Introduction

The STEVAL-PCC020V1 USB to I²C UART board interfaces a Windows®-based PC with STNRG digital power supply controllers such as STNRG011.

It is basically a bidirectional bridge between USB and I²C/UART buses and embeds an on-board power supply to communicate and program the STNRG IC without need of mains.

The associated GUI allows monitoring the status of the digital controller in real-time and tuning specific parameters according to customers’ needs.

Figure 1. STEVAL-PCC020V1 interface board
1 Interface board aim

Figure 2. Customer typical application shows a customer typical application based on STNRG011 for the power supply section.

The host microcontroller receives information only from the STNRG011 using an opto-isolated connection: STNRG011 transmits metering information (instantaneous power) continuously, and the black box content at reset.

Hence, the host microcontroller does not have access to the STNRG011 optional E²PROM where the patch and black box history are stored.

Figure 3. STNRG011 in demo/debug configuration shows the STNRG011 on the STEVAL-PCC020V1 interface board or during debug configuration.

In the latter case, you can access the external optional E²PROM using the I²C protocol to program the associated patches and reset the black box content.

You also have to access STNRG011 using UART bidirectional communication to:

- program the STNRG011 NVM content to change specific parameters according to customers’ needs
- display the system specific parameters in real-time to check its behavior during the debug and integration phases.
To minimize STRGN011 pin count, UART and I²C interfaces share the same pins. The interfaces are not isolated from the mains as they are located on the offline converter primary side.

Important: This adapter board is exclusively designed to interface with STNRG011 products.

In the final customer application, the tasks performed by the interface would be handled directly by the host microcontroller or the application processor.
2 Getting started

2.1 STEVAL-PCC020V1 interface board overview

The STEVAL-PCC020V1 interface board key features are:

- Bidirectional communication between PC (USB) and STNRG011
- Self-powered from the USB line
- On-board 19 V generation for STNRG011 programming
- Electric Isolation between USB and other board electronics
- I²C bus running at up to 1 MHz
- A UART bus running at 19200 bps
- UART and I²C bus muxed together on the same interface
- On-board firmware upgrade through USB port
- Display power metrics (AC voltage, PFC power)
- Access to STNRG M24C32 optional E²PROM (used to store patch, calibration and event history data)
- Program NVM settings
- RoHS compliant

2.2 GUI overview

The GUI key features are:

- Runs on Windows XP, Windows 7 (.NET 4.0 framework needed)
- Real-time monitoring of the digital controller status
- Access to STNRG011 NVM parameters
- Access to STNRG011 external E²PROM for patch upload, calibration and event history
- Embedded PFC calibration wizard

2.3 Package contents

The STEVAL-PCC020V1 package includes:

- Hardware
 - the interface board
 - a 1.8 m USB A to USB mini-B cable
 - a 15 cm 6-wire flat cable for target connection to the STNRG011 device
- Software
 - USB drivers
 - PC GUI installation package

Note: The complete software package is available at www.st.com.

2.4 System requirements

To use the STEVAL-PCC020V1 interface board, you need a PC with Windows® operating system.

The graphical user interface (GUI) works with Microsoft Windows XP or later versions and .NET Framework 4.0.

Note: The .NET Framework 4.0 is not included in the Windows XP installation package.
3 Hardware description and setup

3.1 Block diagram

3.2 Galvanic isolation

The STNRG011 has to be placed on the offline converter primary side: the galvanic isolation between the USB and the remaining electronic of the board prevents any voltage from reaching the host PC and causing electrical damage or interference.

3.3 Power supply

The STEVAL-PCC020V1 interface board is self-supplied via the 5 V USB connector.

This voltage directly supplies U3 and the related circuitry.

A dual isolated DC-DC module (U5) is used to supply the remaining part of the board, maintaining the isolation among the PC and the target sides.

U5 generates two supplies, loosely regulated (+5 V and +20 V).

3.3.1 MCU subsystem supply (5 V)

The +5 V supply is later converted to a stable and clean +3V3 thanks to the linear regulator U6, which is always on.

3.3.2 VCC generation (20 V)

The +20 V is always generated from +5 V and +15 V cascaded together (VOUT2- is referenced to VOUT1+ in place of ground).

This voltage is later on supplied by the linear regulator U8 which has the following roles:

- to generate a stable +18.5 V;
- to act as a switch; U8 is enabled thanks to the MCU GPIO PA14 configured in open drain mode. When the MCU wants to enable the VCC generation, PA14 is driven low.

D5 provides an OR-ing diode which, by default, is short-circuited by R17 resistor (0 W).
3.3.2.1 VCC soft start

At VCC generation switch on, VCC is typically decoupled by a 100 to 200 µF capacitor on the STNRG011 device.

If the regulator is switched on abruptly, an inrush current is generated that cannot be sustained by the upfront DC-DC converter, which then enters current limitation.

Since the +20 V is generated by cascading +5 V and 15 V, the current limitation also impacts the +5 V supply (hence the MCU).

When the MCU supply drops below the **PowerOnReset** threshold, the MCU resets and the board reboots.

To avoid this behavior, the linear regulator U8 is switched on via a **soft start** using a PWM enable signal (which limits the current on the upfront DC-DC).

When VCC has reached a stable value (that is, the VCC capacitor is charged), the enable signal remains in the steady-state condition (always on, so always low).

Soft start phase usually lasts about 120 ms.

3.3.2.2 NVM programming

The STEVAL-PCC020V1 interface board provides a VCC voltage to the target device that is high enough for an NVM programming operation.

STNRG011 programming requirements are +18 V and 35 mA max. current.

If the VCC on the target device is < 17 V, the programming VCC can be simply connected to the target VCC through a couple of OR-ing diodes.

The 19 V supply current delivered is limited to 100 mA by the on-board LDO (U8).
3.4 **USB bridge**

The communication between the STEVAL-PCC020V1 and the PC is managed by the latter as a standard serial peripheral; the IC U3 converts the USB connection into a virtual COM port (refer to the electrical schematic).

By default, the virtual COM port operates at 921600 bps.

A yellow LED near the mini-B USB connector turns on when the CP2102 has been recognized (enumerated) by the host operating system.

The VCP RX and TX signals are then isolated thanks to the opto-couplers U1 and U2 and connected to the STM32F3 (U9) microcontroller USART1.

Important: The USB port and the remaining part of the board are isolated from the mains.

The microcontroller performs:

- **Conversion between the host UART and I²C protocols**
 - The I²C speed can rise up to 1 MHz (maximum speed allowed by the STNRG011).
 - The STM32F3 allows bidirectional communication between the PC and the target device through the UART to I²C conversion.

- **Conversion between the host UART and the STNRG011 UART**.

This is mainly baud rate matching: STNRG011 operates at 19200 bps, whereas the host UART operates at 921600 bps.

Note: The microcontroller also manages the muxing of the UART and I²C protocols on the same interface.

3.5 **VCC monitoring**

The MCU also monitors the STNRG011 VCC line voltage.

STNRG011 VCC is sampled periodically by the MCU via a simple resistive bridge divider plus a low-pass filter using R20, R21 and C19. The divider ratio is 10/78=1/7.8.

The divided voltage is then sent to STM32F3 PA0 pin on a regular 12-bit ADC.

For instance, this allows preventing the use of the on-board VCC when the STNRG011 is already operating.

Note: This feature accuracy is ±100 mV.
4 Using the board

4.1 Board connectors, LEDs and buttons

Figure 6. STEVAL-PCC020V1 interface board connectors

Figure 7. STEVAL-PCC020V1 interface board status LEDs

Table 1. STEVAL-PCC020V1 LEDs (ON, OFF, blinking state)

<table>
<thead>
<tr>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>Blinking</td>
</tr>
<tr>
<td>VCP recognized by the PC</td>
<td>VCP not recognized/ inactive</td>
<td>Normal operation</td>
<td>Firmware error</td>
</tr>
</tbody>
</table>
4.2 How to connect the STEVAL-PCC020V1 interface board to the offline converter

Figure 8. STEVAL-PCC020V1 interface board typical connection

Procedure

Step 1. Connect the STEVAL-PCC020V1 interface board to a PC via a USB cable
Step 2. Connect the interface board and the offline converter board together through the 6-wire flat cable
Step 3. Connect the offline converter to the load
Step 4. Connect the mains

Caution:
You should never plug or unplug the interface board while the connection is running (for example, when the offline converter is running). If the 5 V UART signals and +15 V VCC (typ.) are connected when the GND is not yet connected, the STNRG011 or the interface board might be damaged.
5 Software installation

You have to install the USB driver and the PC GUI before using the STEVAL-PCC020V1 interface board.

5.1 Virtual COM port driver installation (SiLabs CP2102)

To use the STEVAL-PCC020V1 interface board, first install one of the USB drivers located in the CD folder Driver \CP210x\VCP_Windows:

- CP210xCVCPInstaller_x86.exe (for 32-bit OS)
- CP210xCVCPInstaller_x64.exe (for 64-bit OS)

Alternatively, you can find the latest version of the drivers at SiLabs.

When the interface board is plugged to the PC, the driver is automatically installed.

5.2 GUI installation

Procedure

Step 1. Launch HVDPS-STNRG011-Setup.msi
Step 2. Follow the installation wizard instructions.

By default, the GUI is installed under C:\Program Files (x86)\STMicroelectronics\STNRG011 GUI.

The GUI installer creates an icon in the Start menu, under STMicroelectronics\STNRG011.

Figure 9. HV-DPS GUI icon

Note: If a previous version of the software has already been installed, it must be uninstalled through the Windows Control Panel Uninstall option.
6 GUI introduction

6.1 GUI features

The STNRG011 GUI is designed for debugging power supply applications.

It allows:

- reading instantaneous power metering information and PFC operating modes;
- reading and modifying STNRG011 NVM parameters defining the supply behavior (gain, fault management, delays, PFC/LLC parameters, etc.);
- reading event history data (fault history, stored in optional E²P);
- programming optional E²P patches;
- accessing internal firmware variables (patch needed).

6.2 GUI startup screen

The GUI is split in the following areas:

1. **Menu Bar**: used to select the operation mode, i.e. to communicate with STNRG011, display logs, access E²P directly, NVM programming, etc.
2. **Metering or Event tabs**: displays power metering information or event history
3. **Traces and Status**: internal debug traces and status bar showing the STNRG011 current status

6.3 Connection management

At startup, the GUI detects automatically the COM port to be used (the GUI selects the CP2102-based VCP).

In case of multiple CP2102, you have to manually select the right COM port via the **COM Port** menu.

You can also open or close the COM port via the menu shown below.
Once the right COM port is selected, the GUI tries to communicate with the interface board microcontroller, as shown below.

Figure 12. Traces during GUI connection

Once the microcontroller has been detected, the GUI displays the associated hardware and firmware version, and build date.

Note: If the GUI does not find a SiLabs-based VCP, an error message appears. Check in the Device Manager if the SiLabs VCP is correctly recognized by pressing plus Pause and selecting Device Manager, as shown in the following figure.
6.4 GUI settings

You can access GUI settings through the Application→Settings menu.
Some settings (e.g. GUI refresh rate or power averaging) can be changed in real-time.

Pressing the **Save Settings** button saves the settings into the `config.xml` file.

Table 2. GUI setting parameters

<table>
<thead>
<tr>
<th>Serial Port</th>
<th>Optional Tx Delay. Leave it to 0ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>UART Tx delay (ms)</td>
<td></td>
</tr>
<tr>
<td>UART speed (ATE mode)</td>
<td>STNRG011 UART speed during logging phase</td>
</tr>
<tr>
<td>UART speed (Normal mode)</td>
<td>STNRG011 UART speed during ATE mode</td>
</tr>
<tr>
<td>Log UART messages from STNRG011</td>
<td>Option to log the UART exchange on a file (uart_trace.txt on the GUI executable directory)</td>
</tr>
<tr>
<td>M24C32 E2P address</td>
<td>Hardware address of the external E2P. STNRG011 is always assuming 4 (100)</td>
</tr>
<tr>
<td>ADC PFC_FB full scale</td>
<td>Full scale equivalent value of the PFC_FB pin which is the voltage expected at the bulk capacitor when the voltage at the PFC_FB pin is at the ADC full scale (2.5 V). Keep this value if you are using the standard resistive bridge divider (9 MΩ/46.7 kΩ)</td>
</tr>
<tr>
<td>Default paths</td>
<td></td>
</tr>
<tr>
<td>Patches path</td>
<td>Default path for the E2P patches</td>
</tr>
<tr>
<td>NVM path</td>
<td>Default path for the NVM settings</td>
</tr>
</tbody>
</table>
Serial Port

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default Watch files</td>
<td>Default path for the Watch settings, used to monitor internal variables of the firmware</td>
</tr>
<tr>
<td>Default Pwr file</td>
<td>Calibration file for the power metering</td>
</tr>
</tbody>
</table>

GUI settings

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUI refresh rate(^{(1)})</td>
<td>Delay in ms between each GUI refresh</td>
</tr>
<tr>
<td>Concatenate commands(^{(1)})</td>
<td>Messages sent to STNRG are concatenated to avoid USB overhead (Write1-Write2..Read1-Read2 instead of Write1-Read1-Write2-Read2.....)</td>
</tr>
<tr>
<td>STNRG011 periodic polling</td>
<td>Periodically polls STNRG011 status</td>
</tr>
<tr>
<td>Power averaging</td>
<td>Averaging filter for real-time power display</td>
</tr>
<tr>
<td></td>
<td>0 = No averaging 10 = Maximum averaging</td>
</tr>
</tbody>
</table>

1. *Used only when Power Monitor window is active*
7 GUI normal mode

7.1 Power metering

During normal mode, STNRG011 sends the information used to compute the actual power delivered by the PFC, that is:

• the estimated power computed by the power integration algorithm
• some factors used for power estimation correction:
 – Vin (mains) voltage
 – PFC mode of operations (DCM, Valley Skipping, TM)
 – Time between PFC pulses (DCM mode only)
 – Phase angle modulation ratio (at low power only)
• Some flags about temporary PFC faults (Deep DCM, PFC_OCP1, etc.)

![Figure 15. GUI metering information panel](image)

Note: If STNRG011 power messages are disabled, the boxes shown above are empty.

Important: Power metering is not available in Burst mode (to save MCU power energy, hence efficiency at low power).

7.2 PowerGraph report

By checking the box Display PowerGraph, the history of PowerGraph event is displayed, to see the long-term stability of the power supply or mode changes versus load.

![Figure 16. GUI PowerGraph report](image)
7.3 Event history and factory data pre-requisite: E²P

Event history and factory data are available only if an external E²PROM (M24C32) is connected to the STNRG011. This allows retrieving some information in case of system failures.

Since the fault history and factory data content is only sent at system power up, you have to turn the power supply off and on to get the status.

However, if UART uplink communication is enabled (patch needed), it is possible to send a request to the STNRG011 to immediately send the event and fault history by pressing the Get Factory Data button.

Another option is to directly read the E²P content (refer to Section 10.3 E²P parameter editor).

7.4 Faults history

The fault history is stored in the optional external E²P.

Faults are stored in an 8-position circular buffer, hence only the last 8 faults are stored.

At each power up, the STNRG011 sends the content of the fault history (which is a sort of black box) to the host.

The GUI displays the fault in chronological order (the latest at the bottom).

Note: There are two types of faults:

- Standard fault → 1 position per fault in the circular buffer
- Fault with debug information → 2 positions per fault in the circular buffer; it provides more firmware information.

Figure 17. GUI fault history

The number of faults stored depends on the fault type (between 4 and 8).

For instance, the figure above shows:

- a fault PFC_PFC_UVP with AC presence (position 3), which is using two positions in the buffer, and the previous fault is at position 1
- two shutdown events (XCAP discharged—positions 4 and 5)
- a BrownOut event (Vac < 70 Vrms—position 6)
- two shutdown events (positions 7 and 0)
7.5 Factory data display

Like faults history, factory data are sent at each STNRG01 power up.

The table below shows the factory data parameters and lists some fields as examples for a possible user application.

<table>
<thead>
<tr>
<th>Voltage monitoring</th>
<th>Calibration Data</th>
<th>Time Record</th>
<th>Serial Number Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout1</td>
<td>PFC Voltage</td>
<td>Running Time</td>
<td>Serial Number, 20 char</td>
</tr>
<tr>
<td>Vout2</td>
<td>Wattage</td>
<td>On/Off Cycles</td>
<td>Customer factory field, not used by firmware nor GUI</td>
</tr>
<tr>
<td>Vout3</td>
<td></td>
<td>Error Count</td>
<td></td>
</tr>
<tr>
<td>Vout4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Customer factory field, not used by firmware nor GUI

PFC inductance, used by the power computation algorithm

Power supply cumulated active time

Number of power supply restart events

Number of errors

Customer factory field, not used by firmware nor GUI

Customer factory field, not used by firmware nor GUI
8 Power metering calibration

8.1 Background

The STNRG011 provides to the host continuous power metering information about:

- PFC integrated power in raw format (resulting from the PID integrator)
- Input voltage
- PFC operating mode and skipping area
- PFC fault status

The instantaneous raw power estimation can be computed by:

\[
P_{\text{Raw}}[W] = P_{\text{FC}_{\text{lsb}}} \times \left[128 \times \left(\frac{\text{FSR}_{\text{Vin}}}{256} \right)^2 \times \frac{t_{\text{smed}}}{L} \right]
\]

where

- \(P_{\text{Raw}} \) is the PFC power (not corrected)
- \(P_{\text{FC}_{\text{lsb}}} \) is the PFC integrated power in raw format
- \(\text{FSR}_{\text{Vin}} \) is the full scale ADC voltage reading = 480 V
- \(t_{\text{smed}} \) is the smed event (PFC timer) minimal duration = 1/60 MHz = 16.67 ns
- \(L \) is the PFC inductor value (typically 250 µH on the evaluation board)

The raw power is almost proportional to the actual PFC power.

On the basis of the PFC mode and the input voltage, it is possible to correct the raw power to deduce the actual power consumption.

As a lot of parameters have to be taken into account, a very simple approach is to use a calibration method for each PFC operating mode.

The output power is also compensated with skipping area and input voltage, via the equation below:

\[
P_{\text{out}}[W] = (P_{\text{Raw}} \times c_{\text{Mode}} \times c_{\text{Vin}}) \times c_{\text{PAM}} \times (1 + c_{\text{Tdel}})
\]

where

- \(P_{\text{Raw}} \) is the raw power
- \(c_{\text{Mode}} \) is the PFC mode correction factor (typically between 0.7 and 1)
- \(c_{\text{Vin}} \) is the input voltage correction using a second order polynomial \((a+b*\text{Vin}+c*\text{Vin}^2)\). However since we typically consider only two voltages (EU/US), the second order term is set to 0
- \(c_{\text{PAM}} \) is the skipping area correction factor (1 for no PAM, 0.26 for minimum PAM)
- \(c_{\text{Tdel}} \) is the DCM mode correction using a first order equation \((a+b*T_{\text{del}})\)

8.2 Metering calibration

To display the power metering correction factors described in the previous section, go to Application→Power Metering Calibration menu; the GUI highlights the current PFC operating mode in yellow.
To calibrate the PFC mode parameters:

Procedure

1. **Step 1.** Set a load to make the systems enter the transition mode (near nominal power, e.g. 150 W)
2. **Step 2.** Enter the associated reference power read on a precision power meter in the **Ref Pwr** box
3. **Step 3.** Press the **Normalize** button.

The GUI automatically computes and updates the correction factor associated to the current PFC operating mode.

The power displayed in the GUI must be equal to the reference power.

This operation has to be repeated for every PFC mode (DCM, Valley#1/2/3)

The other parameters (PAM Correction, Tdel Correction, Vmains) have to be tuned manually.
9. ATE mode

9.1 Normal and ATE mode: differences

The STNRG011 supports two main modes of operation:

- **Normal (or running):** is the GUI normal operation mode (described in the previous chapter)
- **ATE:** is mainly used to program the STNRG011 NVM section and is based on the ATE protocol

<table>
<thead>
<tr>
<th>Mode</th>
<th>Running (normal) mode</th>
<th>ATE mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metering information</td>
<td>Available through the metering protocol (STNRG011 to host)</td>
<td>Not available</td>
</tr>
<tr>
<td>ATE protocol</td>
<td>No (default)</td>
<td>Yes</td>
</tr>
<tr>
<td>Communication</td>
<td>STNRG011→Host only (default)</td>
<td>Bi-directional</td>
</tr>
<tr>
<td>PFC/LLC operations</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>STNRG011 supply</td>
<td>Self-supplied</td>
<td>External supply</td>
</tr>
<tr>
<td>NVM write</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: It is also possible to enable the ATE protocol in running mode for bidirectional communication. This requires a specific patch to enable the UART uplink communication.

Note:
If the ATE protocol is enabled during Normal mode, the GUI is able to handle simultaneously Metering information and ATE protocol. However, the bandwidth on the UART link might be impacted. So, it is recommended to disable the metering protocol by checking the Disable Asynchronous STNRG011 Power messages box.

9.2 Entering ATE mode

The ATE mode menu is used to set the STNRG011 in ATE mode.

The available options are:
1. **Enter ATE Mode**: attempts ATE mode procedure.
 - The GUI:
 a. asserts the SCL pin low (request to enter ATE mode)
 b. switches the internal VCC generation on
 c. checks the ATE mode is effectively working

2. **Auto baud**: is used for internal debug purposes but also to check UART speed. Basically, it performs auto baud and computes the optimal UART link speed

3. **Go Run Mode**: switches off Internal VCC generation
 Once the device has successfully entered ATE mode, the status bar is updated and the ROM ID is displayed (here 0x04 for STNRG011 Cut4).

 Figure 22. GUI ATE mode status bar

 ![Figure 22. GUI ATE mode status bar](image)

 Note: The GUI prevents accessing ATE mode or forcing VCC when it detects the STNRG011 is running in normal mode. The main power supply must be switched off before entering ATE mode.

 Figure 23. GUI error when trying to enter ATE mode whilst in normal mode

 ![Figure 23. GUI error when trying to enter ATE mode whilst in normal mode](image)

 Once VCC is applied (just after the soft start), the GUI measures the VCC voltage value: if it is below a given threshold (17 V), the GUI assumes an overconsumption and VCC is automatically disabled.

 Figure 24. GUI error when VCC is applied

 ![Figure 24. GUI error when VCC is applied](image)

9.3 **Autobaud**

If the device is not able to enter ATE mode, it might be due to UART communication issues.

STNRG011 timing relies on an internal calibrated oscillator, but it does not have the accuracy of an external crystal.
After ST factory calibration (trimming), the resulting accuracy is about 2.3%; enough to ensure normal UART communication.

However, if the accuracy is outside UART tolerances, the GUI might not be able to communicate with STNRG011 and ATE mode would fail.

To avoid this failure, the GUI has an **Autobaud** function which tries to communicate with the STNRG011 chip at various speeds.

So, if the ATE mode sequence fails, select the Autobaud feature.

If the GUI is able to communicate with the chip, it displays the resulting UART speed and applies it for the ATE mode.

![Autobaud menu and results](image)

Figure 25. Autobaud menu and results

Note: The computed speed is not updated in the Application Settings menu.

9.4 NVM options

In the ATE mode, NVM operations are accessible via the **Tools** menu.

![NVM operations menu](image)

Figure 26. NVM operations menu

All power supply customization parameters are stored in the STNRG011 on-chip NVM memory.

You can read/write the NVM by:

1. Using the **NVM r&w** tab, mainly to write the complete NVM without knowing the parameters
2. Using the **NVM editor**, to edit specific parameters

9.5 NVM editor

The NVM editor provides an intuitive way of changing the STNRG011 system parameters, which are about 80.

Those parameters are stored in the 32-byte NVM on-chip memory.

The GUI maps the NVM parameters to the 32-byte memory.
Danger:
You must take care when changing the NVM parameters. Improper settings can lead to the offline converter destruction.

9.5.1 NVM options
- Read from IC: reads NVM content from chip
- Write to IC: writes current NVM content to chip
- Import NVM from disk: reads an NVM file (.INIT format) previously stored
- Export NVM to disk: writes the current NVM on disk (.INIT format)

Note: Writing NVM parameters is only possible in ATE mode.

9.5.2 How to change parameters

Procedure
Step 1. Click on the parameter to edit.
To quickly access parameters, you can click on the relevant section (System, Fault, LLC, PFC, etc.) to display a detailed description of the parameter.

Step 2. Click on the Combo box to choose the value.
For each value, the internal firmware value is also shown.
Step 3. Press OK to validate the change. Once the parameter has been changed and is different from the current NVM, it is highlighted in yellow.

Step 4. Click the Write to IC button to program the NVM memory.
10 E²P operations

Important:
STNRG011 shares the E²P interface (SDA/SCL) with the UART interface to minimize pin count. During normal operation (switching), the optional E²P is only accessed at boot and when a fault occurs.

It is possible to access E²P in normal mode, but this might cause conflicts due to simultaneous access by the STNRG011 metering information (UART) and the GUI accessing the E²P.

Figure 29. E²P simultaneous access conflicts on UART/I²C link

As a consequence, STNRG011 metering messages must be disabled, but this is only possible if UART uplink communication is enabled. Otherwise, E²P must be accessed while STNRG is disabled (e.g. no mains or external VCC required thanks to the internal VCC generation in ATE mode).

E²P operations are accessible via the Tools menu.

10.1 E²P dump

This feature allows displaying the content of the external E²P and is mainly used for debugging.

It is also possible to change a memory value by either clicking the address to be changed or by pressing the Write button in the Address and Value boxes.
Table 5. E²P mapping

<table>
<thead>
<tr>
<th>Area</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000-0x0022</td>
<td>Serial number and calibration data</td>
</tr>
<tr>
<td>0x0040-0x0047</td>
<td>Event history data</td>
</tr>
<tr>
<td>0x0048-0x004F</td>
<td>Running time, error counter, power on/off cycle counter</td>
</tr>
<tr>
<td>0x0080-0x0089</td>
<td>Cold/hot patch addresses definition</td>
</tr>
<tr>
<td>0x0090-0x0A80</td>
<td>Patch area</td>
</tr>
</tbody>
</table>

Figure 31. E²P Dump tab

10.2 E²P patch and image upload/download

This feature allows manipulating the entire E²P images and also programming the patch.

10.2.1 Full E²P image operation box

This tab button allows:

- reading the full E²P image and save it to disk
- computing E²P checksum
- comparing E²P to an existing image
- writing the entire E²P using an image previously saved on disk (performing the E²P parameters and E²P patch programming in a single step)
- erasing the entire E²P

Note: If an E²P is connected, the STNRG011 firmware does NOT support an empty (FF) image. The E²P must be cleared using the All 0s pattern. Alternatively, a full image can be written (provided by ST).

Both Erase and Write operations need confirmation to be saved.
10.2.2 Patch programming box

There are two different types of patches:

- **Cold**, downloaded from E²P to XRAM just before the IC starts switching
- **Hot**, downloaded after IC has started switching operations

Only the cold patching is used here.

Note: Normally, you do not have to specify the patch type (hot/cold). Patches are delivered as a full E²P image.

Important: Do not change the XRAM & E²P Address.

To program a patch:

Procedure

- **Step 1.** Click on the .. button to select the patch to be used.

 Only .bin format is supported.

- **Step 2.** Tick the associated **Check** box.

- **Step 3.** Press the **Write Patch** button.

10.3 E²P parameter editor

This feature allows editing the factory data parameters and clearing the event history data.

Procedure

- **Step 1.** Press the **Read** button to read the content of the E²PROM

- **Step 2.** Press the **Write** button to write the displayed values to the E²PROM

- **Step 3.** Press the **Std Values** button to fill the table with default values

 If you want to write the values to E²P, you have to press the **Write** button.

Note: Hex fields are only given for reference: they cannot be edited.
Important:
It is recommended to edit these field with STNRG011 in ATE mode or via VCC externally powered.

If the parameters are written whilst STNRG011 is running, they will be overwritten when STNRG011 is shut down.

When STNRG011 is powered up, it makes a copy of the event history in its RAM, which changes during the active phase. At shutdown, the RAM content will be overwritten in the E²P, hence the E²P content will be overwritten.

Figure 33. E²P parameter editor tab

10.4 Additional tools
The GUI embeds some additional tools useful during the power supply integration phase.

10.4.1 PSU monitor

Note: A specific patch is needed to access this feature. Contact STMicroelectronics sale office for details.
The PSU monitor provides similar information to the power metering, but only on a specific request by the GUI (different from the power metering information sent continuously by STNRG011).

In this case, the GUI reads the STNRG011 memory directly and additional information can be retrieved.
Table 6. PSU monitor: PFC/LLC features

<table>
<thead>
<tr>
<th>Table</th>
<th>PFC</th>
<th>LLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Power</td>
<td>Estimated PFC power corrected by Vin/PAM/Mode/Tdel parameters</td>
<td></td>
</tr>
<tr>
<td>Vin</td>
<td>Mains voltage in RMS value</td>
<td></td>
</tr>
<tr>
<td>Line Freq</td>
<td>Mains Frequency</td>
<td></td>
</tr>
<tr>
<td>Vout Target</td>
<td>PFC output Voltage (target)</td>
<td></td>
</tr>
<tr>
<td>Vout</td>
<td>PFC output Voltage (measured)</td>
<td></td>
</tr>
<tr>
<td>Tsw Meas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI Algo Ton</td>
<td>Ton added computed by power integration algorithm</td>
<td></td>
</tr>
<tr>
<td>Smed01 Tdel</td>
<td>Duration between PFC pulsed (DCM mode only)</td>
<td></td>
</tr>
<tr>
<td>Skipping Area</td>
<td>PWM applied to PFC during a semi-cycle at low power</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>PFC mode of operation</td>
<td></td>
</tr>
<tr>
<td>LLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vctrl feedback</td>
<td>Output voltage of the error amplifier after optocoupler, used for the LLC feedback loop</td>
<td></td>
</tr>
<tr>
<td>llc_ac</td>
<td>LLC anti-capacitive mode indicator</td>
<td></td>
</tr>
<tr>
<td>SMED23 Tdel</td>
<td>Value of the LLC TimeShift</td>
<td></td>
</tr>
</tbody>
</table>
11 PFC calibration

11.1 Introduction

The STNRG GUI can calibrate the PFC parameters thanks to the embedded wizard, which features:

- PFC parameter semi-automated calibration
- THD improver manual tuning
- Possibility to manually change some parameters to test the overall behavior
- Graphical representation of mode switch
- PFC parameters are updated in RAM; when the calibration results are satisfactory, you can store the parameters in NVM for permanent use
- Manual or automated working mode

Note: It is recommended to use the automated mode (GPIB adapter is required). The embedded driver only supports Chroma equipment. The SCPI commands issued are very generic, so it should work using other tools from other manufacturers (e.g., Agilent/Keysight) but this is not guaranteed. Otherwise, it is possible to use the manual mode (which is semi automated - in this case, the GUI detects some events and tries to minimize user actions on the tools).

11.2 Principle

The calibration scope is to correctly manage:

- the PFC mode change (DCM, Valley Skipping, TM)
- the skipping area threshold (also called phase angle modulation)
- the THD improver parameters

The PFC supports five different modes: DCM (low power), 3/2/1 ValleySkipping and TM (high power).

The mode change is based on the estimated output power and the switching period.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Typ. value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC THD improver base</td>
<td>5 (10 mV)</td>
<td>Base current of THD improver (ReCOT functionality on PFC_CS pin).</td>
</tr>
<tr>
<td>PFC THD improver gain</td>
<td>0 (no gain)</td>
<td>Gain of THD improver ramp (ReCOT functionality on PFC_CS pin).</td>
</tr>
<tr>
<td>PFC Min Pin Vskip</td>
<td>2176</td>
<td>Minimum PFC power to force a mode switch to DCM</td>
</tr>
<tr>
<td>PFC Max Pin Vskip (delta)</td>
<td>2560</td>
<td>Maximum PFC power to force a mode switch towards TM (offset with respect to PFC Min Pin Vskip)</td>
</tr>
<tr>
<td>PFC delta Pin Vskip</td>
<td>352</td>
<td>Correction factor to minimize discontinuities while switching among different PFC modes</td>
</tr>
<tr>
<td>PFC maximum DCM power</td>
<td>3072</td>
<td>PFC power threshold to switch from DCM to Valley skipping mode. It also sets the PFC on-time during DCM. Above this threshold, the system goes into Valley skipping</td>
</tr>
<tr>
<td>PFC Min Tsw Vskip</td>
<td>448 (134 kHz)</td>
<td>Minimum PFC switching period (max. frequency) to force a mode switch to DCM</td>
</tr>
<tr>
<td>PFC Max Tsw Vskip</td>
<td>608 (87 kHz)</td>
<td>Maximum PFC switching period (min. frequency) to force a mode switch to TM</td>
</tr>
<tr>
<td>Skipping area threshold</td>
<td>1536</td>
<td>PFC power threshold for skipping area</td>
</tr>
</tbody>
</table>
The PFC calibration has to be performed for a given design (based on the component choice, supply output power, etc.). It is not necessary to perform the calibration for each unit created.

11.3 PFC protection

During the PFC calibration, the normal algorithm behavior is changed. In particular, the PFC mode change algorithms can be disabled to adjust some parameters.

Danger:

Consequently, the PFC bulk voltage can rise above the nominal voltage at light load, leading to component (e.g. Bulk capacitors, MOS) damage and even destruction.

To prevent any damage, the GUI performs a preliminary safety check by reading the NVM content and checking if the PFC hardware protection is set. If not, a warning is displayed (as shown in the figure below), inviting the user to update NVM accordingly.

Important: You can override the warning, but it is under your own responsibility.

![Figure 35. PFC protection warning window](image)

11.4 Step by step calibration example

To start calibration, go to the **Tools** menu and select **PFC tuning**. The following window pops up.

![Figure 36. PFC tuning menu](image)

Note:

To perform the calibration, the GUI has to communicate with the STNRG011. Since the UART communication is disabled by default in running mode, a special procedure (similar to the ATE mode) is applied to enable UART communication, which requires switching the power supply on/off, as prompted by the GUI.

As previously mentioned, during the tuning operation phases, the GUI modifies the RAM parameters but writes nothing in NVM (so, changes are not persistent).
11.4.1 Tuning calibration tabs
The following picture shows the PFC tuning main window with tabs representing the various steps to be followed during the calibration.

![Main PFC tuning tab](image)

11.4.2 Mode of operation
You have to choose the operating mode (manual or not) and the power supply characteristics.

![PFC tuning parameter tab](image)
If manual mode is selected, you have to manually change the AC source voltage and DC load current: a window will pop-up each time an action is necessary.

The STNRG011 is able to detect when the AC source is switched on/off, which limits the interactions.

Figure 39. Manual mode: AC source voltage and DC load current selection

See Figure 40. NVM parameters: RAM and NVM values for NVM options.

As NVM storage space is limited, some PFC parameters have to be uploaded with a lower resolution than NVM values. To make sure the calibration reflects the real mode of operation, the calibrated values can be rounded to the closest one ticking the *Use NVM parameters* check box.

The *Read NVM* button transfers the content of the chip NVM memory to the GUI. This is useful to revert to the original calibration stored in the NVM, if the current calibration is not satisfactory.

The *Write NVM* button is used to write the current calibration in the chip NVM memory.

Figure 40. NVM parameters: RAM and NVM values

11.4.3 Step 1: THD improver

The first step is to calibrate the THD improver since the two parameters directly affect the output power reported. This feature helps to improve the AC current total harmonic distortion (THD) and the power factor (PF) value.

After pressing the *Reset PSU* button, follow the instructions.

Once PSU has started, you can tune the IBase and IGain settings.

There is only one possible setting, so you have to try various loads and AC voltages to find the best trade off across all modes of operation.
11.4.4 Step 2: delta pin calibration
The second step is to calibrate delta pin correction factor when changing from on mode to the other.

To compute the delta pin calibration, the GUI:

- disables PFC mode change on the basis of the frequency and power values
- forces the PFC mode and records the associated estimated power
- repeats the operation for 2x load current and 2x AC input voltage
- computes the delta pin correction factor
11.4.5 Step 3: TSW test

After computing the delta pin, the third step is to determine the mode changes based on the PFC frequency. You have to manually select the minimum/maximum bounds for the PFC frequency. During normal operations, if the PFC actual frequency crosses this boundary, a mode change is required.

To check the Tsw range, in the GUI:

- PFC mode change is enabled on the basis of the PFC frequency (mode change based on the estimated power is disabled)
- The output power is swept across the operating range
- Switching frequency is monitored and the user has to check that the mode change is stable (i.e. the IC does not jump continuously from one mode to another because it crosses always a frequency limit during mode change), adjusting the limits if the case.

Note: If manual mode is selected, the GUI asks to smoothly ramp-up and down the DC load.
Finally, the GUI computes the PFC parameters.

Figure 43. PFC tuning: determining TSW limits

Figure 44. PFC tuning: PFC min./max. pin and DCM power

11.4.6 **Step 4: skipping area threshold**

The forth step consists in setting the skipping area power threshold (below this threshold, the system will apply power skipping, i.e. shutdown PFC operation before/after the peak of AC cycle, like PWM).

This improves the overall efficiency but obviously degrades the THD/PF figures; for this reason, it has to be performed at low power.

The threshold is up to the customer.

To determine the skipping area threshold, the GUI:

- enables PFC mode change (both PFC frequency and estimated power-based)
- sets the DC load to match the desired power
- measures the estimated power at various AC voltages

The threshold is the average of the measured values.
11.4.7 Step 5: final verification

Once all steps have been performed, the GUI simply checks the supply behavior.

To perform the final verification, the GUI:

- enables PFC mode change (both PFC frequency and estimated power-based) as the normal mode
- disables skipping area mode (focus is on mode changes)
- sweeps the DC load across all the operating modes and checks if it is between the limits
11.4.8 PFC parameter update

Once you are satisfied with the PFC calibration performance, you can update the NVM to make the parameters permanent, by simply clicking the Write to NVM button.
12 Troubleshooting

12.1 No LED activity detected on the STEVAL-PCC020V1 interface board

When the board is plugged to the system:

• LED D2 lights up, indicating the MCU is working, hence, the power supply is present;
• the yellow LED D1 starts blinking, indicating the USB port has been enumerated correctly.

If the LEDs are not working properly, it might be due to a power supply issue.

Procedure

Step 1. Locate fuse F1 (close to the USB connector)

Step 2. Check the voltage between J1 ground (shield) and the right side of the fuse.
If it is not 5 V ±10%, it means an overcurrent occurred and the fuse has blown.

Step 3. Replace the fuse (0.5 A), after trying to find out the root cause.

12.2 USB yellow LED shutdown in few seconds

The yellow LED D1 is wired to the USB suspend signal from CP2102; that is, it only lights up when the USB port is not in USB suspend mode.

Note: By default (for Windows 7 and 8), the system forces external devices to enter suspend mode to save power (for example, when the COM port is not used). It does not mean the power supply is shut down, but the CP2102 goes into low power mode.

To avoid this issue, select the SiLabs COM port, and go to the Power Management Tab and uncheck “Allow the Computer to turn off this device to save power”.

Procedure

Step 1. go in the Device Manager
Step 2. select the SiLabs COM port
Step 3. go to the **Power Management** tab
Step 4. untick the **Allow the computer to turn off this device to save power** box

Figure 50. Disabling CP2102 USB suspend mode
13 STEVAL-PCC020V1 interface board hardware

13.1 Connector pinout

The connection between the supply and the interface board is made via a Molex 6-pin low profile connector (J3). The signals are also available on a 4-pin HE10 header (J4).

Figure 51. STEVAL-PCC020V1 interface board signal connectors

Table 8. STEVAL-PCC020V1 J3 and J4 pinout

<table>
<thead>
<tr>
<th>Signal</th>
<th>4-pin header</th>
<th>6-pin Molex</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>VCC</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>UART_TX / SDA</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>UART_RX / SCL</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>NC</td>
<td>none</td>
<td>2.6</td>
</tr>
</tbody>
</table>
13.2 Firmware upgrade

Figure 52. STEVAL-PCC020V1 interface board firmware update menu

![Firmware update menu](image)

This feature allows to update the HV-DPS Interface board with the latest firmware provided with the tool.

Step#1 : Close Jumper JP2 and hit Reset Push button DONE

Step#2 : Launch Firmware Update

Step#3 : Programming...

Step#4 : Open Jumper JP2 and Hit Reset

Figure 54. STEVAL-PCC020V1 interface board firmware update in progress

![Firmware update in progress](image)
13.3 Schematic diagram

Figure 55. STEVAL-PCC020V1 circuit schematic: USB power
Figure 56. STEVAL-PCC020V1 circuit schematic: MCU
13.4 Layout

Figure 57. STEVAL-PCC020V1 interface board layout (top view)
Figure 58. STEVAL-PCC020V1 interface board layout (bottom view)

Table 9. STEVAL-PCC020V1 bill of materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Q.ty</th>
<th>Ref.</th>
<th>Part/Value</th>
<th>Description</th>
<th>Manufacture</th>
<th>Order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td></td>
<td>C1, C2, C4, C9, C14, C16, C18, C19, C21</td>
<td>100 nF, 50 V, 0603, X7R</td>
<td>Ceramic capacitors</td>
<td>Murata</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td>C3</td>
<td>NP 1206</td>
<td>Ceramic capacitor</td>
<td>Any</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td>C5, C6</td>
<td>2.2 µF, 6.3 V, X5R, 0603</td>
<td>Ceramic capacitors</td>
<td>TDK</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>C7, C10</td>
<td>1 µF, 16 V, X5R 0603</td>
<td>Ceramic capacitors</td>
<td>TAIYO YUDEN</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td>C8, C13</td>
<td>10 µF, 25 V, X5R, 1206</td>
<td>Ceramic capacitors</td>
<td>Murata</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td>C11, C12</td>
<td>18 pF, 50 V, C0G, 0603</td>
<td>Ceramic capacitors</td>
<td>Any</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td></td>
<td>C15, C17, C20, C22</td>
<td>4.7 µF, 6V3, X5R, 0603</td>
<td>Ceramic capacitors</td>
<td>Any</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
<td>D1</td>
<td>YELLOW LED-0805</td>
<td>LED diode</td>
<td>Avago</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td></td>
<td>D2, D3</td>
<td>GREEN LED-0805</td>
<td>LED diode</td>
<td>Avago</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td></td>
<td>D4</td>
<td>RED LED-0805</td>
<td>LED diode</td>
<td>Avago</td>
</tr>
</tbody>
</table>

13.5 Bill of materials
<table>
<thead>
<tr>
<th>Item</th>
<th>Q.ty</th>
<th>Ref.</th>
<th>Part/Value</th>
<th>Description</th>
<th>Manufacture</th>
<th>Order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1</td>
<td>D5</td>
<td>85 V, 0.5 A, 4 nS, BAS16, SOT23</td>
<td>Diode</td>
<td>NXP Semiconductors</td>
<td>BAS16 /T3</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>F1</td>
<td>0.5 A, 63 V, SLO, SMD, 1206</td>
<td>Fuse</td>
<td>Littelfuse</td>
<td>0466.500NR</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>FIX1, FIX2, FIX3, FIX4</td>
<td>HOLE_3.2MM_6</td>
<td>Through hole</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>J1</td>
<td>CN-USB 1734035-1</td>
<td>USB_B_MINI_AMP_1 734035-1</td>
<td>TE Connectivity</td>
<td>1734035-1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>J2</td>
<td>STRIP254P-M-2 22-28-4023</td>
<td>Jumper</td>
<td>Molex</td>
<td>22-28-4023</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>J3</td>
<td>CON-1x6</td>
<td>PF-50 Header, 6 ways</td>
<td>Molex</td>
<td>90325-0006</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>J4</td>
<td>CON-1x4 1x4 - pitch 2.54</td>
<td>Through hole</td>
<td>Samtec</td>
<td>TSW-104-07-L-S</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>J5</td>
<td>CON-5x2</td>
<td>Connector</td>
<td>Molex</td>
<td>70246-1002</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>M13, M14, M15, M16</td>
<td>BUMPER SJ-5003 (BLACK)</td>
<td>Hemispherical bumper</td>
<td>3M</td>
<td>SJ-5003 (BLACK)</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>R1, R2, R4, R6, R7, R9</td>
<td>330 R, ±5%, 1/10 W, 0603</td>
<td>Resistors</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4</td>
<td>R3, R17, R22, R23</td>
<td>0 R, 0 Ω, 1/10 W, 0603</td>
<td>Resistors</td>
<td>Yageo</td>
<td>RC0603JR-070RL</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>R5</td>
<td>4.7 K, ±5%, 1/10 W, SMD, 0603</td>
<td>Resistor</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>R8</td>
<td>100 K, 1/10 W, SMD, 0603</td>
<td>Resistor</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>R10, R11</td>
<td>100 pF, 50 V, COG, 0603</td>
<td>Resistors</td>
<td>Murata</td>
<td>GRM1885C1H101JA01D</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>R12, R13</td>
<td>100 R, ±5%, 1/10 W, 0603</td>
<td>Resistors</td>
<td>Panasonic Corp.</td>
<td>ERJ-3GEYJ101V</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>R14, R15</td>
<td>NP 0603</td>
<td>Resistors</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>R16, R21</td>
<td>10 K, ±5%, 1/10 W, 0603</td>
<td>Resistors</td>
<td>Panasonic Corp.</td>
<td>ERJ-3GEYJ103V</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>R18</td>
<td>27 K, ±5%, 1/10 W, 0603</td>
<td>Resistor</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>R19</td>
<td>390 K, ±1%, 0603</td>
<td>Resistor</td>
<td>Panasonic Corp.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>R20</td>
<td>68 K, ±5%, 1/10 W, SMD, 0603</td>
<td>Resistor</td>
<td>Panasonic Corp.</td>
<td>ERJ3GEYJ683V</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>SW1</td>
<td>B3S-1000P B3S-1000P</td>
<td>Tactile switch</td>
<td>Omron</td>
<td>B3S-1000P</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>TP1</td>
<td>TP</td>
<td>Test point</td>
<td>Mouser</td>
<td>534-5001</td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>U1, U2</td>
<td>ACPL-M61L SO-5</td>
<td>Optocoupler</td>
<td>Avago</td>
<td>ACPL-M61L-000E</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>U3</td>
<td>CP2102 QFN-28</td>
<td>Uart over USB bridge, QFN28</td>
<td>Silicon Labs</td>
<td>CP2102-GM</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>U4, U7</td>
<td>ESDALCL6-2SC6 SOT23-6L</td>
<td>Very low capacitance and low leakage current ESD protection</td>
<td>ST</td>
<td>ESDALCL6-2SC6</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>U5</td>
<td>NMD050515SC NMD_SIP</td>
<td>Isolated dual output DC-DC</td>
<td>Murata</td>
<td>NMD050515SC</td>
</tr>
<tr>
<td>Item</td>
<td>Q.ty</td>
<td>Ref.</td>
<td>Part/Value</td>
<td>Description</td>
<td>Manufacture r</td>
<td>Order code</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>U6</td>
<td>3.3 V, 100 mAh, LD2981ABM33TR SOT23-5</td>
<td>Ultra low drop voltage regulators with inhibit low ESR output</td>
<td>ST</td>
<td>LD2981ABM33TR</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>U8</td>
<td>100 mAh, LM2931D-R SO8</td>
<td>Very low drop voltage regulators with inhibit function</td>
<td>ST</td>
<td>LM2931D-R</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>U9</td>
<td>STM32F373C8T6 LQFP48</td>
<td>Mainstream mixed signals MCUs ARM Cortex-M4 core</td>
<td>ST</td>
<td>STM32F373C8T6</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>Y1</td>
<td>16 MHZ FQ5032B</td>
<td>XTAL</td>
<td>Fox Electronics</td>
<td>FQ5032B-16.000</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>Cable</td>
<td>6 circuits, 0.20m length</td>
<td>Picoflex® PF-50 IDT-to-IDT</td>
<td>Molex</td>
<td>92315-0620</td>
</tr>
</tbody>
</table>
Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-Feb-2018</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Contents

1 Interface board aim ...2

2 Getting started ...4
 2.1 STEVAL-PCC020V1 interface board overview4
 2.2 GUI overview ..4
 2.3 Package contents ...4
 2.4 System requirements ...4

3 Hardware description and setup ...5
 3.1 Block diagram ...5
 3.2 Galvanic isolation ..5
 3.3 Power supply ...5
 3.3.1 MCU subsystem supply (5 V)5
 3.3.2 VCC generation (20 V) ..5
 3.4 USB bridge ...6
 3.5 VCC monitoring ...7

4 Using the board ...8
 4.1 Board connectors, LEDs and buttons8
 4.2 How to connect the STEVAL-PCC020V1 interface board to the offline converter ..8

5 Software installation ...10
 5.1 Virtual COM port driver installation (SiLabs CP2102)10
 5.2 GUI installation ...10

6 GUI introduction ...11
 6.1 GUI features ..11
 6.2 GUI startup screen ..11
 6.3 Connection management ...11
 6.4 GUI settings ..13

7 GUI normal mode ..16
 7.1 Power metering ...16
 7.2 PowerGraph report ...16
 7.3 Event history and factory data pre-requisite: E²P16
7.4 Faults history ... 17
7.5 Factory data display .. 17

8 Power metering calibration .. 19
 8.1 Background ... 19
 8.2 Metering calibration .. 19

9 ATE mode .. 21
 9.1 Normal and ATE mode: differences 21
 9.2 Entering ATE mode .. 21
 9.3 Autobaud ... 22
 9.4 NVM options .. 23
 9.5 NVM editor ... 23
 9.5.1 NVM options ... 24
 9.5.2 How to change parameters 24

10 E²P operations .. 26
 10.1 E²P dump ... 26
 10.2 E²P patch and image upload/download 27
 10.2.1 Full E²P image operation box 27
 10.2.2 Patch programming box .. 27
 10.3 E²P parameter editor .. 28
 10.4 Additional tools .. 29
 10.4.1 PSU monitor ... 29

11 PFC calibration .. 31
 11.1 Introduction ... 31
 11.2 Principle ... 31
 11.3 PFC protection ... 32
 11.4 Step by step calibration example 32
 11.4.1 Tuning calibration tabs ... 32
 11.4.2 Mode of operation ... 33
 11.4.3 Step 1: THD improver .. 34
 11.4.4 Step 2: delta pin calibration 35
 11.4.5 Step 3: TSW test .. 36
11.4.6 Step 4: skipping area threshold ... 37
11.4.7 Step 5: final verification .. 38
11.4.8 PFC parameter update .. 39

12 Troubleshooting.. 40
12.1 No LED activity detected on the STEVAL-PCC020V1 interface board ... 40
12.2 USB yellow LED shutdown in few seconds 40

13 STEVAL-PCC020V1 interface board hardware 42
13.1 Connector pinout ... 42
13.2 Firmware upgrade .. 42
13.3 Schematic diagram ... 43
13.4 Layout .. 45
13.5 Bill of materials ... 47

Revision history .. 50
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STEVAL-PCC020V1 LEDs (ON, OFF, blinking state)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>GUI setting parameters</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>GUI E²P parameter description</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Differences between normal and ATE modes</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>E²P mapping</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>PSU monitor: PFC/LLC features</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>PFC parameters to be calibrated</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>STEVAL-PCC020V1 J3 and J4 pinout</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>STEVAL-PCC020V1 bill of materials</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>Document revision history</td>
<td>50</td>
</tr>
</tbody>
</table>
List of figures

Figure 1. STEVAL-PCC020V1 interface board ... 1
Figure 2. Customer typical application .. 2
Figure 3. STNRG011 in demo/debug configuration ... 3
Figure 4. STEVAL-PCC020V1 block diagram ... 5
Figure 5. VCC ramp-up typical waveform ... 6
Figure 6. STEVAL-PCC020V1 interface board connectors .. 8
Figure 7. STEVAL-PCC020V1 interface board status LEDs .. 8
Figure 8. STEVAL-PCC020V1 interface board typical connection 9
Figure 9. HV-DPS GUI icon ... 10
Figure 10. STNRG011 GUI startup screen .. 11
Figure 11. GUI COM port selection ... 12
Figure 12. Traces during GUI connection ... 12
Figure 13. SiLabs VCP in the Device Manager .. 13
Figure 14. GUI Settings menu ... 14
Figure 15. GUI metering information panel ... 16
Figure 16. GUI PowerGraph report .. 16
Figure 17. GUI fault history .. 17
Figure 18. GUI factory data panel ... 18
Figure 19. GUI power metering calibration window ... 20
Figure 20. GUI: disable STNRG011 power messages ... 21
Figure 21. GUI ATE mode menu .. 21
Figure 22. GUI ATE mode status bar ... 22
Figure 23. GUI error when trying to enter ATE mode whilst in normal mode 22
Figure 24. GUI error when VCC is applied ... 22
Figure 25. Autobaud menu and results ... 23
Figure 26. NVM operations menu ... 23
Figure 27. NVM editor window .. 24
Figure 28. Parameter change ... 24
Figure 29. E²P simultaneous access conflicts on UART/PC link 26
Figure 30. E²P operation menu .. 26
Figure 31. E²P Dump tab ... 27
Figure 32. E²P full import/export and patch operation tab 28
Figure 33. E²P parameter editor tab ... 29
Figure 34. PSU monitor window ... 30
Figure 35. PFC protection warning window ... 32
Figure 36. PFC tuning menu .. 32
Figure 37. Main PFC tuning tab ... 33
Figure 38. PFC tuning parameter tab ... 33
Figure 39. Manual mode: AC source voltage and DC load current selection 34
Figure 40. NVM parameters: RAM and NVM values .. 34
Figure 41. PFC tuning: THD improver tab ... 35
Figure 42. PFC tuning: delta pin calibration .. 36
Figure 43. PFC tuning: determining TSW limits ... 37
Figure 44. PFC tuning: PFC min./max. pin and DCM power 37
Figure 45. PFC tuning: determining skipping area threshold 38
Figure 46. PFC tuning: final verification without skipping area tab 38
Figure 47. PFC tuning: final verification .. 39
Figure 48. PFC tuning: writing NVM values ... 39
Figure 49. STEVAL-PCC020V1 interface board fuse ... 40
Figure 50. Disabling CP2102 USB suspend mode .. 41
Figure 51. STEVAL-PCC020V1 interface board signal connectors 42
Figure 52. STEVAL-PCC020V1 interface board firmware update menu 43
Figure 53. STEVAL-PCC020V1 interface board firmware update window 43
Figure 54. STEVAL-PCC020V1 interface board firmware update in progress 43
Figure 55. STEVAL-PCC020V1 circuit schematic: USB power ... 44
Figure 56. STEVAL-PCC020V1 circuit schematic: MCU ... 45
Figure 57. STEVAL-PCC020V1 interface board layout (top view) ... 46
Figure 58. STEVAL-PCC020V1 interface board layout (bottom view) .. 47