Introduction

The STMod+ interface specification describes all the electrical and mechanical elements, necessary for use of the STMod+ connector in a design.

This connector enables the use of low-cost and small-form-factor daughterboards in STM32 board ecosystems.

The principle is to provide a set of interfaces such as SPI, UART, I²C and other functions such as RESET, INTERRUPT, ADC, PWM and general purpose I/Os.

All signals are multiplexed on a low-cost family of interface connectors. The connector pitch is 2 mm.

The host side (microcontroller of the main board) provides a female connector with 20 pins (2 rows x 10 pins). The daughterboard side is equipped with the corresponding male connector.

The host-interface signals are 3.3 V compatible, but the I/O voltage is not present on the connector; +5 V power supply and ground pins are present on each row of the connector. +5 V pins are used for Power delivery from the host to the daughterboard. Nevertheless, some daughterboards may be used as +5 V Power sources for host boards supporting this configuration.

Before plugging STMod+ daughterboards into a host, the user should check whether specific hardware configurations are necessary for functional compatibility. The host-board and daughterboard user manuals are available for this purpose on the STMicroelectronics website, www.st.com.

The following host boards from STMicroelectronics are compatible with STMod+ interface connection:

- 32L496GDISCOVERY
- 32F723EDISCOVERY
- 32L4R9IDISCOVERY
Contents

1 Description of the STMod+ signals for the host interface 5

2 Description of the STMod+ connectors 6
 2.1 Recommended connector references 6
 2.2 Connector placement 6
 2.3 Marking or labeling of the connectors 8

3 STMod+ electrical interface description 9
 3.1 DC characteristics for the STMod+ signal pins 9
 3.1.1 Input characteristics 9
 3.1.2 Output characteristics 9
 3.2 STMod+ power pins 10

4 Revision history 11
List of tables

Table 1. Pin assignment and description .. 5
Table 2. Input characteristics ... 9
Table 3. Output characteristics ... 9
Table 4. Document revision history ... 11
List of figures

Figure 1. Example of placement for daughterboard and host board (top view) 6
Figure 2. PCB top view . 7
Figure 3. PCB side view . 7
Figure 4. Top side marking . 8
Figure 5. Bottom side marking . 8
1 Description of the STMod+ signals for the host interface

According to the board constraints, some signals of the STMod+ interface may be shared with other host-board functions. All signals are 3.3 V compatible and some signals may be 5 V tolerant.

Refer to Table 1: x, y and z stand for a bus number identifier on the STM32 and bus numbers can be different from one host board to another. For detailed information, refer to the user manual of the host board and to the corresponding datasheet of the Arm®-based STM32 microcontroller available at the www.st.com website.

Table 1. Pin assignment and description

<table>
<thead>
<tr>
<th>STMod+ Pin number</th>
<th>Function(1) of the primary host mapped</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SPIx_NSS(4) / UARTy_CTS</td>
<td>Output / Input</td>
</tr>
<tr>
<td>2</td>
<td>SPIx_MOSIp(3) / UARTy_TX</td>
<td>Output / Output</td>
</tr>
<tr>
<td>3</td>
<td>SPIx_MISOp(4) / UARTy_RX</td>
<td>Input / Input</td>
</tr>
<tr>
<td>4</td>
<td>SPIx_SCK / UARTy_RTS</td>
<td>Output / Output</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground Reference</td>
</tr>
<tr>
<td>6</td>
<td>+5 V</td>
<td>Power Supply(5)</td>
</tr>
<tr>
<td>7</td>
<td>I2Cz_SCL</td>
<td>Input / Output</td>
</tr>
<tr>
<td>8</td>
<td>SPIx_MOSIs(3)</td>
<td>Output</td>
</tr>
<tr>
<td>9</td>
<td>SPIx_MISOs(4)</td>
<td>Input / Output</td>
</tr>
<tr>
<td>10</td>
<td>I2Cz_SDA</td>
<td>Input / Output</td>
</tr>
<tr>
<td>11</td>
<td>INT(6)</td>
<td>Input</td>
</tr>
<tr>
<td>12</td>
<td>RESET</td>
<td>Output</td>
</tr>
<tr>
<td>13</td>
<td>ADC</td>
<td>Input</td>
</tr>
<tr>
<td>14</td>
<td>GPIO(7)</td>
<td>Output</td>
</tr>
<tr>
<td>15</td>
<td>+5 V</td>
<td>Power Supply(5)</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>Ground Reference</td>
</tr>
<tr>
<td>17</td>
<td>GPIO(7)</td>
<td>Input / Output</td>
</tr>
<tr>
<td>18</td>
<td>GPIO(7)</td>
<td>Input / Output</td>
</tr>
<tr>
<td>19</td>
<td>GPIO(7)</td>
<td>Input / Output</td>
</tr>
<tr>
<td>20</td>
<td>GPIO(7)</td>
<td>Input / Output</td>
</tr>
</tbody>
</table>

1. In case two functions are provided on a STMod+ connector pin, it is allowed to connect two different I/O ports from STM32: the firmware manages the conflicts that may arise. MOSIs means used in Serial Daisy Chained-SPI mode and MOSIp means used in Parallel SPI mode. More alternate functions may be available from STM32, refer to the user manual of the host board and the corresponding STM32 datasheet available at the www.st.com website.

2. Instead of SPIx_NSS, a GPIO can be used as SPI Chip Select.
3. Pins 2 and 8 are the same SPIx_MOSI signals, but they must come from two different I/O ports.
4. Pins 3 and 9 are the same SPIx_MISO signals, but they must come from two different I/O ports.
5. Power Supply is Output or Input, depending on host / daughterboard configuration.
6. INT is an interrupt line.
7. GPIO ports with many alternate functions (as UART, I2C, SPI and analog inputs/outputs) are privileged to offer optimum flexibility.
2 Description of the STMod+ connectors

2.1 Recommended connector references

There are two different types of STMod+ connectors:
- Female: STMod+ connector for host board
- Male: STMod+ connector for daughterboard

They are both 20-pin connectors (2 rows x 10 pins) with 2 mm pitch contacts.

Manufacturer part number examples of right angle connectors to be used are:
- Female: SQT-110-01-F-D-RA (from SAMTEC) or FH200210C-12000 (from ATOM®)
- Male: TMM-110-01-L-D-RA (from SAMTEC) or PH200210C-07000 (from ATOM®)

For detailed mechanical specification of both connectors, refer to the relevant datasheet suppliers.

2.2 Connector placement

Figure 1 shows an example of a daughterboard and a host board placement of both connectors (right-angle connectors mounted on top side):

Figure 1. Example of placement for daughterboard and host board (top view)
Figure 2 shows the physical location of the pins versus mechanical placement for right-angle connectors.

The black-plastic-molded part of the connector must be placed just at the border all along the edge of the PCB as showed in Figure 2: the top row shows pins 1 to 10, and the bottom row shows pins 11 to 20.

The distance between the center of the pads and the PCB edge border is indicated below in mm.

The Figure 3 shows the PCB side view of the connectors.
When placing a connector on the host board, the board designer must pay attention that no mechanical interference (like components or connectors) prevent the daughterboard plug-in.

2.3 Marking or labeling of the connectors

Since none of the two connectors are keyed, it is mandatory to implement a PCB marking of pins 1, 10, 11 and 20 on the host board and on the daughterboard, to prevent insertion in the wrong orientation. This marking is present on both sides of the PCB and must be clearly visible.

If there is enough space on the host board, board designers may indicate the I/O port number allocation corresponding to each pin of the connectors thanks to a table description. It is also required to have the “STMod+” board marking close to the connector (on the top side).

The Figure 4 and Figure 5 show an example of a top and bottom side marking for a right-angle connector mounted on top side of a host board.

Warning: As STMod+ connectors do not have mechanical keying, users shall plug very carefully the connectors together. In case of misalignment of pins or row inversions, it is possible to damage boards definitively.

Note: To avoid wrong connection between an STMod+ host and any daughterboard, the user should handle the two boards with both STMod+ connectors visible on their mounted side, then align and plug them tightly. Check that the pin numbers are symmetric on both boards (see Figure 1).
3 STMod+ electrical interface description

As STMod+ connector provides alternate signals on same pins, electrical AC interface characteristics can be different according to the function used. For example: max in/out current, allowable capacitive load, maximum frequency, maximum rising / falling edges, need for line impedance and others.

For more details about the I/O electrical AC characteristics, refer to the host STM32 datasheet of the host board, available at the www.st.com website.

Generic DC characteristics regarding these pins are described in Section 3.1 and Section 3.2.

3.1 DC characteristics for the STMod+ signal pins

V_{DD} digital and analog pins reference voltage is 3.3 V typical. As a host may support other characteristics, for further details always refer to the host-board User manual and to the host-microcontroller datasheet at the www.st.com website.

3.1.1 Input characteristics

All pins are compliant with CMOS and TTL input levels. Input characteristics are listed in Table 2.

<table>
<thead>
<tr>
<th>Input levels</th>
<th>CMOS</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IL} max</td>
<td>$0.3 \times V_{DD}$</td>
<td>0.8 V</td>
</tr>
<tr>
<td>V_{IH} min</td>
<td>$0.7 \times V_{DD}$</td>
<td>2 V</td>
</tr>
</tbody>
</table>

3.1.2 Output characteristics

All pins are TTL and CMOS output compatible with JEDEC standards JESD36 and JESD52. Output characteristics are listed in Table 3.

<table>
<thead>
<tr>
<th>Output levels for $I = \pm 8 / \pm 8$ mA</th>
<th>CMOS</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{oh} min</td>
<td>VDD-0.4 V</td>
<td>2.4 V</td>
</tr>
<tr>
<td>V_{ol} max</td>
<td>0.4 V</td>
<td>0.4 V</td>
</tr>
</tbody>
</table>

Depending on host, some pins can even support higher current sourcing or sinking, for detailed characteristics refer to the microcontroller datasheet at the www.st.com website.
3.2 STMod+ power pins

The +5 V power supply pins can be used in two configurations: either as a Power source or as a Power delivery.

If +5 V pins are Power-delivery pins from the host board to the daughterboard, the voltage is assumed to be 5 V typical and the current available for the daughterboard should be in the range of 100 to 200 mA. Depending on the configuration of the host board and on the used daughterboard, greater or lower current could be supported.

If +5 V pins are Power-source pins from daughterboard to host board, the voltage could be either a 5 V typical regulated power supply, or an unregulated power supply.

When unregulated voltage is used as a Power source to the host board, the voltage must be in the range of 3.7 V to 5.25 V and the current sourcing capability should be in the range of 200 to 500 mA. To determine the necessary hardware configuration and the minimum amount of current source, refer to the User manuals of the host board and daughterboard available at the www.st.com website.
4 Revision history

Table 4. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-Apr-2017</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>16-Oct-2017</td>
<td>2</td>
<td>Updated document title. Added compatibility with 32L4R9IDISCOVERY.</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved