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Driving SiC MOSFETs with
unipolar gate voltage

Theory and experimental data
on 650 & 1200 V Gen3




Advancements in SIC MOSFET turn-off driving:
From negative bias to 0 V

We test the differences between unipolar (Vgs-on, Vgs-off: 18V, 0V)

and bipolar (18V, -5 V) gate driving strategies on a SiC MOSFET

SiC MOSFETSs are finding increasing application |
in high power converters due to better electrical, D! .
mechanical, and thermal performances than 0V turn-off offers design
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Miller turn-on effect during transitions

In power converters, minimizing the undesired Miller turn-on effect is

crucial for enhancing efficiency and reducing power losses

Miller turn-on due to high Miller current generation with Miller current generation with Duality of glitch phenomena
dv/dt transient in HB topology positive dv/dt negative dv/dt

This switch is
turning ON

g generating the half|
= bridge’s dvidt

nnnnnn [ Negative aviatrorLs | | Positive avidtfor Ls |

VGs_Ls 5 Risk of parasitic turn-on

i [ Low side Siz—-ves;;ko

N Risk of generatin i

ppppp

i g i
. | peakbelow AMR !

This switch is OFF

One effective strategy is to use a negative gate-source voltage Vgs-off during turn-off. This
approach helps to mitigate the effects of ringing and overshoot, which can otherwise lead to
unintended turn-on due to the Miller effect.



K elements in Miller turn on phenomenon

Vgs(th) threshold voltage is the minimum gate-to-source voltage to

create a conducting path between MOSFET source & drain terminals

Normalized gate threshold voltage

vs. temperature

Vasin) GADG060420231310VTH
(norm.)

Room temperature testing:

The threshold voltage is tested at room temperature
during production to ensure that the devices meet the
specified minimum threshold voltage.
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Temperature effects:

Vgs(th) tends to decrease at higher temperatures,
although this parameter is not typically measured during
production. This behavior must be considered in
applications where devices operate at elevated
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Parameter Test conditions

Vgg =0V, Ip=1mA

Drain-source breakdown voltage

V(BRr)DSS

Ipss Zero gate voltage drain current Vg =0V, Vpgs=1200V 10 HA temperatu res.
lgss Gate-body leakage current Vpg=0V,Vgs=-10to 22V +100 nA
Vas(n) Gate threshold voltage Vps = Vs, Ip =5 mA
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Why the capacitance ratio is important

Parasitic capacitance can lead to undesired energy storage and

release during switching, causing delays or unwanted oscillations

o

) Cep Crss
Ratio = = — <<1
C;s Ciss—Crss

T —TTTE—TTT =

Ciss Input capacitance - 1990
Coss Output capacitance Vps =800V, f=1MHz, Vgs=0V - 102 - pF
Crss Reverse transfer capacitance - 12 - pF
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A lower capacitance ratio in a device can reduce
susceptibility to the false turn-on phenomenon. This
means that the device is less likely to experience
unintended turn-on events during switching, which can
lead to additional power losses.

To improve device performance and reliability, it is
crucial to manage parasitic capacitance carefully. This
might involve optimizing the device design, selecting
appropriate materials, and using external components to
dampen unwanted effects.



Miller turn-on mitigation in MOSFETSs

The designer can find a list of the most important key elements which

allows optimizing performance

» Gate resistance: select a gate resistance such that the ratio is Rgon/Rgoff = 1.5. This

lgate = Cep "(dVgs/dt) ensures faster turn-off compared to turn-on, reducing the risk of Miller turn-on.

|
:

Rg on Cod_  External capacitance (Cgs-ext): add an external capacitance between the gate and
®—> priver AAN : II source. A few nF can be enough to improve performance and reduce Vgs spikes.
RG off (ﬁ_ o . . . . . . .
Ve on Ve of AN 1 Active Miller clamp: use a gate driver with an active Miller clamp to prevent the gate

voltage from rising due to the Miller effect during switching.

* PCB layout: optimize the PCB layout to minimize stray inductances, which can
exacerbate the Miller effect.

* Miller capacitance ratio: choose MOSFETs with a gate-drain to gate-source
capacitance ratio (Cgp/Cgs) as low as possible (much less than 1). This helps reduce
the Miller effect.

* Threshold voltage (Vs(th)): threshold voltage is key and the worst-case condition
must be considered for appropriate design robustness.

* Driving network: optimize the network according to the design boundary conditions.




Measurement results V
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Driving Rg choice

Choosing the right gate resistance involves a tradeoff between

switching speed and safe operation (VDS spike < Vdss)

* For Rgoff, use the lowest value to ensure the Absolute Maximum
Rating is not exceeded (with appropriate margin) at Vgs-off = -5 V.
Then reduce it for OV OFF to match the speed that would be obtained

with a negative driving voltage.
+ The same sequence on the left can then be used to choose the proper
‘ Rgon to mitigate the Vds spike across the complementary switch in the

= ? Are the Vds peaks < BVdss? half bridge. In this case, you don’t need to tune the Rgon value when
YES

moving to unipolar driving.

Eulll s * Once the optimal Rgon and Rgoff values have been identified,
set measurements are performed at room and high temperatures to assess
the behavior.

« Configurations with and without the Active Miller clamp are considered.




An example of how to select Rg

In these comparisons, a typical and safe switching speed is applied,

and the same speed is imposed in all the configurations tested

Turn off Turn on
A | BN 5  Om 7]

VDS (gray trace) is below 2 VDS (gray trace) is above [Lizoov
1200 V at selected Rgoff | 1200 V at selected Rgon |
- i
0N e
- : o TN
Selected Rgoff is OK Need to increase Rgon and test again



Double pulse test schematic and test conditions
using a 1200 V device

The comparison represents the E_,, vs I, using a 1200 V device with

27 mQ typ Gen3 SiC MOSFET as test vehicle

Test conditions:
« T,=150°C
:  Turn-on speed: di/dtyy =2 A/ns
C) —— cument  Turn-off speed: dv/dty = 35 V/ns
M * Vpp =800V
@ Rgon 3 0 Vgs-off with and without Active Miller clamp vs negative

Driver m G E driving voltage as PoR
L S e VGS(th) = 28 V
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VDD




Eorr [MJ]
@150°C

Erec [MJ]
@150°C
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Energy comparison bipolar vs unipolar driving

Eoff [uJ]] @Vgs-off -5V Eoff [uJ]] @Vgs-off OV
R —
5 20 40 Ip [A]
Erec[u)] @Vgs-0ff -5V emmmmm Erec[u)] @Vgs-off OV = Erec[ul] @Vgs-off 0V_no AMC

*Eoff is not influenced by Active Miller clamp

using a 1200 V device

1200
1000
800

600

Eon [MJ]
@150°C

400

\

200

0
5 20 40 1y[A]

Eon[uJ] @Vgs-off -5V Eon[uJ] @Vgs-off OV Eon[uJ] @Vgs-off 0V_no AMC
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0
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e ESW[UJ] @VES-Off -5V e EsW[UJ] @VgS-0ff OV === Esw[uJ] @Vgs-0ff 0V_no AMC
Conditions: Turn-on speed: di/dtyy = 2A/ns - Turn-off speed: dv/dtyer = 35V/ns 11




Energy comparison bipolar vs unipolar driving
using a 1200 V device

Eoff (turn-off speed: dv/dt,.c = 35 V/ns)

From 0 to 20% higher loss with 0 V turn off
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Eoff [uJ]] @Vgs-off -5V = Eoff [ul]] @Vgs-off OV

"l Eoff is not influenced by Active Miller clamp



Energy comparison bipolar vs unipolar driving
using a 1200 V device

Eon (turn-on speed: di/dtg,, = 2A/ns)

Almost no differences between negative and

0 Vgs-off with Active Miller clamp
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Eon[ul)] @Vgs-off -5V Eon[ul)] @Vgs-off OV
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Energy comparison bipolar vs unipolar driving
using a 1200 V device

Erec (turn-on speed: di/dt,, = 2A/ns)

In all the analyzed cases, the contribution of Erec is very small in comparison with Eon
and Eoff. Even if there are small differences between negative and 0 Vgs-off, their

contribution to the overall power losses is negligible
600 Esw @ Id = 40A
Vgs-off =-5V
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Erec[u)] @Vgs-off -5V e====Frec[u)] @Vgs-off OV

Erec[u)] @Vgs-off OV_no AMC = Eoff mEon = Erec
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Double pulse test schematic and test conditions
using a 650 V device

The comparison represents the E_, vs I, using a 650 V device with

29 mQ, . Gen3 SiC MOSFET as test vehicle

typ

Test conditions:
« T,=150°C
:  Turn-on speed: di/dtyy = 1.5 A/ns
C) —T— Cument  Turn-off speed: dv/dtyer = 18 V/ns
Sensing * Vpp =400V
@ Rgon 3 0 Vgs-off with and without Active Miller clamp vs negative

Driver m G E driving voltage as PoR
L S e VGS(th) = 28 V

>

VDD
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Eorr [MJ]
@150°C

Erec [MJ]
@150°C
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Energy comparison bipolar vs unipolar driving
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*Eoff is not influenced by Active Miller clamp
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Energy comparison bipolar vs unipolar driving I
using a 650 V device

Eoff (turn-off speed: dv/dt,.c = 18 V/ns)

Almost no differences in Eoff with O V turn off
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Energy comparison bipolar vs unipolar driving
using a 650 V device

Eon (turn-on speed: di/dt,, = 1.5 A/ns)

Almost no differences between negative and
0 Vgs-off with Active Miller clamp
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Energy comparison bipolar vs unipolar driving
using a 650 V device

Erec (turn-on speed: di/dt,, = 1.5 A/ns)

In all the analyzed cases, the contribution of Erec is very small in comparison with

Eon and Eoff. Even if there are small differences between negative and 0 Vgs-off,
their contribution to the overall power losses is negligible.
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Experimental results: waveforms




Turn off waveform comparisons
using a 1200 V device

VDD =800V, ID=40A,T=25°C Vgs-on=0V (AMC/no AMC),
Vgs-off =-5V, Rgon = 27 Q, Rgon = 27 Q, Rgoff = 4.7Q
Rgoff =8.2 Q
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Turn off waveform comparisons
using a 1200 V device

VDD =800V, ID=40A,T=150°C Vgs-on=0V AMC Rgon =27 Q,
Vgs-off = -5V, Rgon = 27 Q, Rgoff =4.7 Q
Rgoff =8.2 Q
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Turn on waveform comparisons
using a 1200 V device

VDD =800V, ID=40A,T=25°C Vgs-off =0V AMC, Rgon =27 Q,
Vgs-off =-5V, Rgon = 27 Q, Rgoff =4.7 Q

5 _ Rgoff =8.2 Q
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Turn on waveform comparisons
using a 1200 V device

VDD =800V, ID=40A,T=150°C Vgs-off =0V AMC, Rgon =27 Q,
Vgs-off =-5V, Rgon = 27 Q, Rgoff =4.7Q

Rgoff =8.2 Q
R e |

e Vgs HS

Vds LS

;. ST | CASE CASE
- O : Legend Vgs OFF =-5V | Vgs OFF = 0V
I / /m“v\’/ BN el " o T g , AMC
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R 121 ~-EAT 4 Vds LS
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Horizontal q Acquisition Id
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3.125 GS/s RGO r: 3. 125 GS/s 320 pipt High Res: 12 bit P
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#34D33VE...



Turn on waveform comparisons
using a 1200 V device

VDD =800V, ID=40A, T=25°C Vgs-off =0V no AMC, Rgon = 27 Q,

Vgs-off =-5V, Rgon = 27 Q, Rgoff =4.7 Q
3 Rgoff =8.2 Q
i Vgs L
WA VY .
R 13-CfH Py - i P

0V NO AMC \ 1370 /

| gs ey /’i | | / Eon [uJ] \
o S S 5V ( 1100 )
: P : :

CASE CASE
Legend Vgs OFF = -5V | Vgs OFF =0V
NAMC
Vgs LS
Vgs HS
Vds LS
Vds HS
. Id
eeeee
AR v 1 oo ks b a08% :




Turn on waveform comparisons
using a 1200 V device

VDD =800V, ID=40A,T=150°C Vgs-off =0V no AMC, Rgon =27 Q,

Vgs-off =-5V, Rgon = 27 Q, Rgoff =4.7 Q

_ Rgoff =8.2 Q
ﬂwﬂ\,/““w/wnv/‘

Ll

B
A SN Vgs LS
g 3 o -
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0V NO AMC \ 1055 /
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Legend Vgs OFF =-5V | Vgs OFF =0V
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Turn on waveform comparisons
using a 1200 V device

VDD =800V, ID=40A,T=25°C Vgs-off =0V no AMC, Rgon =27 Q,
Vgs-off =0 VAMC, Rgon =27 Q, Rgoff=4.7 Q

SR:3.125 GS/s 320 po/pt

Rgoff =4.7 Q
A |
Vgs LS
/ Eon [ud] \
oV AMC ( 1220 )
0V NO AMC \ 1370 /
CASE CASE
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AMC NAMC
Vgs LS
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Vds LS —_—
Vds HS —_—
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400 ns 1 event Agto, : An(
¥ 43.8% S‘XEQRSQ& . P




Turn on waveform comparisons
using a 1200 V device

VDD =800V, ID=40A,T=150°C Vgs-off =0V no AMC, Rgon =27 Q,
Vgs-off =0 VAMC, Rgon =27 Q, Rgoff=4.7 Q

. Rgoff = 4.7 Q
" <
/ Eon [uJ] \
oV AMC ( 984 )
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Reverse recovery waveforms comparison
using a 1200 V device

VDD =800V, ID=40A,T=25°C Vgs-off =0V AMC, Rgon =27 Q,
Vgs-off =-5V, Rgon = 27 Q, Rgoff =4.7 Q
Rgoff 8 20Q

R8-CHZ

N

Erec [uJ] / Irm [A]

-5V 45

B
oV AMC 57 \ 21 /

CASE CASE

Legend Vgs OFF =-5V | Vgs OFF =0V
- Vgs LS
B CH4 ‘vsr*¢‘0000¢w*~~ e
Vgs HS
R DI : : . VdS HS Vds LS
Vds HS
Id

200 Vidiv
3.125 GS/s .
#34D33V8...

0 Vdiv
3.125 GS/s
#34D33Va...

< 10V/d
3.125 GS/s
#34D33V8...

i) || b= SRBWZSGS/ 320ps/p
1.25kpts ¥ 40.8%




Turn off waveform comparisons
using a 650 V device
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VDD =400V, ID=40A, T=25°C Vgs-on =0V (AMC/no AMC),

i i T kA ~ Vgs-off=-5V, Rgon = 47 Q, Rgon =47 Q, Rgoff =10 Q
_ Ny R Rgoff =16 Q

N

A
A

i\\ \J.‘ \ /\‘/
S o —
A

/ Alsa R Eoff [uJ]
@ o A SR EE
IR 5V 322
&
0V AMC /
Measure P1:max(C3) P2:max(C2) P3:min(C1) P4:max(C1) P5:min(C6) P6:max(C6) P7:area(F1) P8--- P9--- P10--- P11:--- P12:--- 325
value 40.10A 5402V -1007V 1855V -843V -469V 321.53893 pJ OV nO AMC
status v v v v v v 4 - 4
ci @ga F1 (C2°C3)| : HD ||Tbase 1 ngl|Trigger EAES
10.0 V/div| 100 V/div| 10.0 A/div| 5.00 V/div| i 12 Bits 50.0 ns/div| Normale 172 V|
10.000 V ofst -300.00V/ -30.000A|  15.000 V ofst 5kS 10 GSis| Fronte _Positivo)
A 1 N TELEDYNE LECROY|
A Everywhereyoulook CASE CASE
max \ A
e o o - e i i s Y e R AR 5 T Y, e Sk S . 7 2 T i S Tt S G et % = _ _
S VY N Legend Vgs OFF = -5V Vgs OFF =
o mMax \ {
N . / ov
RS s /\/\ [
SAv
{1 Vout
) A 1A £\ e

/

Vds LS —_— —_—

o
e
>
5
a

&
Measure P1:max(C3) P2:max(C2) P3:min(C1) P4:max(C1) P5:min(C6) P6:max(C6) P7:area(F1) P8:--- P9--- P10:---- P11:--- P12:----
value 4030A 5401V 280V 1786V 556V -408 mV 325.01912 pJ

S'(U S

v v v v v v v 3 0
| % F1 (C2* : HD ||Tbase 1 ns||Trigger (8 ES)
100 V/div| 10.0 A/div| 5.00 V/div| 100k 12 Bits 50.0 ns/div|Normale 172V
10.000 V ofst| -300.00 V| -20.000 A 15.000 V ofst| 50.0 | 5kS 10 GS/s|Fronte Positivo)




Turn off waveform comparisons
using a 650 V device
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Turn on waveform comparisons
using a 650 V device
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Turn on waveform comparisons
g a 650 V device
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Turn on waveform comparisons
using a 650 V device
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Turn on waveform comparisons
using a 650 V device
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Turn on waveform comparisons
using a 650 V device
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Turn on waveform comparisons
using a 650 V device
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Reverse recovery waveforms comparison
using a 650 V device
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Summary and conclusions




Energy comparison bipolar vs unipolar driving
Summary of test results using a 1200 V device

Experimental data on 1200V; SiC MOSFET Gen3; 27mQ typ

Total switching energy vs. | Test condition:

« T,=150°C,
1800  Turn-on speed: di/dtoy = 2 A/ns
pu—— * Turn-off speed: dv/dtyer = 35 V/ns
- VDD = 800V

» 0 Vgs-off with and without Active Miller clamp vs
negative driving voltage as PoR

900

Esw [w]

P
Results:
_—:I * In the case investigated (0 V Vgs-off and AMC) the gap
between unipolar and bipolar driving is negligible
0 ID [A] especially at high load
> 20 40 « Removing the Active Miller clamp introduces additional
N - S switching losses in the range of 5-10%.

Lys



Energy comparison bipolar vs unipolar driving
Summary of test results using a 650 V device

Experimental data on 650V; SiC MOSFET Gen3; 29mQ typ

Total switching energy vs Iy

Test condition:

1000 . T,=150°C,

200 * Turn-on speed: di/dtyy = 1.5 A/ns

* Turn-off speed: dv/dtyer = 18 V/ns

« VDD =400 V

» 0 Vgs-off with and without Active Miller clamp vs
negative driving voltage as PoR
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400
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20
w ([
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5 10 20

mEsw @ Vgs-off -5V mEsw @ Vgs-off -0V ®Esw @ Vgs-off -OV_no_AMC

Results:

* In the case investigated (0V Vgs-off and AMC) the gap
between unipolar and bipolar driving is negligible
especially at high load

* Removing the Active Miller clamp introduces additional
switching losses in the range of 5-10%.

o O

40 I [A]



Conclusions

Active miller clamp is recommended when applying 0V OFF Vgs

* Ryon @and Ry (and the driving circuit in general) can be tuned to optimize performance,
minimizing spikes and switching losses with negative and with zero-volt V¢ .

« The comparison between -5V and 0V shows negligible differences in case of typical threshold
voltage (Vgs(th) typ).

 For design robustness, system and driving circuit design should consider worst case Vgg(th) and
temperature, factoring the additional energy loss in comparison with the case at typical V¢(th) .
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