Introduction

This user manual explains how to use a VL53L1X long-distance ranging Time-of-Flight (ToF) sensor to count people crossing a specific predefined area, like a meeting room entrance or a particular location in a corridor. It also describes an algorithm used to count the people. The algorithm is provided as an example and can be downloaded from st.com, in the VL53L1X embedded SW section, under the reference STSW-IMG010.

In addition, this document presents the details of a counting application where a sensor is set on the top, not the side, of the area to be tracked.
1 Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym/abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoV</td>
<td>field of view</td>
</tr>
<tr>
<td>SPAD</td>
<td>single photon avalanche diode</td>
</tr>
<tr>
<td>SW</td>
<td>software</td>
</tr>
<tr>
<td>ToF</td>
<td>Time-of-Flight</td>
</tr>
</tbody>
</table>
Counting people with the VL53L1X consists of using the multiple zones of the sensor receiving SPAD area, and of configuring it with two distinct fields of view (FoV), to alternatively get a ranging distance from them and consequently recognize the movements of a person. Using this method, the number of people occupying a meeting room, accessible from a reasonably narrow access, is known at all times by detecting the entrances and exits of the attendees.

By measuring and analyzing the distances of targets within the FoVs of a front and back zone (see figure below and Figure 3. Front and back zones), a simple algorithm can detect the direction a person crosses the area under the two FoVs. This algorithm "understands" that someone is under one of the FoV as long as the distance measured by the sensor under this FoV is between 0 and a threshold value specified in mm.

From a timing perspective, the sensor alternatively ranges on each of the two zones, for a very short period of time in milliseconds. It is possible to determine in which direction a person crosses the area, depending in which order this person has been detected in the two zones, as shown in the figure below.
The counting algorithm example relies on a list of states that have to occur in a certain order to detect if a person has crossed the specified area and in which direction this area has been crossed. These states are stored in a list and compared to two default lists of states that represent how the area is crossed in two different directions. When no-one is seen in either of the two zones, the list of states is reset.

If we consider that a person detected in the front zone equals 2, and a person detected in the back zone equals 1, the algorithm adds the value of the two states and stores the result as soon as it changes.

Eventually, if the consecutive states in the list are 0, 1, 3, 2, 0 or 0, 2, 3, 1, 0 this means a person has been detected in one direction or the other, as described in Figure 4. List of status values.

![Figure 3. Front and back zones](image1)

![Figure 4. List of status values](image2)
The algorithm validates a crossing event only when a person has fully crossed the two zones. It does not validate the event when the person remains for a long time under the FoV or when the person decides to return from the place he came from.

This is illustrated in the figure below: the algorithm stops and the list of states is reset as soon as no-one is detected in any of the two FoVs.

Figure 5. Hysteresis principle

<table>
<thead>
<tr>
<th>Front</th>
<th>Back</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sum</th>
<th>0</th>
<th>2</th>
<th>3</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
</table>

Path track
0
0,2
0,2,3
0,2,3,2
0,2,3,2,0
0

Someone entered the front zone, then the overlap zone and then went back without crossing the entire area

<table>
<thead>
<tr>
<th>Front</th>
<th>Back</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sum</th>
<th>0</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>3</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
</table>

Path track
0
0,2
0,2,3
0,2,3,1
0,2,3,3
0,2,3,2
0,2,3,2,0
0

Someone entered the front zone, then the overlap zone, then the back zone, and went back without crossing the entire area
VL53L1X sensor and algorithm configuration

It is sufficient to set the two FoVs by dividing the 16*16 SPAD array of the VL53L1X sensor into two sub N*16 arrays. For example, N can be chosen within the interval [4, 8]. This means that it is not necessary to use the same SPADs for front and back ranging. Alternatively enabling 7*16 SPADs is sufficient to see a person in the two zones at the same time when this person stands directly under the sensor, in the middle of the two FoVs. It is recommended to configure the sensor to range alternatively on the two zones every 20 ms.

Figure 6. Example of configuration of the SPAD array

The figure below shows the captured distances from two zones, where the VL53L1X is set at 2600 mm from the floor. The black arrows correspond to the times when a person was detected entering or exiting the area being tracked. Three crossings are visible. The first two arrows correspond to two entries and the last one corresponds to an exit. The red and blue dots are distances measured by the sensor from the front and back zones.

Figure 7. Example of captured distances
6 Setup reliability

6.1 Ranging on the floor to determine the threshold

Reliability of the algorithm relies on the accuracy of the setup which detects the distance between the sensor and the floor. This can be ensured only if nothing (e.g. no obstacle or static object) blocks the front and back FoVs. To assess if a setup is reliable, a significant number of distances can be measured with the sensor. Then, a histogram diagram can be established to confirm that the sensor is correctly set up and that no target is within its FoVs.

A threshold needs to be defined, which is achieved after having ranged on the flooring material over a significant number of samples. In fact, the threshold should be chosen so that all the measured distances (when ranging the floor) are greater than this threshold. We recommend that at installation of the application, an autocalibration routine is launched to calculate the threshold. This is because flooring material can be different in many locations.

Figure 9. Histogram of 3500 measured distances describes an example of such a calibration for the use case illustrated in Figure 8. People counting at 2345 mm distance from the floor. The distance between the sensor and the floor is 2345 mm, and as the minimum distance measured by the sensor is 2290 mm, the threshold is thus less than 2290 mm.

Note: This calibration should be performed in the worst ambient light conditions, to maximize the jitter and obtain a threshold that is relevant to all possible ambient lighting conditions the counting setup is exposed to.

Figure 8. People counting at 2345 mm distance from the floor
Figure 9. Histogram of 3500 measured distances

Note: The mean of the measured distances, in case it equals the real distance between the sensor and the floor, is an indication of the reliability of the setup.

In Figure 10. Reliable setup, the mean of the measured distances from the two zones are the same and equals the real distance between the sensor and the floor, which is 2600 mm. This indicates a reliable setup. Here, the threshold is less than 1920 mm.

Figure 10. Reliable setup
A setup is considered good if the sensor detects only the floor in the two FoVs. Consequently, the verticality of the FoV is ensured. However, the tracking area must not be too narrow. In situations where the verticality cannot be fully ensured, or when the FoVs are narrow, it is advised to alternatively enable $N \times M$ SPADs as follows:

- N to be within the interval $[4, 8]$ as described above and enabled SPADs should be centered
- M to be within the interval $[8, 16]$ and the SPADs to remain centered for a narrow but non vertical setup. If the verticality of the FoV cannot be ensured, the SPADs do not have to be centered.

Floor detection reliability can be checked by running a trimming procedure to adjust the width of the back and front FoVs, by enabling the relevant SPADs. Analysis of the extracted histograms can help in detecting the SPADs belonging to the parts of the FoVs that do not range on the floor and should never be enabled. Note that the smaller the number of lines of SPADs used for this trimming, the larger the number of histogram values that have to be computed.

The figure below shows a trimming procedure example in which a significant number of distances have been extracted by ranging with the SPADs enabled within the red rectangle (10 SPADs lines). The red rectangle can be moved by one line or more between each test.

Figure 11. Trimming procedure
6.2 Ensure overlap in the two detection zones

The algorithm example relies on the fact that a person crossing an area being tracked must first be detected in the first zone, then in both zones at the same time, and finally in the second zone. In Figure 7. Example of captured distances, both tracking paths have a few dots corresponding to the moment when a person was detected in both zones simultaneously. Increasing N, increases this number of dots, but could decrease the number of dots corresponding to the time when a person is detected only in the first or second zone.

To optimize the behavior of the algorithm, it is advised to choose N as small as possible and to apply a filter, on the detected distances, which consists of considering only the minimum distance value from the last Z measurements, up to the time where a person is detected in the last zone. This significantly optimizes the probability of detecting a person in each of the zones of the tracking path.

The figure below shows the well-defined detection of a person in each of the three zones.

Figure 12. Filter on the measured distances with Z = 10, N = 6, M = 16
7 Example: long black hair

A long dark hair returns much less photons that a blond hair. Therefore, the reflected signal is lower and the reported distance may be bigger than the real distance, since the device gets a mixed signal of photons that have bounced on the hair of the tracked person and on the floor.

Figure 13. Example of a fast moving person with long black hair shows an example of a fast moving person with long black hair. In this case, the algorithm does not count the person if the threshold is set with the value corresponding to the red line. It is recommended to set a threshold at its maximum possible value, but still less than the minimum value reported by the autocalibration, as described in Section 6.1 Ranging on the floor to determine the threshold.

Figure 13. Example of a fast moving person with long black hair
8 Software and board package

The software example runs a proof of concept, implementing the algorithm as described above. This software runs on a NUCLEO F401RE board, accompanied by one X-NUCLEO-53L1A1 expansion board (see figure below).

Figure 14. NUCLEO FR01RE board and X-NUCLEO-53L1A1 expansion board

To operate,
- Place the device **without any object within 2 m in front of the ToF sensor**
- Wave your arm in front of the sensor from left to right and from right to left at a distance ~50 cm
- The people counting result displays as shown in the figure below (in Tera term)
- The serial baud rate is set at the 460800 bauds per second

Figure 15. Tera term

```
Start counting people with profile: DOOR_JAM_2400...
Walk In, People Count=1
Walk In, People Count=2
Walk Out, People Count=1
```
Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-Jun-2019</td>
<td>1</td>
<td>Initial release</td>
</tr>
<tr>
<td>18-Dec-2020</td>
<td>2</td>
<td>Section 3 Algorithm description: updated cross references to figures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 5 VL53L1X sensor and algorithm configuration: added content.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 6.1 Ranging on the floor to determine the threshold: added new</td>
</tr>
<tr>
<td></td>
<td></td>
<td>content and figures; removed original "reliable" and "unreliable" figures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 6.2 Ensure overlap in the two detection zones: removed some text.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added Section 7 Example: long black hair</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 8 Software and board package: removed original content (and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>added to Section 5 VL53L1X sensor and algorithm configuration), added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>new content, and moved this section to end of document.</td>
</tr>
</tbody>
</table>
Contents

1. Acronyms and abbreviations ... 2
2. Overview ... 3
3. Algorithm description .. 4
4. Hysteresis ... 5
5. VL53L1X sensor and algorithm configuration .. 6
6. Setup reliability .. 7
 6.1 Ranging on the floor to determine the threshold 7
 6.2 Ensure overlap in the two detection zones 10
7. Example: long black hair ... 11
8. Software and board package ... 12

Revision history .. 13

Contents .. 14