

result1 ← 0;
}
ELSE
{

IF (operand2 > 0)
result1 ← operand1 >> operand2;

ELSE
result1 ← operand1;

}

RDEST ← Register(result1);

ST240 Instruction set

8059133 445/507

shuff.pbh Register
shuff.pbh RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 8-bit shuffle returning high result.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 0 000 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← UnsignedExtract8(operand1, j + 2);
unpacked_opd2← UnsignedExtract8(operand2, j + 2);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd1, 2 × j);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd2, (2 × j) + 1);

}

RDEST ← Register(result1);

Instruction set ST240

446/507 8059133

shuff.pbl Register
shuff.pbl RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 8-bit shuffle returning low result.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 0 001 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← UnsignedExtract8(operand1, j);
unpacked_opd2← UnsignedExtract8(operand2, j);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd1, 2 × j);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd2, (2 × j) + 1);

}

RDEST ← Register(result1);

ST240 Instruction set

8059133 447/507

shuff.phh Register
shuff.phh RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit shuffle returning high result.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 1 000 010 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
unpacked_opd1← UnsignedExtract16(operand1, 1);
unpacked_opd2← UnsignedExtract16(operand2, 1);
result1 ← unpacked_opd1∨ MaskAndShift16(unpacked_opd2, 1);

RDEST ← Register(result1);

Instruction set ST240

448/507 8059133

shuff.phl Register
shuff.phl RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 16-bit shuffle returning low result.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 1 001 010 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
unpacked_opd1← UnsignedExtract16(operand1, 0);
unpacked_opd2← UnsignedExtract16(operand2, 0);
result1 ← unpacked_opd1∨ MaskAndShift16(unpacked_opd2, 1);

RDEST ← Register(result1);

ST240 Instruction set

8059133 449/507

shuffeve.pb Register
shuffeve.pb RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 8-bit shuffle of even fields.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 0 011 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← UnsignedExtract8(operand1, 2 × j);
unpacked_opd2← UnsignedExtract8(operand2, 2 × j);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd1, 2 × j);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd2, (2 × j) + 1);

}

RDEST ← Register(result1);

Instruction set ST240

450/507 8059133

shuffodd.pb Register
shuffodd.pb RDEST = RSRC1, RSRC2

Semantics:

Description: Packed 8-bit shuffle of odd fields.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 0 010 001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

unpacked_opd1← UnsignedExtract8(operand1, (2 × j) + 1);
unpacked_opd2← UnsignedExtract8(operand2, (2 × j) + 1);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd1, 2 × j);
result1 ← result1 ∨ MaskAndShift8(unpacked_opd2, (2 × j) + 1);

}

RDEST ← Register(result1);

ST240 Instruction set

8059133 451/507

slct Immediate
slct RIDEST = BSCOND, RSRC1, ISRC2

Semantics:

Description: Conditional select using logical value of branch register.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 1 1 00
SCON

D
ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend4(BSCOND);
operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(Imm(ISRC2));
IF (operand1 ≠ 0)

result1 ← operand2;
ELSE

result1 ← operand3;

RIDEST ← Register(result1);

Instruction set ST240

452/507 8059133

slct Register
slct RDEST = BSCOND, RSRC1, RSRC2

Semantics:

Description: Conditional select using logical value of branch register.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 1 10
SCON

D
001 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend4(BSCOND);
operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);
IF (operand1 = 0)

result1 ← operand3;
ELSE

result1 ← operand2;

RDEST ← Register(result1);

ST240 Instruction set

8059133 453/507

slct.pb Immediate
slct.pb RIDEST = BSCOND, RSRC1, ISRC2

Semantics:

Description: Byte select between input operands using 4-bit condition code in branch register.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 1 1 10
SCON

D
ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend4(BSCOND);
operand2 ← ZeroExtend32(RSRC1);
operand3 ← ZeroExtend32(Imm(ISRC2));
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

IF (UnsignedExtract1(operand1, j) = 0)
{

byte ← UnsignedExtract8(operand3, j);
result1 ← result1 ∨ MaskAndShift8(byte, j);

}
ELSE
{

byte ← UnsignedExtract8(operand2, j);
result1 ← result1 ∨ MaskAndShift8(byte, j);

}
}

RIDEST ← Register(result1);

Instruction set ST240

454/507 8059133

slct.pb Register
slct.pb RDEST = BSCOND, RSRC1, RSRC2

Semantics:

Description: Byte select between input operands using 4-bit condition code in branch register.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 1 10
SCON

D
000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend4(BSCOND);
operand2 ← ZeroExtend32(RSRC1);
operand3 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

IF (UnsignedExtract1(operand1, j) = 0)
{

byte ← UnsignedExtract8(operand3, j);
result1 ← result1 ∨ MaskAndShift8(byte, j);

}
ELSE
{

byte ← UnsignedExtract8(operand2, j);
result1 ← result1 ∨ MaskAndShift8(byte, j);

}
}

RDEST ← Register(result1);

ST240 Instruction set

8059133 455/507

slctf Immediate
slctf RIDEST = BSCOND, RSRC1, ISRC2

Semantics:

Description: Conditional select using negated logical value of branch register.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 1 1 01
SCON

D
ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend4(BSCOND);
operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(Imm(ISRC2));
IF (operand1 = 0)

result1 ← operand2;
ELSE

result1 ← operand3;

RIDEST ← Register(result1);

Instruction set ST240

456/507 8059133

slctf.pb Immediate
slctf.pb RIDEST = BSCOND, RSRC1, ISRC2

Semantics:

Description: Byte select between input operands using negated 4-bit condition code in branch
register.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 1 1 11
SCON

D
ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend4(BSCOND);
operand2 ← ZeroExtend32(RSRC1);
operand3 ← ZeroExtend32(Imm(ISRC2));
result1 ← 0;
REPEAT j FROM 0 FOR 4 {

IF (UnsignedExtract1(operand1, j) = 0)
{

byte ← UnsignedExtract8(operand2, j);
result1 ← result1 ∨ MaskAndShift8(byte, j);

}
ELSE
{

byte ← UnsignedExtract8(operand3, j);
result1 ← result1 ∨ MaskAndShift8(byte, j);

}
}

RIDEST ← Register(result1);

ST240 Instruction set

8059133 457/507

stb
stb ISRC2[RSRC1] = RSRC2

Semantics:

Description: Store byte.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB

s 10 1100 000 ISRC2 SRC2 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);
ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakStoreHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
WriteCheckMemory8(ea);

WriteMemory8(ea, operand3);

Instruction set ST240

458/507 8059133

stbc
stbc ISRC2[RSRC1] = BPCOND, RSRC2

Semantics:

Description: Conditional store byte.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
BPCOND can be any branch register except zero.
No latency constraints.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB

s 10 1100
PCON

D
ISRC2 SRC2 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
operand3 ← ZeroExtend4(BPCOND);
operand4 ← SignExtend32(RSRC2);
IF (operand3 ≠ 0)
{

ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakStoreHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
WriteCheckMemory8(ea);

}

IF (operand3 ≠ 0)
WriteMemory8(ea, operand4);

ST240 Instruction set

8059133 459/507

sth
sth ISRC2[RSRC1] = RSRC2

Semantics:

Description: Store half-word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 1010 000 ISRC2 SRC2 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);
ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakStoreHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
WriteCheckMemory16(ea);

WriteMemory16(ea, operand3);

Instruction set ST240

460/507 8059133

sthc
sthc ISRC2[RSRC1] = BPCOND, RSRC2

Semantics:

Description: Conditional store half-word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
BPCOND can be any branch register except zero.
No latency constraints.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 1010
PCON

D
ISRC2 SRC2 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
operand3 ← ZeroExtend4(BPCOND);
operand4 ← SignExtend32(RSRC2);
IF (operand3 ≠ 0)
{

ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakStoreHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
WriteCheckMemory16(ea);

}

IF (operand3 ≠ 0)
WriteMemory16(ea, operand4);

ST240 Instruction set

8059133 461/507

stl
stl ISRC2[RSRC1] = PSRC2P

Semantics:

Description: Store double word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
PSRC2P can be any register pair.
No latency constraints.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 1000 000 ISRC2 SRC2P SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
operand3 ← 0;
IF (SRC2P ≠ 0)
{

operand3 ← ZeroExtend64(RSRC2P);
operand3 ← operand3 ∨ (ZeroExtend64(R(SRC2P + 1)) <<32);

}
ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakStoreHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
WriteCheckMemory64(ea);

WriteMemory64(ea, operand3);

Instruction set ST240

462/507 8059133

stlc
stlc ISRC2[RSRC1] = BPCOND, PSRC2P

Semantics:

Description: Conditional store double word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
BPCOND can be any branch register except zero.
PSRC2P can be any register pair.
No latency constraints.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 1000
PCON

D
ISRC2 SRC2P SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
operand3 ← ZeroExtend4(BPCOND);
operand4 ← 0;
IF (SRC2P ≠ 0)
{

operand4 ← ZeroExtend64(RSRC2P);
operand4 ← operand4 ∨ (ZeroExtend64(R(SRC2P + 1)) <<32);

}
IF (operand3 ≠ 0)
{

ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakStoreHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

THROW CREG_ACCESS_VIOLATION;
WriteCheckMemory64(ea);

}

IF (operand3 ≠ 0)
WriteMemory64(ea, operand4);

ST240 Instruction set

8059133 463/507

stw
stw ISRC2[RSRC1] = RSRC2

Semantics:

Description: Store word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: DBREAK, DTLB, CREG_ACCESS_VIOLATION, CREG_NO_MAPPING,
MISALIGNED_TRAP

s 10 1001 000 ISRC2 SRC2 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
operand3 ← SignExtend32(RSRC2);
ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakStoreHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

WriteCheckCReg(ea);
ELSE

WriteCheckMemory32(ea);

IF (IsCRegSpace(ea))
WriteCReg(ea, operand3);

ELSE
WriteMemory32(ea, operand3);

Instruction set ST240

464/507 8059133

stwc
stwc ISRC2[RSRC1] = BPCOND, RSRC2

Semantics:

Description: Conditional store word.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
BPCOND can be any branch register except zero.
No latency constraints.

Exceptions: DBREAK, DTLB, CREG_ACCESS_VIOLATION, CREG_NO_MAPPING,
MISALIGNED_TRAP

s 10 1001
PCON

D
ISRC2 SRC2 SRC1

31 30 29 28 27 24 23 21 20 12 11 6 5 0

operand1 ← SignExtend32(Imm(ISRC2));
operand2 ← SignExtend32(RSRC1);
operand3 ← ZeroExtend4(BPCOND);
operand4 ← SignExtend32(RSRC2);
IF (operand3 ≠ 0)
{

ea ← ZeroExtend32(operand1 + operand2);
IF (IsDBreakStoreHit(ea))

THROW DBREAK;
IF (IsCRegSpace(ea))

WriteCheckCReg(ea);
ELSE

WriteCheckMemory32(ea);
}

IF (operand3 ≠ 0)
{

IF (IsCRegSpace(ea))
WriteCReg(ea, operand4);

ELSE
WriteMemory32(ea, operand4);

}

ST240 Instruction set

8059133 465/507

stwl
stwl BBDEST2, [RSRC1] = RSRC2

Semantics:

Description: Store word conditional linked. Forms part of atomic read/modify/write sequence with
ldwl.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
There is a latency of 2 cycles before BBDEST2 is available for reading by br/brf.
No other latency restrictions before BBDEST2 is available for reading by any other
operation.

Exceptions: DBREAK, CREG_ACCESS_VIOLATION, DTLB, MISALIGNED_TRAP

s 10 1111 111 100000
BDEST

2
SRC2 SRC1

31 30 29 28 27 24 23 21 20 15 14 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
storeCondition ← ATOMIC_LOCK[LOCKED];
IF (storeCondition)

result1 ← 1;
ELSE

result1 ← 0;
ATOMIC_LOCK← 0;
IF (IsDBreakStoreHit(operand1))

THROW DBREAK;
IF (IsCRegSpace(operand1))

THROW CREG_ACCESS_VIOLATION;
WriteCheckMemory32(operand1);

IF (storeCondition)
WriteMemory32(operand1, operand2);

BBDEST2 ← BranchRegister(result1);

Instruction set ST240

466/507 8059133

sub Immediate
sub RIDEST = ISRC2, RSRC1

Semantics:

Description: Scalar 32bit subtraction. Operands may be signed or unsigned integers or fractional
1.31 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 00001 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand2 - operand1;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 467/507

sub Register
sub RDEST = RSRC2, RSRC1

Semantics:

Description: Scalar 32bit subtraction. Operands may be signed or unsigned integers or fractional
1.31 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 00001 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand2 - operand1;

RDEST ← Register(result1);

Instruction set ST240

468/507 8059133

sub.ph Register
sub.ph RDEST = RSRC2, RSRC1

Semantics:

Description: Packed 16-bit subtraction. Operands may be signed or unsigned 16-bit integers or
fractional 1.15 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 1 1 010 010 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

subresult ← SignedExtract16(operand2, j) - SignedExtract16(operand1, j);
result1 ← result1 ∨ MaskAndShift16(subresult, j);

}

RDEST ← Register(result1);

ST240 Instruction set

8059133 469/507

subf.n Floating point - Register
subf.n RNLDEST = RSRC1, RSRC2

Semantics:

Description: IEEE754 format single precision floating point subtraction.

Restrictions: Must be encoded at an even word address.
RNLDEST can be any general register except the link register.
There is a latency of 2 cycles before RNLDEST is available for reading.

Exceptions: None.

s 00 00 10001 010 NLDEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);

result1 ← FSubSNonIeee(operand1, operand2);
RNLDEST ← Register(result1);

Instruction set ST240

470/507 8059133

subs Register
subs RDEST = RSRC2, RSRC1

Semantics:

Description: Scalar 32bit subtraction with saturation. Operands may be signed integers or
fractional 1.31 values.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 10001 100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← Saturate32(operand2 - operand1);

RDEST ← Register(result1);

ST240 Instruction set

8059133 471/507

subs.ph Register
subs.ph RDEST = RSRC2, RSRC1

Semantics:

Description: Packed 16-bit signed subtraction with saturation. Operands may be signed or
unsigned 16-bit integers or fractional 1.15 format.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 10110 100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend32(RSRC2);
result1 ← 0;
REPEAT j FROM 0 FOR 2 {

subresult ← SignedExtract16(operand2, j) - SignedExtract16(operand1, j);
subresult ← Saturate16(subresult);
result1 ← result1 ∨ MaskAndShift16(subresult, j);

}

RDEST ← Register(result1);

Instruction set ST240

472/507 8059133

subso Register
subso RDEST = RSRC2, RSRC1

Semantics:

Description: Indicates whether a subs operation with the given input operands causes a
saturation.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 11001 100 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← Overflow32(operand2 - operand1);

RDEST ← Register(result1);

ST240 Instruction set

8059133 473/507

sxt Immediate
sxt RIDEST = RSRC1, ISRC2

Semantics:

Description: Arbitrary sign extend.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 1 0 0 0 101 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
IF (operand2 = 0)

result1 ← 0;
ELSE
{

IF (operand2 > 31)
{

result1 ← operand1;
}
ELSE
{

sign ← (1 << (operand2 - 1));
mask ← (1 << (operand2 - 1)) - 1;
IF (operand1 ∧ sign)

result1 ← operand1 ∨ (~mask);
ELSE

result1 ← operand1 ∧ mask;
}

}

RIDEST ← Register(result1);

Instruction set ST240

474/507 8059133

sxt Register
sxt RDEST = RSRC1, RSRC2

Semantics:

Description: Arbitrary sign extend.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 0 0 101 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
IF (operand2 = 0)

result1 ← 0;
ELSE
{

IF (operand2 > 31)
{

result1 ← operand1;
}
ELSE
{

sign ← (1 << (operand2 - 1));
mask ← (1 << (operand2 - 1)) - 1;
IF (operand1 ∧ sign)

result1 ← operand1 ∨ (~mask);
ELSE

result1 ← operand1 ∧ mask;
}

}

RDEST ← Register(result1);

ST240 Instruction set

8059133 475/507

sync
sync

Semantics:

Description: Ensure that all outstanding memory transactions have completed.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: None.

s 10 1111 111 000000010 000000 000000

31 30 29 28 27 24 23 21 20 12 11 6 5 0

Sync();

Instruction set ST240

476/507 8059133

syncins
syncins

Semantics:

Description: Ensure that all previous operations have completed and no new operations have
started.

Restrictions: Must be the first in a bundle and uses the ld/st unit for which only one operation is
allowed per bundle.
No latency constraints.

Exceptions: None.

s 10 1111 111 000000000 000000 000000

31 30 29 28 27 24 23 21 20 12 11 6 5 0

SyncIns();

ST240 Instruction set

8059133 477/507

syscall
syscall BRKNUM

Semantics:

Description: System call.

Restrictions: Must be the only operation in a bundle.
No latency constraints.

Exceptions: SYSCALL

s 10 1111111 000001010 BRKNUM

31 30 29 28 27 21 20 12 11 0

operand1 ← ZeroExtend12(BRKNUM);
THROW SYSCALL;

Instruction set ST240

478/507 8059133

waitl
waitl

Semantics:

Description: Wait for link. Used to make an atomic read/modify/write sequence for a multi-
processor or multi-threaded implementation more efficient in conjunction with
ldwl/stwl. Waitl is executed as a nop by a uniprocessor.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: None.

s 10 1111 111 000000100 000000 000000

31 30 29 28 27 24 23 21 20 12 11 6 5 0

WaitForLink();

ST240 Instruction set

8059133 479/507

wmb
wmb

Semantics:

Description: Broadcast all pending memory writes in a multi-processor system and wait for
responses. This is executed as a nop in a uniprocessor or a multi-threaded
implementation.

Restrictions: Uses the ld/st unit for which only one operation is allowed per bundle.
No latency constraints.

Exceptions: None.

s 10 1111 111 000000011 000000 000000

31 30 29 28 27 24 23 21 20 12 11 6 5 0

Wmb();

Instruction set ST240

480/507 8059133

xor Immediate
xor RIDEST = RSRC1, ISRC2

Semantics:

Description: Bitwise XOR.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 1 0 01101 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 21 20 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(Imm(ISRC2));
result1 ← operand1 ⊕ operand2;

RIDEST ← Register(result1);

ST240 Instruction set

8059133 481/507

xor Register
xor RDEST = RSRC1, RSRC2

Semantics:

Description: Bitwise XOR.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 00 0 0 01101 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 21 20 18 17 12 11 6 5 0

operand1 ← SignExtend32(RSRC1);
operand2 ← SignExtend32(RSRC2);
result1 ← operand1 ⊕ operand2;

RDEST ← Register(result1);

Instruction set ST240

482/507 8059133

zxt Immediate
zxt RIDEST = RSRC1, ISRC2

Semantics:

Description: Arbitrary zero extend.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 1 0 0 0 110 ISRC2 IDEST SRC1

31 30 29 28 27 26 25 24 23 21 20 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(Imm(ISRC2));
IF (operand2 > 31)
{

result1 ← operand1;
}
ELSE
{

mask ← (1 << operand2) - 1;
result1 ← operand1 ∧ mask;

}

RIDEST ← Register(result1);

ST240 Instruction set

8059133 483/507

zxt Register
zxt RDEST = RSRC1, RSRC2

Semantics:

Description: Arbitrary zero extend.

Restrictions: No address or bundle restrictions.
No latency constraints.

Exceptions: None.

s 01 0 0 0 0 110 000 DEST SRC2 SRC1

31 30 29 28 27 26 25 24 23 21 20 18 17 12 11 6 5 0

operand1 ← ZeroExtend32(RSRC1);
operand2 ← ZeroExtend8(RSRC2);
IF (operand2 > 31)
{

result1 ← operand1;
}
ELSE
{

mask ← (1 << operand2) - 1;
result1 ← operand1 ∧ mask;

}

RDEST ← Register(result1);

Instruction encoding ST240

484/507 8059133

Appendix A Instruction encoding

This appendix provides a description of the ST240 instruction encoding.

A.1 Reserved bits
Any bits that are not defined are reserved. These bits must be set to 0.

A.2 Fields
Each instruction encoding is composed of a number of fields representing the operands.
These are detailed in Table 162.

Table 162. Operand fields
Operand field Description

BCOND Branch register containing the branch condition.

BDEST Destination branch register for register format operations.

BDEST2 Destination branch register.
BSRC1 Branch register as first source operand

BSRC2 Branch register as second source operand

BTARG Branch offset value from PC.
DEST Destination general purpose register for register format operations.

IBDEST Destination branch register for immediate format operations.

IDEST Destination general purpose register for immediate format operations.
IDESTP Destination general purpose register pair for immediate format operations.

ISRC2 9-bit short immediate value.

IMM 23-bit value used to extend a short immediate.
NLDEST Destination general purpose register for multiply operations ($r63 cannot be used).

NLIDEST
Destination general purpose register for immediate format multiplies ($r63 cannot be
used).

SCOND Source branch register used for select condition or carry.

PCOND Source branch register used for conditional ld/st operations ($b0 cannot be used).
SRC1 General purpose source register.

SRC2 General purpose source register.

SRC2P General purpose source register pair.
BRKNUM 12-bit immediate operand for sbrk

ST240 Instruction encoding

8059133 485/507

Table 163. Formats

S
to

p
bi

t

F
or

m
at

O
pc

od
e

O
pc

od
e2

/

Im
m

ed
ia

te
/

D
es

t

D
es

t/S
rc

2

S
rc

1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SIMDCMPH_R s 00 0 1 0 1 OPC 001 DEST SRC2 SRC1
SIMDCMPB_R s 00 0 1 0 0 OPC 001 DEST SRC2 SRC1
SIMDCMPH_B s 00 0 1 1 1 OPC 001000 BDEST2 SRC2 SRC1
SIMDCMPB_B s 00 0 1 1 0 OPC 001000 BDEST2 SRC2 SRC1
SIMDH s 01 0 0 1 1 OPC 001 DEST SRC2 SRC1

SIMDH2 s 01 0 0 1 1 OPC 010 DEST SRC2 SRC1

SIMDB s 01 0 0 1 0 OPC 001 DEST SRC2 SRC1
SIMDB2 s 01 0 0 1 0 OPC 010 DEST SRC2 SRC1

SIMDHRI_R s 01 0 0 1 1 OPC 000 DEST SRC2 SRC1

SIMDHRI_I s 01 1 0 1 1 OPC ISRC2 IDEST SRC1
SIMDBRI_R s 01 0 0 1 0 OPC 000 DEST SRC2 SRC1

SIMDBRI_I s 01 1 0 1 0 OPC ISRC2 IDEST SRC1

ARITH_R s 01 0 0 0 0 OPC 000 DEST SRC2 SRC1

ARITH_I s 01 1 0 0 0 OPC ISRC2 IDEST SRC1
ARITH_I2 s 01 1 0 0 1 OPC ISRC2 IDEST SRC1

Br3R s 00 0 1 1 OPC 000001 BDEST2 BSRC2 BSRC1

Br2R s 00 0 1 1 OPC 000010 BDEST2 BSRC1
Int3R s 00 0 0 OPC 000 DEST SRC2 SRC1

Int3I s 00 1 0 OPC ISRC2 IDEST SRC1

Monadic s 00 1 0 01110 OPC IDEST SRC1
Cmp3R_Reg s 00 0 1 0 OPC 000 DEST SRC2 SRC1

Cmp3R_Br s 00 0 1 1 OPC 000000 BDEST2 SRC2 SRC1

Cmp3I_Reg s 00 1 1 0 OPC ISRC2 IDEST SRC1
Cmp3I_Br s 00 1 1 1 OPC ISRC2 IBDEST SRC1

Imm s 01 0 1 01
O
P
C

IMM

SelectR s 01 0 1 OPC SCOND OPC DEST SRC2 SRC1

SelectI s 01 1 1 OPC SCOND ISRC2 IDEST SRC1

cgen s 01 0 1 OPC SCOND
BDES

T
DEST SRC2 SRC1

Break s 10 1111111 OPC BRKNUM
Load s 10 OPC 000 ISRC2 NLIDEST SRC1

LoadC s 10 OPC PCOND ISRC2 NLIDEST SRC1

LoadL s 10 1111 111 OPC IDEST SRC1
MemSub s 10 OPC 000 ISRC2 000000 SRC1

Psw s 10 OPC
LS_SU
BOPCO

DE
ISRC2 NLIDEST SRC1

Store s 10 OPC 000 ISRC2 SRC2 SRC1

StoreC s 10 OPC PCOND ISRC2 SRC2 SRC1

StoreL s 10 OPC 111 OPC BDEST2 SRC2 SRC1
System s 10 1111 111 OPC SRC2 SRC1

Instruction encoding ST240

486/507 8059133

Important points to note.

● The stop bit indicates the end of bundle and is set in the last syllable of the bundle.

● The format bits are used to decode the class of operation. There are four formats:

● Additional decoding is performed using the most significant instruction bits.

● Int3 operations have two base formats, register (Int3R) and immediate (Int3I). Bit 27
specifies the Int3 format, 0 = register format, 1 = immediate format. In register format,
the operation consists of RDEST = RSRC1 Op RSRC2. Immediate format consists of RDEST
= RSRC1 Op IMMEDIATE.

● Cmp3 format is similar to Int3 except it can have as a destination either a general
purpose register or a branch register (BBDEST). In register format, the target register
specifier occupies bits 12 to 17, while the target branch register bits 18 to 20. In
immediate format, bits 6 to 11 specify either the target general purpose register or
target branch register (bits 6 to 8).

● Load operations follow RDEST = Mem[RSRC1 + IMMEDIATE] semantics, while stores
follow Mem[RSRC1 + IMMEDIATE] = RSRC2. Thus bits 6 to 11 specify either the target
destination register (RDEST) or the second operand source register (RSRC2), depending
on whether the operation is a load or store.

Call s 11 0 OPC
L
N
K

BTARG

Branch s 11 1
O
P
C

BCOND BTARG

Maths3R_Dss s 00 00 OPC 010 NLDEST SRC2 SRC1
Maths3R_Mss s 00 00 OPC 010 NLDEST SRC1

Table 163. Formats (Continued)

S
to

p
bi

t

F
or

m
at

O
pc

od
e

O
pc

od
e2

/

Im
m

ed
ia

te
/

D
es

t

D
es

t/S
rc

2

S
rc

1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Integer arithmetic, comparison

Specific immediate extension, selects, extended arithmetic

Memory load, store

Control transfer branch, call, rfi, goto

ST240 Instruction encoding

8059133 487/507

A.3 Opcodes

Table 164. Instruction encoding
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

add s 00 0 0 00000 000 DEST SRC2 SRC1

sub s 00 0 0 00001 000 DEST SRC2 SRC1

shl s 00 0 0 00010 000 DEST SRC2 SRC1
shr s 00 0 0 00011 000 DEST SRC2 SRC1

shru s 00 0 0 00100 000 DEST SRC2 SRC1

sh1add s 00 0 0 00101 000 DEST SRC2 SRC1
sh2add s 00 0 0 00110 000 DEST SRC2 SRC1

sh3add s 00 0 0 00111 000 DEST SRC2 SRC1

and s 00 0 0 01001 000 DEST SRC2 SRC1
andc s 00 0 0 01010 000 DEST SRC2 SRC1

or s 00 0 0 01011 000 DEST SRC2 SRC1

orc s 00 0 0 01100 000 DEST SRC2 SRC1
xor s 00 0 0 01101 000 DEST SRC2 SRC1

mul64h s 00 0 0 01111 000 NLDEST SRC2 SRC1

max s 00 0 0 10000 000 DEST SRC2 SRC1

addf.n s 00 00 10000 010 NLDEST SRC2 SRC1
adds s 00 0 0 10000 100 DEST SRC2 SRC1

maxu s 00 0 0 10001 000 DEST SRC2 SRC1

subf.n s 00 00 10001 010 NLDEST SRC2 SRC1
subs s 00 0 0 10001 100 DEST SRC2 SRC1

min s 00 0 0 10010 000 DEST SRC2 SRC1

mulf.n s 00 00 10010 010 NLDEST SRC2 SRC1
sh1adds s 00 0 0 10010 100 DEST SRC2 SRC1

minu s 00 0 0 10011 000 DEST SRC2 SRC1

convif.n s 00 00 10011 010 NLDEST SRC1
sh1subs s 00 0 0 10011 100 DEST SRC2 SRC1

mul64hu s 00 0 0 10100 000 NLDEST SRC2 SRC1

convfi.n s 00 00 10100 010 NLDEST SRC1
sats s 00 0 0 10100 100 DEST 000000 SRC1

mull s 00 0 0 10101 000 NLDEST SRC2 SRC1

adds.ph s 00 0 0 10101 100 DEST SRC2 SRC1
mul32 s 00 0 0 10110 000 NLDEST SRC2 SRC1

subs.ph s 00 0 0 10110 100 DEST SRC2 SRC1

mulh s 00 0 0 10111 000 NLDEST SRC2 SRC1
div s 00 00 11000 010 NLDEST SRC2 SRC1

addso s 00 0 0 11000 100 DEST SRC2 SRC1

mulll s 00 0 0 11001 000 NLDEST SRC2 SRC1
rem s 00 00 11001 010 NLDEST SRC2 SRC1

subso s 00 0 0 11001 100 DEST SRC2 SRC1

mulllu s 00 0 0 11010 000 NLDEST SRC2 SRC1
divu s 00 00 11010 010 NLDEST SRC2 SRC1

sh1addso s 00 0 0 11010 100 DEST SRC2 SRC1

mullh s 00 0 0 11011 000 NLDEST SRC2 SRC1
remu s 00 00 11011 010 NLDEST SRC2 SRC1

Instruction encoding ST240

488/507 8059133

sh1subso s 00 0 0 11011 100 DEST SRC2 SRC1
mullhu s 00 0 0 11100 000 NLDEST SRC2 SRC1

satso s 00 0 0 11100 100 DEST 000000 SRC1

mulhh s 00 0 0 11101 000 NLDEST SRC2 SRC1
mulhhu s 00 0 0 11110 000 NLDEST SRC2 SRC1

mulfrac s 00 0 0 11111 000 NLDEST SRC2 SRC1

cmpeq s 00 0 1 0 0000 000 DEST SRC2 SRC1
cmpeq.pb s 00 0 1 0 0 000 001 DEST SRC2 SRC1

cmpne s 00 0 1 0 0001 000 DEST SRC2 SRC1

cmpgef.n s 00 0 1 0 0010 000 DEST SRC2 SRC1
cmpgtu.pb s 00 0 1 0 0 010 001 DEST SRC2 SRC1

cmpeqf.n s 00 0 1 0 0011 000 DEST SRC2 SRC1

cmpgtf.n s 00 0 1 0 0100 000 DEST SRC2 SRC1
cmple s 00 0 1 0 0110 000 DEST SRC2 SRC1

cmpleu s 00 0 1 0 0111 000 DEST SRC2 SRC1

cmplt s 00 0 1 0 1000 000 DEST SRC2 SRC1

cmpeq.ph s 00 0 1 0 1 000 001 DEST SRC2 SRC1
cmpltu s 00 0 1 0 1001 000 DEST SRC2 SRC1

cmpgt.ph s 00 0 1 0 1 001 001 DEST SRC2 SRC1

andl s 00 0 1 0 1010 000 DEST SRC2 SRC1
nandl s 00 0 1 0 1011 000 DEST SRC2 SRC1

orl s 00 0 1 0 1100 000 DEST SRC2 SRC1

norl s 00 0 1 0 1101 000 DEST SRC2 SRC1

cmpeq s 00 0 1 1 0000 000000
BDEST

2
SRC2 SRC1

andl s 00 0 1 1 0000 000001
BDEST

2
BSRC2 BSRC1

mov s 00 0 1 1 0000 000010
BDEST

2
BSRC1

cmpeq.pb s 00 0 1 1 0 000 001000
BDEST

2
SRC2 SRC1

cmpne s 00 0 1 1 0001 000000
BDEST

2
SRC2 SRC1

nandl s 00 0 1 1 0001 000001
BDEST

2
BSRC2 BSRC1

cmpgtu.pb s 00 0 1 1 0 001 001000
BDEST

2
SRC2 SRC1

cmpgef.n s 00 0 1 1 0010 000000
BDEST

2
SRC2 SRC1

orl s 00 0 1 1 0010 000001
BDEST

2
BSRC2 BSRC1

cmpeqf.n s 00 0 1 1 0011 000000
BDEST

2
SRC2 SRC1

norl s 00 0 1 1 0011 000001
BDEST

2
BSRC2 BSRC1

cmpgtf.n s 00 0 1 1 0100 000000
BDEST

2
SRC2 SRC1

Table 164. Instruction encoding (Continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST240 Instruction encoding

8059133 489/507

cmple s 00 0 1 1 0110 000000
BDEST

2
SRC2 SRC1

cmpleu s 00 0 1 1 0111 000000
BDEST

2
SRC2 SRC1

cmplt s 00 0 1 1 1000 000000
BDEST

2
SRC2 SRC1

cmpeq.ph s 00 0 1 1 1 000 001000
BDEST

2
SRC2 SRC1

cmpltu s 00 0 1 1 1001 000000
BDEST

2
SRC2 SRC1

cmpgt.ph s 00 0 1 1 1 001 001000
BDEST

2
SRC2 SRC1

andl s 00 0 1 1 1010 000000
BDEST

2
SRC2 SRC1

nandl s 00 0 1 1 1011 000000
BDEST

2
SRC2 SRC1

orl s 00 0 1 1 1100 000000
BDEST

2
SRC2 SRC1

norl s 00 0 1 1 1101 000000
BDEST

2
SRC2 SRC1

mov s 00 0 1 1 1110 000000
BDEST

2
000000 SRC1

add s 00 1 0 00000 ISRC2 IDEST SRC1

sub s 00 1 0 00001 ISRC2 IDEST SRC1
shl s 00 1 0 00010 ISRC2 IDEST SRC1

shr s 00 1 0 00011 ISRC2 IDEST SRC1

shru s 00 1 0 00100 ISRC2 IDEST SRC1
sh1add s 00 1 0 00101 ISRC2 IDEST SRC1

sh2add s 00 1 0 00110 ISRC2 IDEST SRC1

sh3add s 00 1 0 00111 ISRC2 IDEST SRC1
addpc s 00 1 0 01000 ISRC2 IDEST 000000

and s 00 1 0 01001 ISRC2 IDEST SRC1

andc s 00 1 0 01010 ISRC2 IDEST SRC1
or s 00 1 0 01011 ISRC2 IDEST SRC1

xor s 00 1 0 01101 ISRC2 IDEST SRC1

clz s 00 1 0 01110 000000100 IDEST SRC1
mul64h s 00 1 0 01111 ISRC2 NLIDEST SRC1

max s 00 1 0 10000 ISRC2 IDEST SRC1

maxu s 00 1 0 10001 ISRC2 IDEST SRC1
min s 00 1 0 10010 ISRC2 IDEST SRC1

minu s 00 1 0 10011 ISRC2 IDEST SRC1

mul64hu s 00 1 0 10100 ISRC2 NLIDEST SRC1
mul32 s 00 1 0 10110 ISRC2 NLIDEST SRC1

mulll s 00 1 0 11001 ISRC2 NLIDEST SRC1

mulllu s 00 1 0 11010 ISRC2 NLIDEST SRC1
mulfrac s 00 1 0 11111 ISRC2 NLIDEST SRC1

cmpeq s 00 1 1 0 0000 ISRC2 IDEST SRC1

cmpne s 00 1 1 0 0001 ISRC2 IDEST SRC1

Table 164. Instruction encoding (Continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction encoding ST240

490/507 8059133

cmpge s 00 1 1 0 0010 ISRC2 IDEST SRC1
cmpgeu s 00 1 1 0 0011 ISRC2 IDEST SRC1

cmpgt s 00 1 1 0 0100 ISRC2 IDEST SRC1

cmpgtu s 00 1 1 0 0101 ISRC2 IDEST SRC1
cmple s 00 1 1 0 0110 ISRC2 IDEST SRC1

cmpleu s 00 1 1 0 0111 ISRC2 IDEST SRC1

cmplt s 00 1 1 0 1000 ISRC2 IDEST SRC1
cmpltu s 00 1 1 0 1001 ISRC2 IDEST SRC1

cmpeq s 00 1 1 1 0000 ISRC2 IBDEST SRC1

cmpne s 00 1 1 1 0001 ISRC2 IBDEST SRC1
cmpge s 00 1 1 1 0010 ISRC2 IBDEST SRC1

cmpgeu s 00 1 1 1 0011 ISRC2 IBDEST SRC1

cmpgt s 00 1 1 1 0100 ISRC2 IBDEST SRC1
cmpgtu s 00 1 1 1 0101 ISRC2 IBDEST SRC1

cmple s 00 1 1 1 0110 ISRC2 IBDEST SRC1

cmpleu s 00 1 1 1 0111 ISRC2 IBDEST SRC1

cmplt s 00 1 1 1 1000 ISRC2 IBDEST SRC1
cmpltu s 00 1 1 1 1001 ISRC2 IBDEST SRC1

shls s 01 0 0 0 0 000 000 NLDEST SRC2 SRC1

shlso s 01 0 0 0 0 001 000 NLDEST SRC2 SRC1
sxt s 01 0 0 0 0 101 000 DEST SRC2 SRC1

zxt s 01 0 0 0 0 110 000 DEST SRC2 SRC1

rotl s 01 0 0 0 0 111 000 DEST SRC2 SRC1
perm.pb s 01 0 0 1 0 000 000 DEST SRC2 SRC1

shuff.pbh s 01 0 0 1 0 000 001 DEST SRC2 SRC1

sadu.pb s 01 0 0 1 0 000 010 NLDEST SRC2 SRC1
shuff.pbl s 01 0 0 1 0 001 001 DEST SRC2 SRC1

absubu.pb s 01 0 0 1 0 001 010 DEST SRC2 SRC1

shuffodd.pb s 01 0 0 1 0 010 001 DEST SRC2 SRC1
muladdus.p
b

s 01 0 0 1 0 010 010 NLDEST SRC2 SRC1

shuffeve.pb s 01 0 0 1 0 011 001 DEST SRC2 SRC1

pack.pb s 01 0 0 1 0 011 010 DEST SRC2 SRC1

ext1.pb s 01 0 0 1 0 100 001 DEST SRC2 SRC1
ext2.pb s 01 0 0 1 0 101 001 DEST SRC2 SRC1

ext3.pb s 01 0 0 1 0 110 001 DEST SRC2 SRC1

packsu.pb s 01 0 0 1 0 111 001 DEST SRC2 SRC1
shl.ph s 01 0 0 1 1 000 000 DEST SRC2 SRC1

add.ph s 01 0 0 1 1 000 001 DEST SRC2 SRC1

shuff.phh s 01 0 0 1 1 000 010 DEST SRC2 SRC1
shls.ph s 01 0 0 1 1 001 000 NLDEST SRC2 SRC1

abss.ph s 01 0 0 1 1 001 001 DEST 000000 SRC1

shuff.phl s 01 0 0 1 1 001 010 DEST SRC2 SRC1
shr.ph s 01 0 0 1 1 010 000 DEST SRC2 SRC1

max.ph s 01 0 0 1 1 010 001 DEST SRC2 SRC1

sub.ph s 01 0 0 1 1 010 010 DEST SRC2 SRC1

Table 164. Instruction encoding (Continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST240 Instruction encoding

8059133 491/507

shrrnp.ph s 01 0 0 1 1 011 000 NLDEST SRC2 SRC1
min.ph s 01 0 0 1 1 011 001 DEST SRC2 SRC1

mulfracadds
.ph

s 01 0 0 1 1 011 010 NLDEST SRC2 SRC1

shrrne.ph s 01 0 0 1 1 100 000 NLDEST SRC2 SRC1

mul.ph s 01 0 0 1 1 100 001 NLDEST SRC2 SRC1
muladd.ph s 01 0 0 1 1 101 001 NLDEST SRC2 SRC1

mulfracrm.p
h

s 01 0 0 1 1 110 001 NLDEST SRC2 SRC1

packrnp.phh s 01 0 0 1 1 110 010 DEST SRC2 SRC1

mulfracrne.p
h

s 01 0 0 1 1 111 001 NLDEST SRC2 SRC1

packs.ph s 01 0 0 1 1 111 010 DEST SRC2 SRC1
addcg s 01 0 1 00 SCOND BDEST DEST SRC2 SRC1

imml s 01 0 1 01 0 IMM

immr s 01 0 1 01 1 IMM

slct.pb s 01 0 1 10 SCOND 000 DEST SRC2 SRC1
slct s 01 0 1 10 SCOND 001 DEST SRC2 SRC1

mov s 01 0 1 11 SCOND 001 DEST 000000 000000

extl.pb s 01 0 1 11 SCOND 010 DEST SRC2 SRC1
extr.pb s 01 0 1 11 SCOND 011 DEST SRC2 SRC1

avgu.pb s 01 0 1 11 SCOND 100 DEST SRC2 SRC1

avg4u.pb s 01 0 1 11 SCOND 101 NLDEST SRC2 SRC1
shls s 01 1 0 0 0 000 ISRC2 NLIDEST SRC1

shlso s 01 1 0 0 0 001 ISRC2 NLIDEST SRC1

shrrnp s 01 1 0 0 0 010 ISRC2 NLIDEST SRC1
extract s 01 1 0 0 0 011 ISRC2 IDEST SRC1

extractu s 01 1 0 0 0 100 ISRC2 IDEST SRC1

sxt s 01 1 0 0 0 101 ISRC2 IDEST SRC1
zxt s 01 1 0 0 0 110 ISRC2 IDEST SRC1

rotl s 01 1 0 0 0 111 ISRC2 IDEST SRC1

extractl s 01 1 0 0 1 011 ISRC2 IDEST SRC1
extractlu s 01 1 0 0 1 100 ISRC2 IDEST SRC1

perm.pb s 01 1 0 1 0 000 ISRC2 IDEST SRC1

shl.ph s 01 1 0 1 1 000 ISRC2 IDEST SRC1
shls.ph s 01 1 0 1 1 001 ISRC2 NLIDEST SRC1

shr.ph s 01 1 0 1 1 010 ISRC2 IDEST SRC1

shrrnp.ph s 01 1 0 1 1 011 ISRC2 NLIDEST SRC1
shrrne.ph s 01 1 0 1 1 100 ISRC2 NLIDEST SRC1

slct s 01 1 1 00 SCOND ISRC2 IDEST SRC1

slctf s 01 1 1 01 SCOND ISRC2 IDEST SRC1
slct.pb s 01 1 1 10 SCOND ISRC2 IDEST SRC1

slctf.pb s 01 1 1 11 SCOND ISRC2 IDEST SRC1

ldl s 10 0000 000 ISRC2 IDESTP SRC1
ldlc s 10 0000 PCOND ISRC2 IDESTP SRC1

pft s 10 0000 000 ISRC2 000000 SRC1

pftc s 10 0000 PCOND ISRC2 000000 SRC1

Table 164. Instruction encoding (Continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction encoding ST240

492/507 8059133

ldw s 10 0001 000 ISRC2 IDEST SRC1
ldwc s 10 0001 PCOND ISRC2 IDEST SRC1

ldh s 10 0010 000 ISRC2 NLIDEST SRC1

ldhc s 10 0010 PCOND ISRC2 NLIDEST SRC1
ldhu s 10 0011 000 ISRC2 NLIDEST SRC1

ldhuc s 10 0011 PCOND ISRC2 NLIDEST SRC1

ldb s 10 0100 000 ISRC2 NLIDEST SRC1
ldbc s 10 0100 PCOND ISRC2 NLIDEST SRC1

ldbu s 10 0101 000 ISRC2 NLIDEST SRC1

ldbuc s 10 0101 PCOND ISRC2 NLIDEST SRC1
stl s 10 1000 000 ISRC2 SRC2P SRC1

stlc s 10 1000 PCOND ISRC2 SRC2P SRC1

stw s 10 1001 000 ISRC2 SRC2 SRC1
stwc s 10 1001 PCOND ISRC2 SRC2 SRC1

sth s 10 1010 000 ISRC2 SRC2 SRC1

sthc s 10 1010 PCOND ISRC2 SRC2 SRC1

stb s 10 1100 000 ISRC2 SRC2 SRC1
stbc s 10 1100 PCOND ISRC2 SRC2 SRC1

prgadd s 10 1111 000 ISRC2 000000 SRC1

prgadd.l1 s 10 1111 000 ISRC2 000001 SRC1
prgset s 10 1111 001 ISRC2 000000 SRC1

prgset.l1 s 10 1111 001 ISRC2 000001 SRC1

prginsadd s 10 1111 010 ISRC2 000000 SRC1
prginsadd.l1 s 10 1111 010 ISRC2 000001 SRC1

prginsset s 10 1111 011 ISRC2 000000 SRC1

prginsset.l1 s 10 1111 011 ISRC2 000001 SRC1
flushadd s 10 1111 100 ISRC2 000000 SRC1

flushadd.l1 s 10 1111 100 ISRC2 000001 SRC1

pswmask s 10 1111 101 ISRC2 NLIDEST SRC1
invadd s 10 1111 110 ISRC2 000000 SRC1

invadd.l1 s 10 1111 110 ISRC2 000001 SRC1

syncins s 10 1111 111 000000000 000000 000000
sync s 10 1111 111 000000010 000000 000000

wmb s 10 1111 111 000000011 000000 000000

waitl s 10 1111 111 000000100 000000 000000
ldwl s 10 1111 111 000000101 IDEST SRC1

dbgsbrk 1 10 1111111 000001000 BRKNUM

sbrk 1 10 1111111 000001001 BRKNUM
syscall s 10 1111111 000001010 BRKNUM

break s 10 1111111 000001011 000000000000

retention 1 10 1111 111 000001100 000000 000000

stwl s 10 1111 111 100000
BDEST

2
SRC2 SRC1

call s 11 0 000 0 BTARG

call s 11 0 000 1 00000000000000000000000

goto s 11 0 001 0 BTARG

Table 164. Instruction encoding (Continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST240 Instruction encoding

8059133 493/507

goto s 11 0 001 1 00000000000000000000000
rfi s 11 0 010 0 00000000000000000000000

return s 11 0 011 1 00000000000000000000000

br s 11 1 0 BCOND BTARG
brf s 11 1 1 BCOND BTARG

Table 164. Instruction encoding (Continued)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STBus endian behavior ST240

494/507 8059133

Appendix B STBus endian behavior

The processor behaves in a different manner depending to whether the ST240 is operating
in big endian or little endian mode. Section 23.5.2: Memory model on page 215 introduces
the notation used in this appendix and defines the operation of the ST240 in terms of a
logical view of memory. This appendix describes the mapping between that logical memory
and an actual physical memory attached to an STBus.

B.1 Endianness of bytes and half-words within a word based
memory
The STBus views memory as being constructed from an array of 32-bit words. The notation
WMEM[i] is used to represent 32-bit words in memory where i varies in the range [0, 230),
and MEM[s] represents a byte indexed within WMEM[i].

For a little endian memory system:

MEM[s] = WMEM[s/4]<8(s\4) FOR 8>

For a big endian memory system:

MEM[s] = WMEM[s/4]<8(3-s\4) FOR 8>

Half-word accesses are made by pairing byte accesses using the equations given above.

Considering two processors of different endianness connected to the same memory
system, and representing the logical memory as seen by them as MEMLE[i] for the little
endian processor and MEMBE[i] for the big endian processor:

MEMLE[i] = MEMBE[i⊕3]

and:

WMEMLE[i] = WMEMBE[i]

As an example given the word WMEM[i], which stores the value 0xAABBCCDD. In either
endianness the word will read the same, but when read as bytes by a little endian
processor:

MEMLE[i] = 0xDD

MEMLE[i+1] = 0xCC

MEMLE[i+2] = 0xBB

MEMLE[i+3] = 0xAA

When read by a big endian processor:

MEMBE[i] = 0xAA

MEMBE[i+1] = 0xBB

MEMBE[i+2] = 0xCC

MEMBE[i+3] = 0xDD

ST240 STBus endian behavior

8059133 495/507

B.2 Endianness of 64-bit accesses
The ST240 has a 64-bit STBus initiator port. The data presented to the STBus is determined
differently depending upon the endianness mode. The STBus also interprets the information
differently.

DMEM[i] refers to a double word in memory where i varies in the range [0, 229). When a little
endian processor accesses a word address s:

WMEMLE[s] = DMEMLE[s/2]<32(s\2) FOR 32>

and for a big-endian processor:

WMEMBE[s] = WMEMLE[s/2]<32(1-s\2) FOR 32>

For example, if

WMEM[s]=0xaaaaaaaa

WMEM[s+1]=0xbbbbbbbb

then the contents of DMEM are:

DMEMLE[s] = 0xbbbbbbbb_aaaaaaaa

DMEMBE[s] = 0xaaaaaaa_bbbbbbbb

the order of words in the double word has changed.

B.3 System requirements
Systems operating purely in a single mode are straightforward. All accesses as seen by the
processor are consistent and behave as would be expected for a processor of that
endianness.

Issues can arise where the memory system can be observed in both little-endian and big-
endian modes. A correctly implemented system behaves according to the definitions given
in this document. To ensure a correct implementation, the following points must be
addressed in the system.

● The STBus and all devices with 64-bit target ports must be aware of the endianness of
an access.

● Size convertors must be correctly configured for the endianness of the system. The
correct operation of any size convertors ensure that 32-bit target ports do not need to
be aware of endianness.

Danger: If a system is NOT properly configured then the problems
listed below may occur.

● The peripheral registers of the ST240 may appear at the wrong address; bit 2 of the
address could be inverted. This can be caused by a size convertor not being aware of
endianness.

● Pairs of words may be swapped in memory.

● Words may be written to the wrong address; bit 2 could be inverted.

Glossary ST240

496/507 8059133

Glossary

Branch registers The set of eight 4-bit registers which are used to store the condition for
conditiona branches, carry bits, select operations, and other SIMD and
logical operations.

Bundle Wide instruction of multiple operations issued during the same cycle and
executed in parallel.

Cache set A set of a cache refers to all cache lines which may contain data at a given
address. For a direct mapped cache the size of the set is 1, and for an n-
way set associative cache the size of the set is n.

Commit point The point at which the results of operations are written to the architectural
state of the ST240.

Control register One of a set of memory mapped registers maintained by the hardware or
by software which form part of the architectural state.

Core The core is the ST240 processor core excluding peripherals.

DTCM Data-side Tightly Coupled Memory. Memory mapped RAM accessed in
parallel with the data cache.

Dyadic operation An operation on two operands.

General purpose registers The set of directly addressed general purpose registers. The ST240
contains one general purpose register file organized as a bank of 64 32-bit
registers.

Half-word, word, long word Half-word relates to a 16-bit data item. Word relates to a 32-bit data item.
Long word relates to a 64-bit data item.

If conversion The transformation of the code generated by a compiler from an IF
statement in a high level language into a sequence of bundles which do
not include branches.

Immediate An operand which is a constant or literal value.

Jump A jump causes an unconditional changed in program counter to the
destination address specified within the encoding. This is included within
the ST200 architecture as a goto operation.

Level 1 cache The Level- cache is also referred as the “closest” or “lowest” cache. Such a
cache is tightly coupled within the core.

Level 2 cache The Level 2 cache is a cache which is loosely coupled to the core.
Typically used in cases where the level 1 cache or caches are insufficient
in size or associativity. The level 2 cache is accessed through the level 1
cache or caches.

Long word See half-word definition.

LRU Least Recently Used. A replacement policy for caches and buffers. An
LRU policy will replace the oldest entry whenever there is insufficient
space for a new entry.

Main memory This is the system-accessible memory.

ST240 Glossary

8059133 497/507

Misaligned A memory access is misaligned if the access does not fit the natural
alignment width of the word being accessed, and the access is illegal.

Monadic operation An operation on one operand.

Operation An operation is an atomic ST200 action. An operation is equivalent to a
typical instruction of a traditional 32-bit RISC machine.

Predication The operation of selectively quashing an operation according to the value
of a register (called predicate). The examples of this supported by the
ST240 are select and conditional load/store operations.

Round robin A replacement policy for caches and buffers. A round robin policy replaces
entries in turn whenever there is insufficient space for a new entry.

Set See cache set definition.

SIMD Single Instruction Multiple Data. A class of operations which
simultaneously performs the same operation on multiple bit fields of the
source operand or operands.

ST240 The ST240 is the processor core as described in this manual including the
associated peripherals. Also see “core” definition.

Superscalar An architecture with multiple functional units in which instructions are
scheduled dynamically by the hardware at run-time.

Syllable Encoded component of a bundle that specifies one operation or immediate
extension to an operation which encodes an immediate form. A bundle in
the ST240 may contain multiple syllables, each of them 32-bit wide.

Unaligned A memory access is unaligned if the access does not fit the natural
alignment width of the word being accessed, but the access is still legal.

Uniprocessor A single processor which is not part of a multi-processor cache coherent
system.

VLIW Very long instruction word: instructions (called “bundles” in ST200
terminology) encode one or more independent operations and are
scheduled at compile time.

Word See half-word definition.

Glossary ST240

498/507 8059133

ST240 List of instructions

8059133 499/507

List of instructions

abss.ph Register .228
absubu.pb Register .229
add Immediate .224
add Immediate .230
add Register .231
add.ph Register .232
addcg .233
addf.n Floating point - Register234
addpc Immediate. .235
adds Register .236
adds.ph Register .237
addso Register .238
and Immediate .239
and Register .240
andc Immediate. .241
andc Register .242
andl Branch Register - Branch Register243
andl Branch Register - Register 244
andl Register - Register 245
avg4u.pb Register .246
avgu.pb Register .247
br .248
break .249
brf .250
call Immediate .251
call Link Register .252
clz .253
cmpeq Branch Register - Immediate.254
cmpeq Branch Register - Register 256
cmpeq Register - Immediate255
cmpeq Register - Register 257
cmpeq.pb Branch Register - Register258
cmpeq.pb Register .259
cmpeq.ph Branch Register - Register260
cmpeq.ph Register .261
cmpeqf.n Branch Register - Register 262
cmpeqf.n Register - Register 263
cmpge Branch Register - Immediate.264
cmpge Register - Immediate265
cmpgef.n Branch Register - Register 266
cmpgef.n Register - Register 267
cmpgeu Branch Register - Immediate.268
cmpgeu Register - Immediate269
cmpgt Branch Register - Immediate270
cmpgt Register - Immediate 271
cmpgt.ph Branch Register - Register 272
cmpgt.ph Register .273
cmpgtf.n Branch Register - Register274
cmpgtf.n Register - Register275

cmpgtu Branch Register - Immediate 276
cmpgtu Register - Immediate 277
cmpgtu.pb Branch Register - Register 278
cmpgtu.pb Register . 279
cmple Branch Register - Immediate 280
cmple Branch Register - Register. 282
cmple Register - Immediate 281
cmple Register - Register 283
cmpleu Branch Register - Immediate 284
cmpleu Branch Register - Register. 286
cmpleu Register - Immediate 285
cmpleu Register - Register 287
cmplt Branch Register - Immediate 288
cmplt Branch Register - Register 290
cmplt Register - Immediate. 289
cmplt Register - Register 291
cmpltu Branch Register - Immediate 292
cmpltu Branch Register - Register 294
cmpltu Register - Immediate. 293
cmpltu Register - Register 295
cmpne Branch Register - Immediate 296
cmpne Branch Register - Register 298
cmpne Register - Immediate 297
cmpne Register - Register 299
convfi.n Floating point - Register 300
convif.n Floating point - Register 301
dbgsbrk. 302
dib. 303
div Register. 304
divu Register. 305
ext1.pb Register . 306
ext2.pb Register . 307
ext3.pb Register . 308
extl.pb Register. 309
extr.pb Register . 310
extract Immediate . 311
extractl Immediate . 312
extractlu Immediate . 313
extractu Immediate . 314
flushadd . 315
flushadd.l1 . 316
goto Immediate. 318
goto Link Register. 317
imml . 319
immr . 320
invadd . 321
invadd.l1 . 322
ldb. 323
ldbc . 324

List of instructions ST240

500/507 8059133

ldbu .325
ldbuc .326
ldh .327
ldhc .328
ldhu .329
ldhuc .330
ldl. .331
ldlc .332
ldw. .333
ldwc .334
ldwl .335
max Immediate .336
max Register .337
max.ph Register .338
maxu Immediate .339
maxu Register .340
min Immediate. .341
min Register .342
min.ph Register .343
minu Immediate. .344
minu Register .345
mov Branch Register - Branch Register346
mov Branch Register - Register 347
mov Register - Branch Register 348
mul.ph Register .349
mul32 Immediate. .350
mul32 Register .351
mul64h Immediate. .352
mul64h Register .353
mul64hu Immediate. .354
mul64hu Register .355
muladd.ph Register .356
muladdus.pb Register357
mulf.n Floating point - Register358
mulfrac Immediate. .359
mulfrac Register .360
mulfracadds.ph Register361
mulfracrm.ph Register362
mulfracrne.ph Register 363
mulh Register .364
mulhh Register .365
mulhhu Register .366
mull Register .367
mullh Register .368
mullhu Register .369
mulll Immediate .370
mulll Register .371
mulllu Immediate .372
mulllu Register .373
nandl Branch Register - Branch Register374
nandl Branch Register - Register 375
nandl Register - Register 376

norl Branch Register - Branch Register 377
norl Branch Register - Register 378
norl Register - Register. 379
or Immediate. 380
or Register . 381
orc Register . 382
orl Branch Register - Branch Register 383
orl Branch Register - Register 384
orl Register - Register. 385
pack.pb Register. 386
packrnp.phh Register 387
packs.ph Register. 388
packsu.pb Register. 389
perm.pb Immediate. 390
perm.pb Register . 391
pft . 392
pftc . 393
prgadd . 394
prgadd.l1. 395
prginsadd . 396
prginsadd.l1 . 397
prginsset . 398
prginsset.l1 . 399
prgset . 400
prgset.l1 . 401
pswmask. 402
rem Register . 403
remu Register . 404
retention . 405
return Link Register . 406
rfi. 407
rotl Immediate. 408
rotl Register . 409
sadu.pb Register . 410
sats Register. 411
satso Register. 412
sbrk. 413
sh1add Immediate . 414
sh1add Register . 415
sh1adds Register . 416
sh1addso Register . 417
sh1subs Register . 418
sh1subso Register . 419
sh2add Immediate . 420
sh2add Register . 421
sh3add Immediate . 422
sh3add Register . 423
shl Immediate . 424
shl Register. 425
shl.ph Immediate . 426
shl.ph Register . 427
shls Immediate . 428

ST240 List of instructions

8059133 501/507

shls Register .429
shls.ph Immediate .430
shls.ph Register .431
shlso Immediate .432
shlso Register .433
shr Immediate .434
shr Register .435
shr.ph Immediate .436
shr.ph Register .437
shrrne.ph Immediate .438
shrrne.ph Register. .439
shrrnp Immediate .440
shrrnp.ph Immediate .441
shrrnp.ph Register. .442
shru Immediate .443
shru Register .444
shuff.pbh Register .445
shuff.pbl Register .446
shuff.phh Register .447
shuff.phl Register .448
shuffeve.pb Register .449
shuffodd.pb Register .450
slct Immediate .451
slct Register .452
slct.pb Immediate .453
slct.pb Register .454
slctf Immediate .455
slctf.pb Immediate .456
stb .457
stbc .458
sth .459
sthc .460
stl. .461
stlc .462
stw. .463
stwc .464
stwl .465
sub Immediate. .466
sub Register .467
sub.ph Register .468
subf.n Floating point - Register469
subs Register .470
subs.ph Register .471
subso Register .472
sxt Immediate .473
sxt Register .474
sync. .475
syncins .476
syscall .477
waitl .478
wmb. .479
xor Immediate .480

xor Register . 481
zxt Immediate . 482
zxt Register. 483

Revision history ST240

502/507 8059133

Revision history

Table 165. Document revision history

Date Revision Changes

27-Jun-2008 C Minor changes made throughout.

8-Feb-2008 B
Significant architectural changes have been made. A new chapter,
Chapter 9: SIMD operations on page 64, has been added.

18-Sep-2007 A Initial release.

ST240 Index

8059133 503/507

Index

A
Address space .94
Alignment .20
AND .206
Arithmetic and logic units18
Arrays .203
Atomic seuence .132

B
Backus-Naur Form .13
Bit extraction operations61
Bit fields .203
Bit(i) function .208
BNF. See Backus-Naur Form.
Boolean operators .206
Boolean variable .203
Branch register .496
Bundle .496

decode .199, 201
execute .199
fetch .199

BusReadError(address) function 214
Bypassing .33

C
Cache set .496
Caches .94

data cache .96
instruction cache .94

call .27, 32
call $r63 .34
Command loop .183
Commit point 199, 223, 496
Commit(n) function .201
Control register .496
Control registers .24
ControlRegister(address) function214
Core .496
Core debugging .171
CR .213
CregReadAccessViolation(index) function . . .214
CregWriteAccessViolation(index) function . . .214

D
DBG_EXADDRESS .89
Debug interrupt 153-154

Debug mode . 23
Debug ROM . 170-171
Debug support unit . 24
Divide and remainder unit 19
Document overview . 16
DSR0 . 178
DSR1 . 179
DSR2 . 179
DSU . 170-171, 177
DTCM . 496
DTLB . 93
Dyadic operation . 496

E
ELSE . 211
Encoding . 223
event . 187
EXADDRESS . 87
EXCAUSE . 90
EXCAUSENO . 90
ExceptAddress . 87-88
ExceptAddress function 89
Exceptions . 82
Execution pipeline . 33
Expressions . 202-203
Extended immediates 222
EXTERN_INT . 82

F
Floating point operands 39
Floating point units . 18
FOR . 208, 211
Fractional operands . 38
FROM . 211
Function

Register(i) . 208

G
General purpose registers 496
goto $r63 . 34

H
Half word . 496
HighestPriority function 89
Host debug interface 169, 187

Index ST240

504/507 8059133

I
IBREAK_LOWER register 173
IBREAK_UPPER register173
idle macro .153
IF .211
If conversion .496
Imm .222
Imm(i) function .222
Immediate 222-223, 496
imml .222
immr .222
InitiateDebugIntHandler() function201
InitiateExceptionHandler() function 201
Instruction cache .94
Instruction fields .484
INT .206
Int3I .486
Int3R .486
Integer arithmetic operators204
Integer bitwise operators 205
Integer shift operators 205
Integer variable .202
Interrupt controller .163
Interrupt mask register164
Interrupt pending register164
Interrupt test register 166
Interrupts .82
INTMASK register .164
INTMASKCLR register165
INTMASKCLR1 register166
INTMASKSET1 register166
INTPENDING register 164
INTTEST register .166
INTTEST0 register .166
INTTEST1 register .166
IsControlSpace(address) function 214
IsDBreakHit(address) function214
ITLB .93

J
Jump .496

L
L1 data cache .118
ldb .32
Least recently used .496
Level1 cache .496
Level2 cache .496
LFSR .102
LIMIT .102

Link register . 27
load . 32
Load and store operations 20, 119
Load operation . 17
Load/store unit . 19, 32
Logical operations

bit extraction . 61
scalar . 59
SIMD . 62

Long word . 496
LR . 213
LRU . 496

M
Main memory . 496
Misaligned . 497
Misaligned(address) function 214
Monadic operation . 497
mullhu . 102
Multiplication operations 40
Multiplication units . 19

N
nops . 121
NOT . 206
Notation used in SIMD diagrams 64
NoTranslation(address) function 214
NumExtImms(address) function 201
NumWords(address) function 201

O
Opcodes . 487
Operation . 497
Operation execution 201
Operation latencies . 33
OR . 206

P
PARTITION field . 100
PC . 27, 213
peek . 187
peeked . 187
PERIPHERAL_BASE register 157, 159
pft . 121
Physical addresses . 94
PM event . 192
PM_CNTi register . 195
PM_CR register 153, 195
poke . 187

ST240 Index

8059133 505/507

POLICY field .99
Pre-commit(n) function201
Predication .497
Prefetch(address) function220
PrefetchMemory(address) function 217
prgins .31
prgset .32
Program counter .27
Program status word .28
PROT_SUPER field .100
PROT_USER field .100
PSW28-29, 97, 172, 213
pswset . 31-32
PurgeAddress(address) function 220
PurgeIns() function .219
PurgeSet(address) function220

R
R .213
R63 .27
ReadAccessViolation(address) function 214
ReadCheckControl(address) function 218
ReadCheckMemory(address) Function215
ReadCheckMemory(address) function215
ReadControl(address) function 218
ReadMemory(address) Function 215
Register .223
Register file .27
Register(i) function .208
Relational operators .206
REPEAT .211
REPLACE field .102
RESETACK bit .143
RESETREQUEST bit143
return .27
Return from interrupt .90
rfi . 29, 31-32, 90
Round robin .497

S
Saturated arithmetic .45
SAVED_PC .213
SAVED_PSW .213
SAVED_SAVED_PC 213
SAVED_SAVED_PSW213
sbrk .31
Scalar .59
Scalar logical operations 59
SCU_BASEi register 109
SDI ports .140
SDIi_COUNT register142

SDIi_DATA register . 142
SDIi_READY . 142
SDIi_TIMEOUT register 142
Semantics . 223
Set . 497
SignExtend(i) function 207
SIMD . 69, 497

16-bit arithmetic operations 65
16-bit comparison . 69
16-bit shift operations 69
8-bit arithmetic operations 70
branch register instructions 81
data manipulation operations 74
logical operations . 62
notation used in diagrams 64
operands . 38

Single instruction multiple data 497
Single-value functions 207
SIZE field . 99
SLR . 34
ST240 . 497
Statements . 202, 209
STBus . 120
STBUS_DC_ERROR 126
STBUS_IC_ERROR 118
STEP . 211
Stop bit . 201, 222
store . 32
Store operation . 17
Superscalar . 497
Supervisor mode . 1, 23
Syllable . 497
sync . 32
Sync() function . 220

T
THROW . 88
THROW statement . 212
TIMECONTROLi register 156
TIMECOUNTi register 155
TLB . 19, 93, 97
TLB_ASID register . 103
TLB_CONTROL register 103
TLB_ENABLE . 97
TLB_ENTRY0 . 98
TLB_ENTRY1 register 100
TLB_ENTRY2 register 101
TLB_ENTRY3 register 101
TLB_EXCAUSE . 88
TLB_INDEX . 98
TLB_REPLACE register 101

Index ST240

506/507 8059133

Translation lookaside buffer23, 93
Trap handler .83
Trap point .83
Traps .82
Types .202

U
Unaligned .497
UNDEFINED statement210
UndefinedControlRegister(address) function .214
Uniprocessor .497
Usage restrictions .33
User mode .1, 23
UTLB .93

V
Variables .202
VERSION register .152
Virtual addresses .94
VLIW .15, 497

W
Word .497
Write memory barrier132
WriteAccessViolation(address) function214
WriteCheckControl(address) function 219
WriteCheckMemory(address) function217
WriteControl(address, value) function 219
WriteMemory(address, value) function 217

XYZ
XOR .206
ZeroExtend(i) function 207

ST240

8059133 507/507

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 27/6/08 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Introduction
	Preface
	ST200 document identification and control
	ST200 documentation suite
	Conventions used in this guide
	Acknowledgements

	1 Overview
	1.1 VLIW overview
	1.2 ST240 overview
	Figure 1. Block diagram of the ST240

	1.3 Document overview

	2 Execution units
	2.1 Arithmetic and logic units
	2.2 Floating point units
	2.3 Multiplication units
	2.4 Divide and remainder unit
	2.5 Load/store unit
	2.5.1 Memory access
	2.5.2 Addressing modes
	2.5.3 Alignment
	2.5.4 Control registers
	2.5.5 Cache coherency control
	2.5.6 Conditional load, stores and prefetches
	2.5.7 Data-side tightly coupled memory
	2.5.8 Level 2 cache
	2.5.9 Multi-processor and hardware multi-threading support

	2.6 Branch unit
	Table 1. Branch unit operations

	3 Operating modes
	3.1 Representation of each mode
	Table 2. Representation of the operating modes

	3.2 Access to resources
	3.2.1 Control registers
	3.2.2 PSW updating operations
	3.2.3 TLB pages
	3.2.4 Peripherals

	3.3 Transitioning between modes and states
	Figure 2. State transitions due to PSW updating operations
	Figure 3. State transitions due to traps and debug traps
	3.3.1 Supervisor mode to user mode
	3.3.2 User to supervisor mode
	3.3.3 Debug mode entry and exit

	4 Architectural state
	4.1 Program counter
	4.2 Register file
	4.2.1 Link register

	4.3 Branch register file
	4.4 Program status word
	4.4.1 Bit fields
	Table 3. PSW bit fields

	4.4.2 PSW access

	4.5 Control registers
	4.6 Atomic address
	4.7 Context saving

	5 Bundling rules
	5.1 Architectural bundling rules
	5.2 Implementation-specific bundling rules
	5.3 Other restrictions

	6 Execution pipeline and latencies
	6.1 ST240 pipeline
	Table 4. ST240 pipeline stages

	6.2 Operation latencies and bypassing
	6.3 Interlocks and stw/stwc to rfi usage restrictions
	6.4 Branching and branch stalls
	6.5 Link register restrictions
	6.6 Operations that empty the pipeline

	7 Arithmetic operations
	7.1 Overview
	7.1.1 Rounding
	Figure 4. Rounding modes
	Table 5. Operations and rounding modes

	7.1.2 Operand types
	Table 6. SIMD data types
	Table 7. Fractional representation

	7.1.3 SIMD operation naming
	Table 8. Examples of SIMD operation naming

	7.2 Multiplication operations
	Table 9. Multiplication summary table

	7.3 Addition and subtraction operations
	Table 10. Addition and subtraction summary table

	7.4 Shift operations
	Table 11. Shift summary table

	7.5 Comparison operations
	Table 12. SIMD and floating point comparison summary table

	7.6 Saturating arithmetic operation usage
	7.6.1 Saturating operation behavior
	Table 13. Saturating operations summary

	7.6.2 Saturating operations usage for implementation of ETSI functions
	Table 14. Saturating operations usage for ETSI functions

	7.6.3 mulfracadds.ph usage

	7.7 SIMD arithmetic operations usage
	Table 15. SIMD arithmetic operations summary

	7.8 Floating point operations
	7.8.1 Summary of floating point operations and macros
	Table 16. Summary of floating point operations

	7.8.2 IEEE754 specification limitations
	Table 17. NaN value
	Table 18. Unrepresentable conversion value for signed integers
	Table 19. Unrepresentable conversion value for unsigned integers

	7.8.3 Floating point comparison operations

	7.9 Fractional arithmetic operations
	Table 20. Fractional operations summary table

	7.10 Divide and remainder operations
	Table 21. Divide and remainder operations
	7.10.1 Special cases
	Table 22. Divide and remainder special cases

	7.10.2 Performance information
	Table 23. cycles taken to execute div/rem operations

	8 Logical operations
	8.1 Scalar logical operations
	Table 24. Scalar operations summary table
	8.1.1 Bit extraction operations
	Table 25. Extract operations

	8.2 SIMD logical operations
	Table 26. Packed operations summary table

	9 SIMD operations
	9.1 Notation used in this chapter
	Table 27. Notation used for SIMD diagrams

	9.2 SIMD 16-bit arithmetic operations
	Table 28. SIMD 16-bit arithmetic operations
	9.2.1 SIMD 16-bit add and subtract operations
	Figure 5. SIMD add, sub, absolute

	9.2.2 SIMD 16-bit multiplication operations
	Figure 6. SIMD multiplications (mul.ph, mulfracrne.ph and mulfracrm.ph)
	Figure 7. SIMD multiplications (muladd.ph and mulfracadds.ph)

	9.2.3 SIMD 16-bit comparison operations
	Figure 8. SIMD min/max operations

	9.2.4 SIMD 16-bit shift operations
	Figure 9. SIMD left shift operations
	Figure 10. SIMD right shift operations

	9.3 SIMD 8-bit arithmetic operations
	Table 29. SIMD 8-bit arithmetic operations
	9.3.1 SIMD 8-bit absolute difference operations
	Figure 11. absubu.pb, sadu.pb

	9.3.2 SIMD 8-bit averaging operations
	Table 30. avg4u.pb rounding mode selection
	Figure 12. SIMD averaging operations

	9.3.3 SIMD 8-bit comparison operations
	Figure 13. SIMD 8-bit comparison operations

	9.3.4 SIMD 8-bit multiply and add across operation
	Figure 14. SIMD 8-bit multiply and add across

	9.4 SIMD data manipulation operations
	Table 31. SIMD logical operations summary table
	9.4.1 SIMD shuffle operations
	Figure 15. SIMD shuffles

	9.4.2 SIMD permute operation
	Figure 16. SIMD perm.pb operation
	Figure 17. Example uses of perm.pb for replication and reversal

	9.4.3 SIMD static extraction operations
	Figure 18. SIMD static extraction operations

	9.4.4 SIMD dynamic extraction operations
	Figure 19. SIMD dynamic extract operations - which bytes are extracted

	9.4.5 SIMD pack operations
	Figure 20. SIMD pack operations

	9.4.6 SIMD selection operations
	Figure 21. SIMD selection operations

	9.4.7 Handling unaligned data using logical SIMD operations

	9.5 Summary of SIMD branch register operations
	Table 32. SIMD logical operations summary table

	10 Traps (exceptions and interrupts)
	10.1 Trap types
	10.1.1 Interrupt types
	10.1.2 Exception types

	10.2 Non recoverable exceptions
	10.3 Trap mechanism
	10.4 Trap handling
	10.5 Trap vector and priorities
	Table 33. Trap vector

	10.6 Trap priorities
	Table 34. Trap types and priorities

	10.7 Saving and restoring execution state
	10.7.1 Normal trap startup behavior
	Table 35. ExceptAddressNormal() function definition
	Table 36. TlbExcauseValue() function definition

	10.7.2 Debug trap startup behavior
	Table 37. ExceptAddressDebug() function definition

	10.7.3 Restoring execution state

	10.8 Determining the trap type
	10.8.1 Normal traps
	Table 38. EXCAUSENO bit fields
	Table 39. EXCAUSENO_EXCAUSENO values

	10.8.2 Debug traps
	Table 40. DBG_EXCAUSENO bit fields
	Table 41. DBG_EXCAUSENO_DBG_EXCAUSENO values

	11 Memory translation and protection
	11.1 TLB overview
	Table 42. TLB information

	11.2 Address space
	11.2.1 Physical addresses
	11.2.2 Virtual addresses

	11.3 Caches
	11.3.1 Instruction cache organization
	Figure 22. Instruction cache addressing

	11.3.2 Data cache organization
	Figure 23. Data cache addressing

	11.3.3 Virtual aliases

	11.4 Control registers
	11.4.1 PSW
	11.4.2 UTLB access
	11.4.3 TLB_INDEX register
	Table 43. TLB_INDEX bit fields

	11.4.4 TLB_ENTRY0 register
	Table 44. TLB_ENTRY0 bit fields
	Table 45. TLB_ENTRY0.POLICY values
	Table 46. TLB_ENTRY0.SIZE values
	Table 47. TLB_ENTRY0.PARTITION values
	Table 48. PROT_USER and PROT_SUPER values

	11.4.5 TLB_ENTRY1 register
	Table 49. TLB_ENTRY1 bit fields

	11.4.6 TLB_ENTRY2 register
	Table 50. TLB_ENTRY2 bit fields

	11.4.7 TLB_ENTRY3 register
	Table 51. TLB_ENTRY3 bit fields

	11.4.8 TLB_REPLACE register
	Table 52. TLB_REPLACE bit fields
	Figure 24. REPLACE register

	11.4.9 TLB_CONTROL register
	Table 53. TLB_CONTROL bit fields

	11.4.10 TLB_ASID register
	Table 54. TLB_ASID bit fields

	11.4.11 TLB_EXCAUSE register
	Table 55. TLB_EXCAUSE_CAUSE values
	Table 56. TLB exception causes and the IN_UTLB bit
	Table 57. TLB_EXCAUSE bit fields

	11.5 EXADDRESS register or TLB exceptions
	11.6 TLB description
	11.6.1 Reset
	11.6.2 TLB coherency
	Table 58. Ensuring coherency after UTLB updates

	11.6.3 Instruction accesses
	Figure 25. Instruction access

	11.6.4 Data accesses
	Figure 26. Data access

	11.7 Speculative control unit
	11.7.1 SCU_BASEi, SCU_LIMITi registers
	Table 59. SCU_BASE0 bit fields
	Table 60. SCU_LIMIT0 bit fields

	11.7.2 Updates to SCU registers

	12 Memory subsystem
	12.1 Memory system configurations and terminology
	Figure 27. Documented memory system configurations
	12.1.1 L2 cache coherency management
	Figure 28. Memory subsystem block diagram

	12.2 Memory coherency
	12.2.1 Instruction cache coherency
	12.2.2 D-side coherency

	12.3 Cache information
	Table 61. ICACHE_LINESIZE bit fields
	Table 62. DCACHE_LINESIZE bit fields
	Table 63. ICACHE_SETS bit fields
	Table 64. DCACHE_SETS bit fields
	Table 65. L2CACHE_DETAILS bit fields

	12.4 I-side memory subsystem
	12.4.1 L1 instruction cache
	12.4.2 Instruction fetch
	12.4.3 Instruction cache control operations
	12.4.4 I-side STBus error

	12.5 D-side memory subsystem
	12.5.1 L1 data cache partitioning
	Table 66. Data cache partitioning control

	12.5.2 Loads, stores and prefetches
	12.5.3 Memory ordering
	12.5.4 Data cache control operations
	12.5.5 Write buffer
	12.5.6 D-side tightly coupled memory
	12.5.7 D-side STBus errors
	12.5.8 Level 2 cache support
	Table 67. Operations that are executed on the L1 or L1 and L2 caches

	12.5.9 Summary of D-side memory subsystem behavior
	Table 68. Memory subsystem behavior

	12.6 Reset state
	12.7 System bus requirements

	13 Multi-processor and multi-threading support
	13.1 Atomic sequence
	13.1.1 Atomic sequence control register
	Table 69. LOCK_ADDRESS register bit fields

	13.1.2 Atomic sequence
	13.1.3 Lock clearing mechanisms
	13.1.4 Lock clearing on trap and rfi
	13.1.5 Shadow lock
	13.1.6 Atomic sequence code
	Figure 29. Software and hardware lock flow chart

	13.1.7 Atomic sequence semantics

	13.2 Write memory barrier
	13.3 Data/instruction barrier
	13.4 Operation summary
	Table 70. Summary of operation behavior for MP, MT and UP

	13.5 Address translation
	13.6 Control registers for MP support

	14 Streaming data interfaces
	14.1 SDI control registers
	Table 71. SDI0_CONTROL bit fields
	Table 72. SDI2_CONTROL bit fields
	Table 73. SDIi_CONTROL_PRIV values
	Table 74. SDI control registers

	14.2 Exceptions, interrupts, reset and restart
	14.2.1 Interrupts
	14.2.2 Time outs
	14.2.3 Restart (soft reset)
	Figure 30. Soft reset control structure

	15 Control registers
	15.1 Exceptions
	Table 75. Control register spaces access exceptions

	15.2 Control register addresses
	Table 76. Control registers - BASE: CREG_BASE

	15.3 Machine state register
	Table 77. STATE1 bit fields

	15.4 MP core ID register
	Table 78. MP_CORE_ID bit fields

	15.5 Version register
	Table 79. VERSION bit fields

	16 Low power modes
	16.1 Low power operation with a DTCM
	16.2 Idle mode
	16.2.1 Behavior in idle mode
	16.2.2 Latency of entry and exit of idle mode

	16.3 Retention mode

	17 Timers
	17.1 Timer registers
	17.1.1 TIMECONSTi register
	Table 80. TIMECONSTi bit fields

	17.1.2 TIMECOUNTi register
	Table 81. TIMECOUNTi bit fields

	17.1.3 TIMECONTROLi register
	Table 82. TIMECONTROLi bit fields

	17.1.4 TIMEDIVIDE register
	Table 83. TIMEDIVIDE bit fields

	18 Peripheral addresses
	18.1 Peripheral space address map
	Table 84. Peripheral address map

	18.2 Peripheral access
	Table 85. Peripheral access from local core
	Table 86. Peripheral access from other STBus initiators

	18.3 Peripheral addresses
	18.3.1 Interrupt controller and timer registers
	Table 87. Interrupt controller - BASE: INTCR_BASE

	18.3.2 DSU registers
	Table 88. Debug support unit - BASE: DSU_BASE

	19 Interrupt controller
	Figure 31. Interrupt controller
	19.1 Operation
	19.2 Interrupt registers
	19.2.1 INTPENDING registers
	Table 89. INT_INTPENDING0 bit fields
	Table 90. EXT_INTPENDING0 bit fields
	Table 91. EXT_INTPENDING1 bit fields

	19.2.2 INTMASK registers
	Table 92. INT_INTMASK0 bit fields
	Table 93. EXT_INTMASK0 bit fields
	Table 94. EXT_INTMASK1 bit fields

	19.2.3 INTMASKSET and INTMASKCLR registers
	Table 95. INT_INTMASKSET0 bit fields
	Table 96. EXT_INTMASKSET0 bit fields
	Table 97. EXT_INTMASKSET1 bit fields
	Table 98. INT_INTMASKCLR0 bit fields
	Table 99. EXT_INTMASKCLR0 bit fields
	Table 100. EXT_INTMASKCLR1 bit fields

	19.2.4 INTTEST registers
	Table 101. INT_INTTEST0 bit fields
	Table 102. EXT_INTTEST0 bit fields
	Table 103. EXT_INTTEST1 bit fields

	19.2.5 INTTESTSET and INTTESTCLR registers
	Table 104. INT_INTTESTSET0 bit fields
	Table 105. EXT_INTTESTSET0 bit fields
	Table 106. EXT_INTTESTSET1 bit fields
	Table 107. INT_INTTESTCLR0 bit fields
	Table 108. EXT_INTTESTCLR0 bit fields
	Table 109. EXT_INTTESTCLR1 bit fields

	20 Debugging support
	20.1 Debug resource access
	Table 110. Debug resource access
	20.1.1 DSR_PERMISSIONS register
	Table 111. DSR_PERMISSIONS bit fields

	20.2 Core debugging support
	20.2.1 Breakpoint support
	Figure 32. Levels of debug what can debug what

	20.2.2 Types of breakpoint
	Table 112. Summary of breakpoints

	20.2.3 Software breakpoints
	Table 113. DBG_SBREAK_CONTROL bit fields

	20.2.4 Hardware breakpoints
	Table 114. IBREAK_CONTROL bit fields
	Table 115. DBREAK_CONTROL bit fields

	20.2.5 Enabling and updating breakpoints
	20.2.6 Branch trace buffer
	Table 116. DBG_BT_CONTROL bit fields
	Table 117. Branch trace buffer control registers

	20.3 Debug support unit
	20.3.1 Architecture
	Figure 33. DSU architecture

	20.3.2 Shared register bank
	Table 118. DSR_REG values

	20.3.3 Debug support registers
	Table 119. DSR1 bit fields
	Table 120. DSR2 bit fields

	20.3.4 Debug support virtual PC register
	20.3.5 Soft reset

	20.4 Debug ROM
	20.4.1 Default debug handler
	Table 121. DSU registers as used by the default debug handler
	Table 122. Command register usage
	Table 123. Trap state reporting in the default debug handler

	20.5 User defined debug handler
	20.5.1 Other routines
	Table 124. Other routines in the debug ROM
	Table 125. Context saving in the debug RAM
	Table 126. Command register usage for DSU_FMT
	Table 127. Command states for DSU_FMT

	20.6 Debug RAM
	20.7 JTAG based host debug interface
	20.7.1 Protocol and flow control
	20.7.2 Command format
	Table 128. JTAG commands

	20.7.3 Handling events
	Table 129. Status of events and DSR1 bit fields

	20.8 On-chip host debug interface
	20.9 Non software controllable behavior

	21 Performance monitoring
	21.1 Events
	Table 130. PM_EVENT values

	21.2 Control register (PM_CR)
	Table 131. PM_CR bit fields

	21.3 Event counters (PM_CNTi)
	21.4 64bit clock counter (PM_PCLK, PM_PCLKH)
	21.5 Recording events
	21.6 Interrupts generated by performance monitors
	Table 132. PM_INT bit fields

	21.7 PM counters in idle mode
	21.8 STBus latency measurement

	22 Execution model
	22.1 Bundle fetch, decode, and execute
	Figure 34. Execution model

	22.2 Functions
	22.2.1 Bundle decode
	Table 133. Bundle decode functions

	22.2.2 Operation execution
	Table 134. Operation execution functions

	22.2.3 Exceptional cases
	Table 135. Operation execution functions

	23 Specification notation
	23.1 Variables and types
	23.1.1 Integer
	23.1.2 Boolean
	23.1.3 Bit fields
	23.1.4 Arrays

	23.2 Expressions
	23.2.1 Integer arithmetic operators
	Table 136. Standard dyadic operators
	Table 137. Standard monadic operators

	23.2.2 Integer shift operators
	Table 138. Shift operators

	23.2.3 Integer bitwise operators
	Table 139. Bitwise operators

	23.2.4 Relational operators
	Table 140. Relational operators

	23.2.5 Boolean operators
	Table 141. Boolean operators

	23.2.6 Single-value functions
	Table 142. Arithmetic functions
	Table 143. Integer conversion operators
	Table 144. Conversion operators from integers to bit fields
	Table 145. Logical functions
	Table 146. Saturating functions
	Table 147. Floating point functions
	Table 148. Divide and remainder functions

	23.3 Statements
	23.3.1 Undefined behavior
	23.3.2 Assignment
	23.3.3 Conditional
	23.3.4 Repetition
	23.3.5 Exceptions
	23.3.6 Procedures

	23.4 Architectural state
	Table 149. Scalar architectural state
	Table 150. Array architectural state

	23.5 Memory and control registers
	23.5.1 Support functions
	Table 151. Support functions

	23.5.2 Memory model
	Table 152. Memory read functions
	Table 153. Memory prefetch procedure
	Table 154. Memory write procedures

	23.5.3 Control register model
	Table 155. Control register read functions
	Table 156. Control registers write procedures

	23.5.4 Cache model
	Table 157. Procedures to model cache operations

	23.5.5 Architectural state model
	Table 158. Procedures to model changing architectural state

	23.5.6 Other functions
	Table 159. Procedures to model changing architectural state

	24 Instruction set
	24.1 Bundle encoding
	Figure 35. Syllable
	24.1.1 Extended immediates
	Table 160. Extended immediate functions

	24.1.2 Encoding restrictions

	24.2 Operation specifications
	24.3 Example operations
	add Immediate

	24.4 Macros
	Table 161. Macros

	24.5 Operations
	abss.ph Register
	absubu.pb Register
	add Immediate
	add Register
	add.ph Register
	addcg
	addf.n Floating point - Register
	addpc Immediate
	adds Register
	adds.ph Register
	addso Register
	and Immediate
	and Register
	andc Immediate
	andc Register
	andl Branch Register - Branch Register
	andl Branch Register - Register
	andl Register - Register
	avg4u.pb Register
	avgu.pb Register
	br
	break
	brf
	call Immediate
	call Link Register
	clz
	cmpeq Branch Register - Immediate
	cmpeq Register - Immediate
	cmpeq Branch Register - Register
	cmpeq Register - Register
	cmpeq.pb Branch Register - Register
	cmpeq.pb Register
	cmpeq.ph Branch Register - Register
	cmpeq.ph Register
	cmpeqf.n Branch Register - Register
	cmpeqf.n Register - Register
	cmpge Branch Register - Immediate
	cmpge Register - Immediate
	cmpgef.n Branch Register - Register
	cmpgef.n Register - Register
	cmpgeu Branch Register - Immediate
	cmpgeu Register - Immediate
	cmpgt Branch Register - Immediate
	cmpgt Register - Immediate
	cmpgt.ph Branch Register - Register
	cmpgt.ph Register
	cmpgtf.n Branch Register - Register
	cmpgtf.n Register - Register
	cmpgtu Branch Register - Immediate
	cmpgtu Register - Immediate
	cmpgtu.pb Branch Register - Register
	cmpgtu.pb Register
	cmple Branch Register - Immediate
	cmple Register - Immediate
	cmple Branch Register - Register
	cmple Register - Register
	cmpleu Branch Register - Immediate
	cmpleu Register - Immediate
	cmpleu Branch Register - Register
	cmpleu Register - Register
	cmplt Branch Register - Immediate
	cmplt Register - Immediate
	cmplt Branch Register - Register
	cmplt Register - Register
	cmpltu Branch Register - Immediate
	cmpltu Register - Immediate
	cmpltu Branch Register - Register
	cmpltu Register - Register
	cmpne Branch Register - Immediate
	cmpne Register - Immediate
	cmpne Branch Register - Register
	cmpne Register - Register
	convfi.n Floating point - Register
	convif.n Floating point - Register
	dbgsbrk
	dib
	div Register
	divu Register
	ext1.pb Register
	ext2.pb Register
	ext3.pb Register
	extl.pb Register
	extr.pb Register
	extract Immediate
	extractl Immediate
	extractlu Immediate
	extractu Immediate
	flushadd
	flushadd.l1
	goto Link Register
	goto Immediate
	imml
	immr
	invadd
	invadd.l1
	ldb
	ldbc
	ldbu
	ldbuc
	ldh
	ldhc
	ldhu
	ldhuc
	ldl
	ldlc
	ldw
	ldwc
	ldwl
	max Immediate
	max Register
	max.ph Register
	maxu Immediate
	maxu Register
	min Immediate
	min Register
	min.ph Register
	minu Immediate
	minu Register
	mov Branch Register - Branch Register
	mov Branch Register - Register
	mov Register - Branch Register
	mul.ph Register
	mul32 Immediate
	mul32 Register
	mul64h Immediate
	mul64h Register
	mul64hu Immediate
	mul64hu Register
	muladd.ph Register
	muladdus.pb Register
	mulf.n Floating point - Register
	mulfrac Immediate
	mulfrac Register
	mulfracadds.ph Register
	mulfracrm.ph Register
	mulfracrne.ph Register
	mulh Register
	mulhh Register
	mulhhu Register
	mull Register
	mullh Register
	mullhu Register
	mulll Immediate
	mulll Register
	mulllu Immediate
	mulllu Register
	nandl Branch Register - Branch Register
	nandl Branch Register - Register
	nandl Register - Register
	norl Branch Register - Branch Register
	norl Branch Register - Register
	norl Register - Register
	or Immediate
	or Register
	orc Register
	orl Branch Register - Branch Register
	orl Branch Register - Register
	orl Register - Register
	pack.pb Register
	packrnp.phh Register
	packs.ph Register
	packsu.pb Register
	perm.pb Immediate
	perm.pb Register
	pft
	pftc
	prgadd
	prgadd.l1
	prginsadd
	prginsadd.l1
	prginsset
	prginsset.l1
	prgset
	prgset.l1
	pswmask
	rem Register
	remu Register
	retention
	return Link Register
	rfi
	rotl Immediate
	rotl Register
	sadu.pb Register
	sats Register
	satso Register
	sbrk
	sh1add Immediate
	sh1add Register
	sh1adds Register
	sh1addso Register
	sh1subs Register
	sh1subso Register
	sh2add Immediate
	sh2add Register
	sh3add Immediate
	sh3add Register
	shl Immediate
	shl Register
	shl.ph Immediate
	shl.ph Register
	shls Immediate
	shls Register
	shls.ph Immediate
	shls.ph Register
	shlso Immediate
	shlso Register
	shr Immediate
	shr Register
	shr.ph Immediate
	shr.ph Register
	shrrne.ph Immediate
	shrrne.ph Register
	shrrnp Immediate
	shrrnp.ph Immediate
	shrrnp.ph Register
	shru Immediate
	shru Register
	shuff.pbh Register
	shuff.pbl Register
	shuff.phh Register
	shuff.phl Register
	shuffeve.pb Register
	shuffodd.pb Register
	slct Immediate
	slct Register
	slct.pb Immediate
	slct.pb Register
	slctf Immediate
	slctf.pb Immediate
	stb
	stbc
	sth
	sthc
	stl
	stlc
	stw
	stwc
	stwl
	sub Immediate
	sub Register
	sub.ph Register
	subf.n Floating point - Register
	subs Register
	subs.ph Register
	subso Register
	sxt Immediate
	sxt Register
	sync
	syncins
	syscall
	waitl
	wmb
	xor Immediate
	xor Register
	zxt Immediate
	zxt Register

	Appendix A Instruction encoding
	A.1 Reserved bits
	A.2 Fields
	Table 162. Operand fields
	Table 163. Formats

	A.3 Opcodes
	Table 164. Instruction encoding

	Appendix B STBus endian behavior
	B.1 Endianness of bytes and half-words within a word based memory
	B.2 Endianness of 64-bit accesses
	B.3 System requirements

	Glossary
	List of instructions
	Revision history
	Table 165. Document revision history

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

