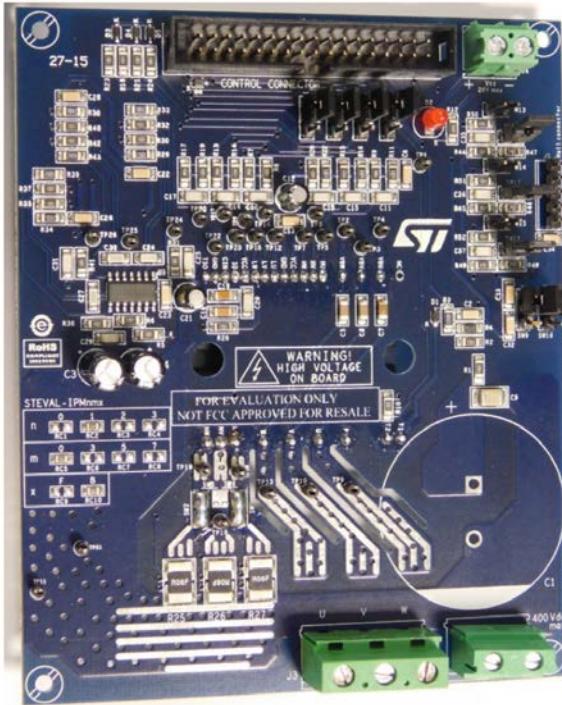
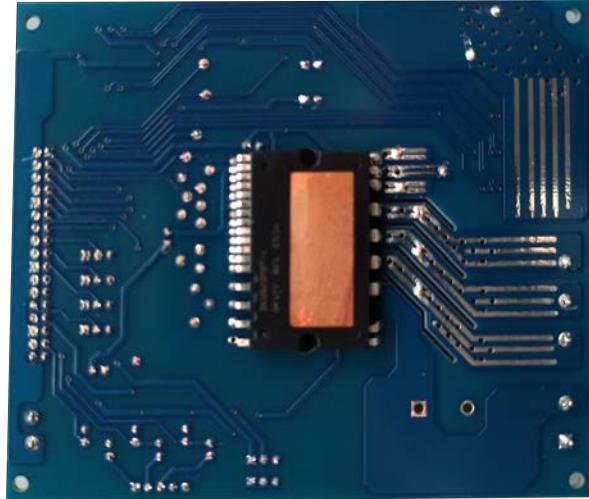


1500 W motor control power board based on STIB1560DM2T-L SLLIMM™ 2nd series MOSFET IPM

Introduction


The [STEVAL-IPMM15B](#) is a compact motor drive power board equipped with SLLIMM™ (small low-loss intelligent molded module) 2nd series based on n-channel power MOSFET MDmesh™ DM2 fast-recovery diode ([STIB1560DM2T-L](#)). It provides an affordable and easy-to-use solution for driving high power motors for a wide range of applications such as power white goods, air conditioning, compressors, power fans, high-end power tools and 3-phase inverters for motor drives in general. The IPM itself consists of MOSFETs and a wide range of features like undervoltage lockout, smart shutdown, embedded temperature sensor and NTC, and overcurrent protection.

The main characteristics of this evaluation board are small size, minimal BOM and high efficiency. It consists of an interface circuit (BUS and VCC connectors), bootstrap capacitors, snubber capacitor, hardware short-circuit protection, fault event and temperature monitoring. In order to increase the flexibility, it is designed to work in single- or three-shunt configuration and with double current sensing options such as using three dedicated onboard op-amps, or op-amps embedded in the MCU. The Hall/Encoder part completes the circuit.


Thanks to these advanced characteristics, the system has been specifically designed to achieve fast and accurate current feedback conditioning, satisfying the typical requirements for field-oriented control (FOC).

The [STEVAL-IPMM15B](#) is compatible with ST's STM32-based control board, enabling designers to build a complete platform for motor control.

Figure 1. SLIMM 2nd serie motor control internal demo board (top view)

Figure 2. SLIMM 2nd serie motor control internal demo board (bottom view)

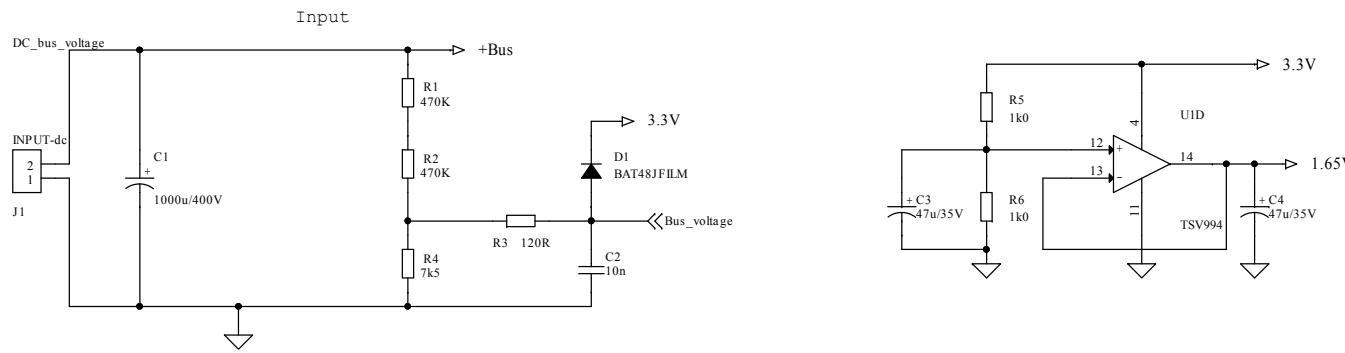
Note: These pictures are indicative of the whole board family.

1 Key features

- Input voltage: 125 - 400 VDC
- Nominal power: up to 1500 W
 - Allowable maximum power is related to the application conditions and cooling system
- Nominal current: up to 6 A_{rms}
- Input auxiliary voltage: up to 20 V DC
- Single- or three-shunt resistors for current sensing (with sensing network)
- Two options for current sensing: dedicated op-amps or through MCU
- Overcurrent hardware protection
- IPM temperature monitoring and protection
- Hall sensor or encoder input
- MOSFET intelligent power module:
 - SLLIMM™ 2nd series IPM (STIB1560DM2T-L - DBC package)
- Motor control connector (32-pin) to interface with ST MCU boards
- Universal conception for further evaluation with breadboard and testing pins
- Very compact size
- WEEE compliant
- RoHS compliant

2 Circuit schematics

The full schematics for the SLLIMM™ 2nd series card for STIB1560DM2T-L IPM products is shown below. This card consists of an interface circuit (BUS and V_{CC} connectors), bootstrap capacitors, snubber capacitor, shortcircuit protection, fault output circuit, temperature monitoring, single-/three-shunt resistors and filters for input signals. It also includes bypass capacitors for V_{CC} and bootstrap capacitors. The capacitors are located very close to the drive IC to avoid malfunction due to noise.


Dual current sensing options are provided: three dedicated on-board op-amps or embedded MCU op-amps; selection is performed through three jumpers.

The Hall/Encoder section (powered at 5 V or 3.3 V) completes the circuit.

2.1 schematic diagrams

Figure 3. STEVAL-IPMM15B board schematic (1 of 5)

STEVAL-IPM1nmx decoder

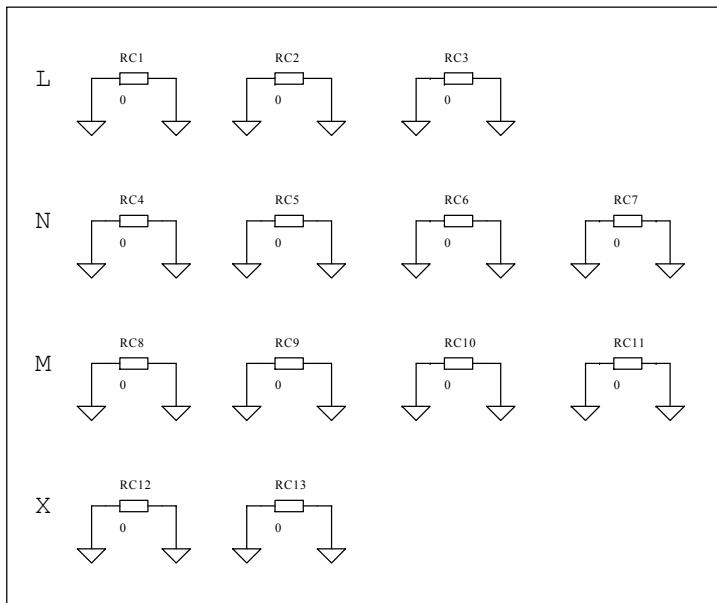


Figure 4. STEVAL-IPMM15B board schematic (2 of 5)

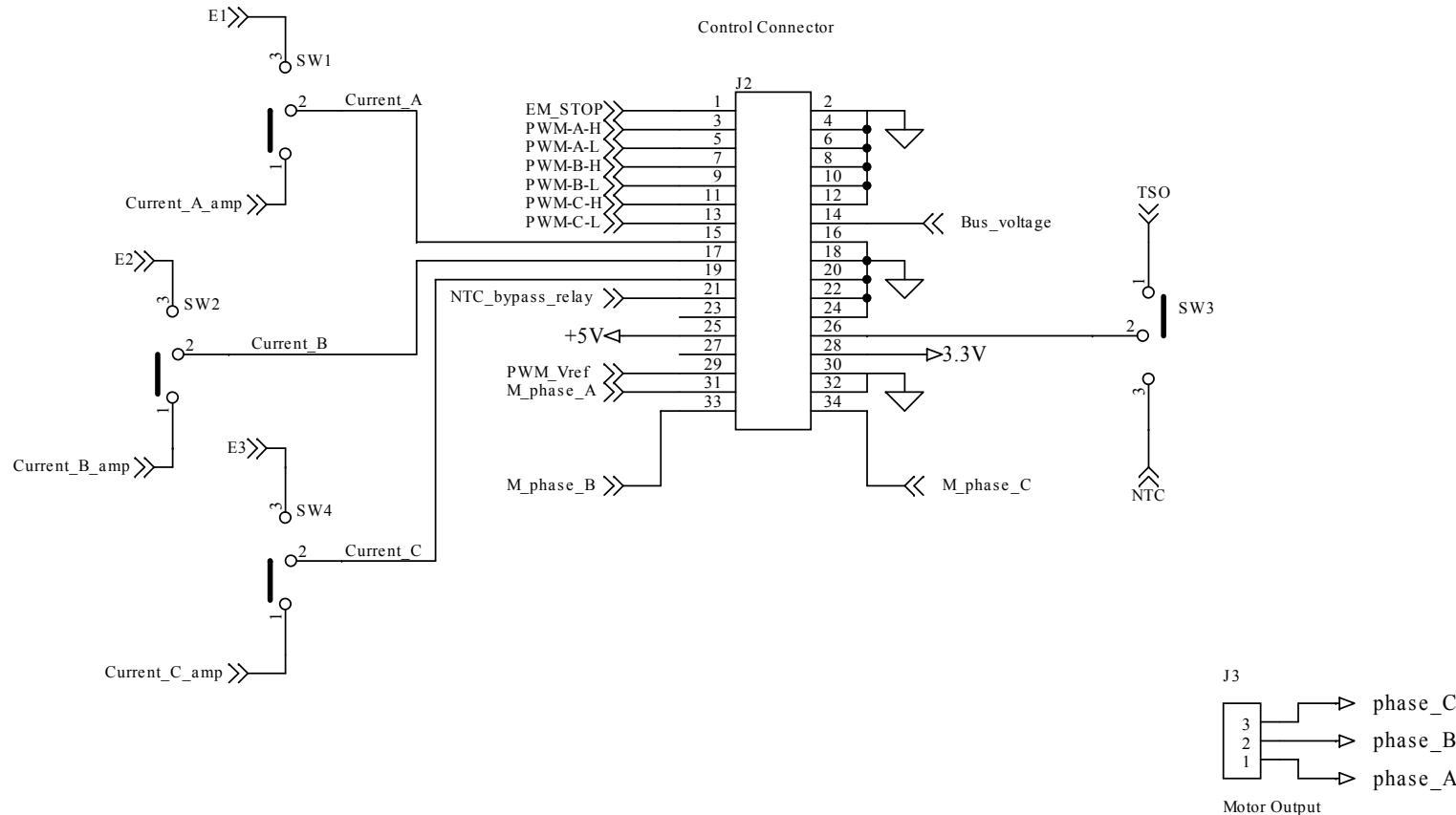
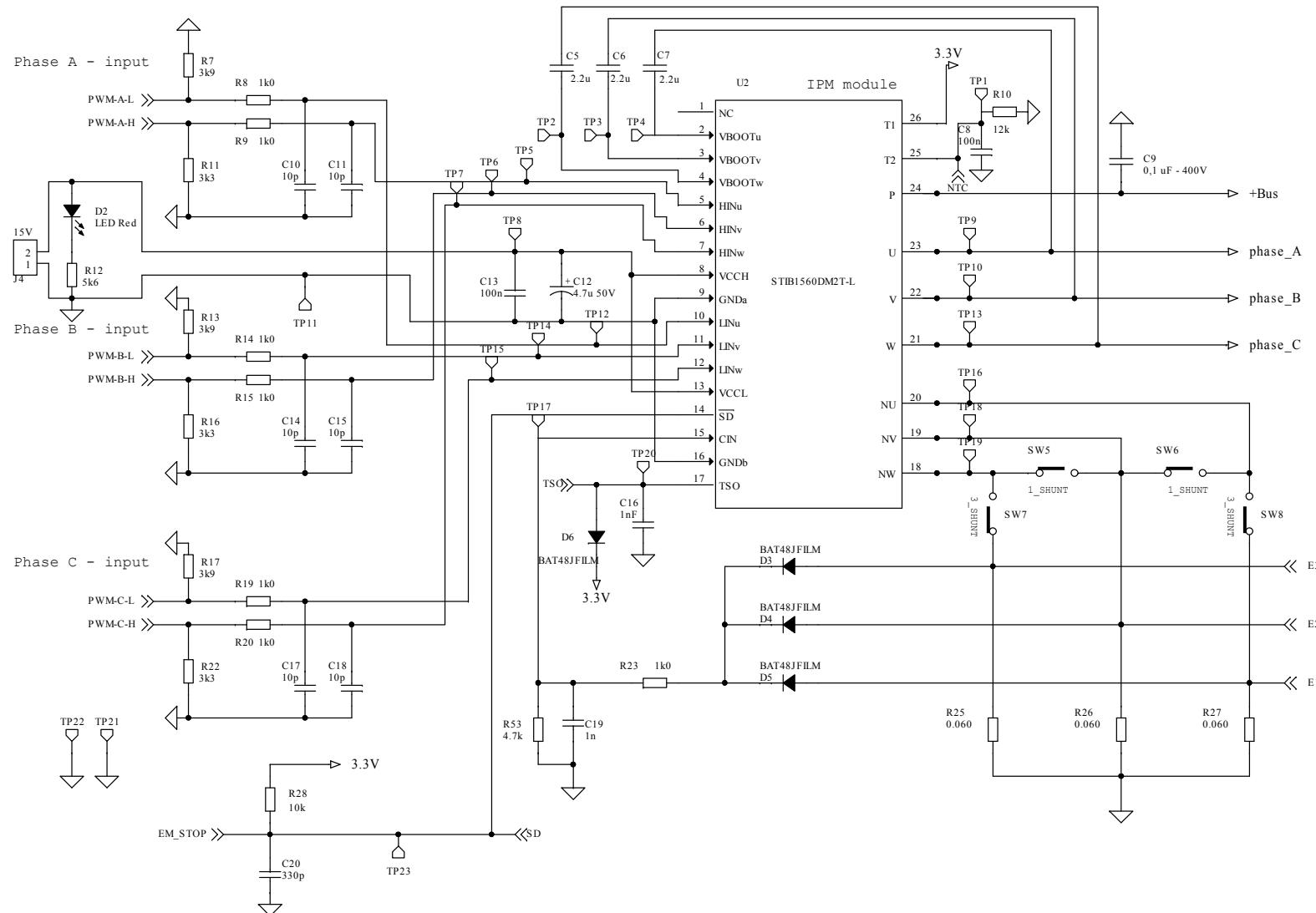



Figure 5. STEVAL-IPMM15B board schematic (3 of 5)

Figure 6. STEVAL-IPMM15B board schematic (4 of 5)

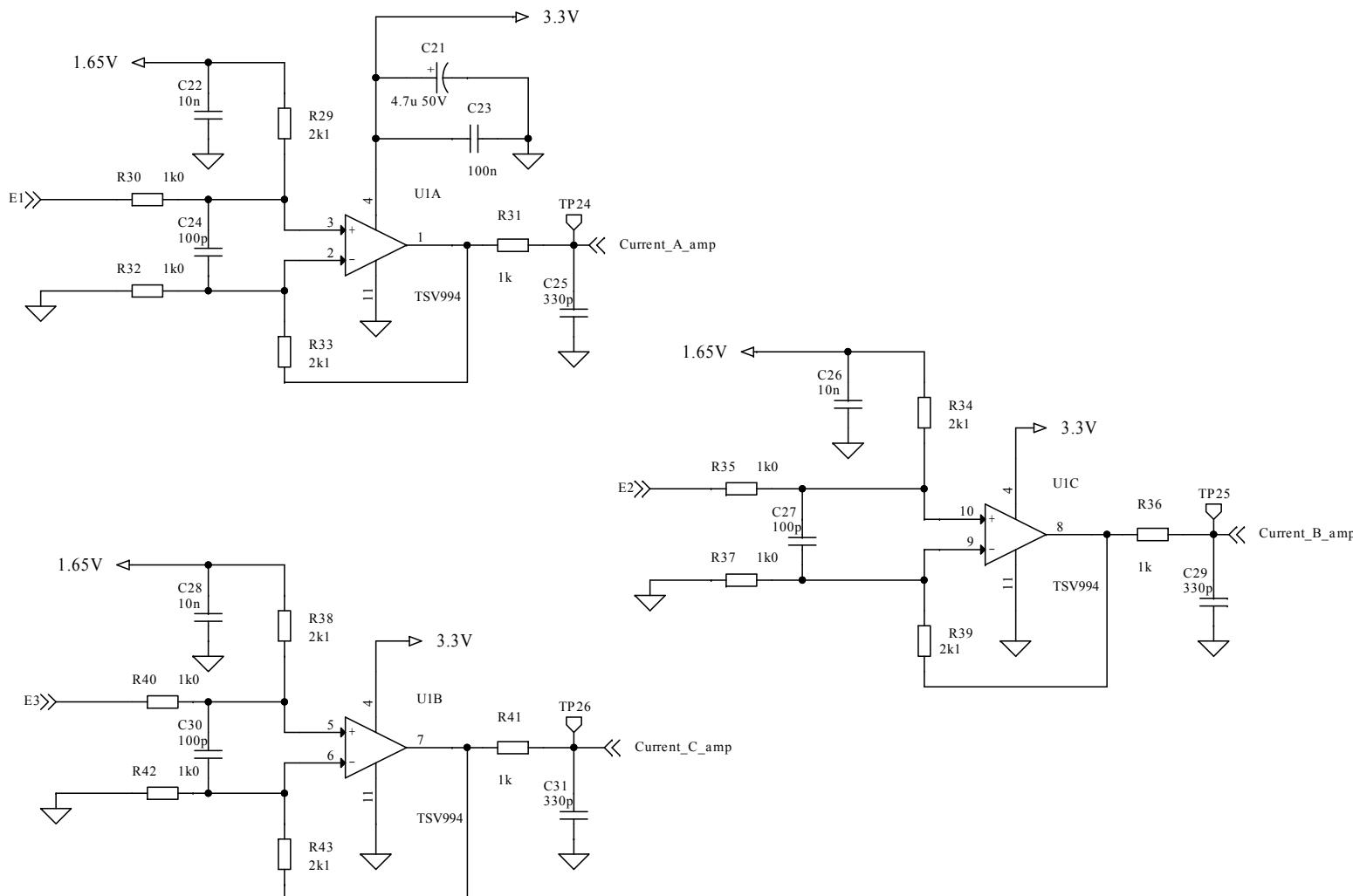
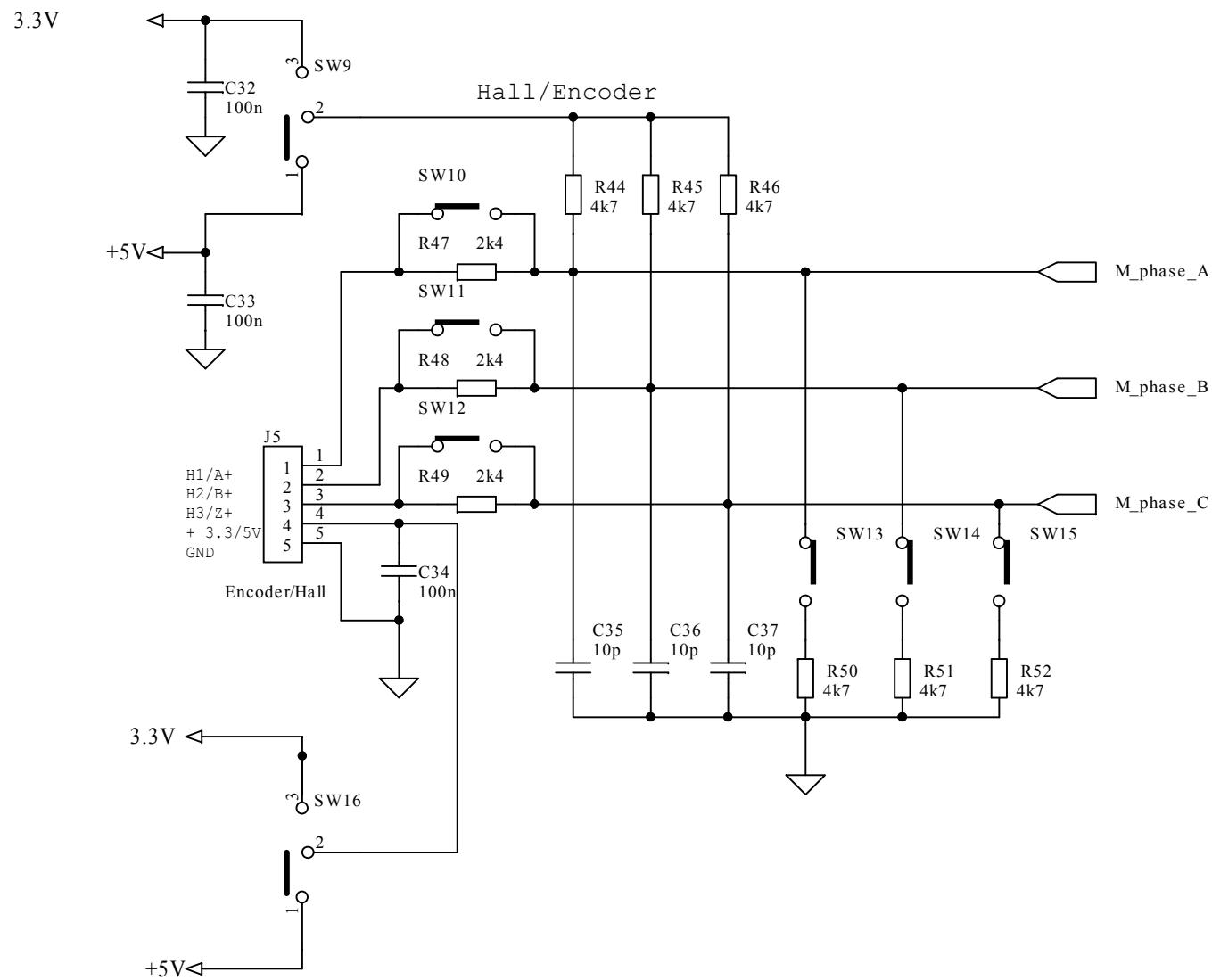
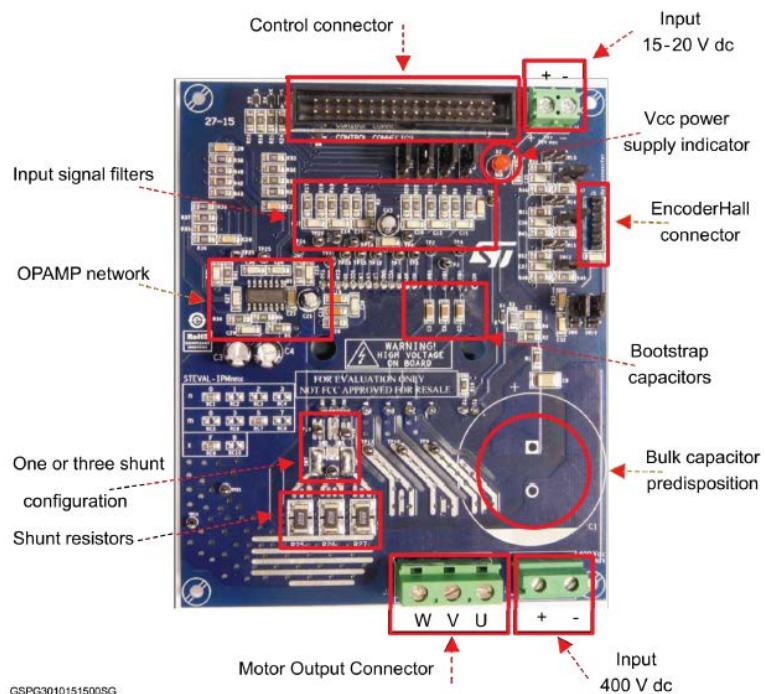



Figure 7. STEVAL-IPMM15B board schematic (5 of 5)

3 Main characteristics


The board is designed to be compatible with DC supply from 125 VDC up to 400 VDC voltage.

A bulk capacitor according to the power level of the application must be mounted. The footprint is already provided on the board.

The SLLIMM integrates six MOSFET switches with high voltage gate drivers. Thanks to this integrated module, the system is specifically designed to achieve power inversion in a reliable and compact design. Such integration reduces the required PCB area and the simplicity of the design increases reliability.

In order to increase the flexibility, it can operate in single- or three-shunt configuration by modifying solder bridge jumper settings (see [Section 4.3.5 Single- or three-shunt selection](#)).

Figure 8. STEVAL-IPMM15B architecture

Note: This picture is indicative of the whole board family.

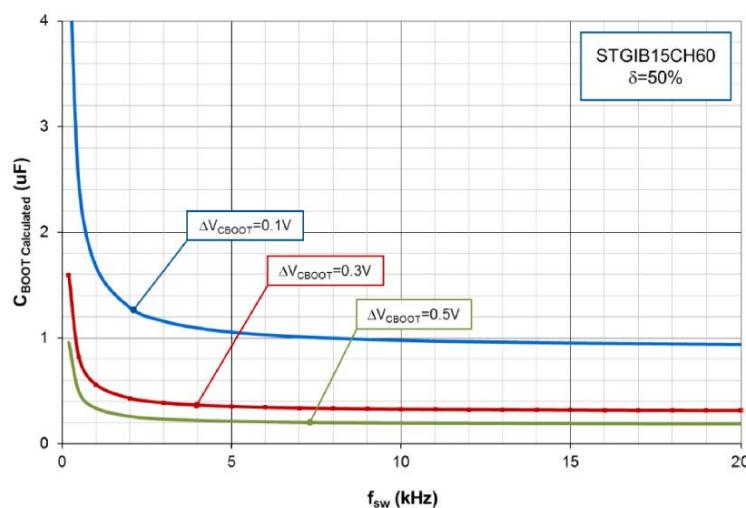
4 Filters and key parameters

4.1 Input signals

The input signals (LINx and HINx), able to drive the internal MOSFETs, are active high. A 100 k Ω (typ.) pull-down resistor is built-in for each input signal. In order to prevent input signal oscillation, an RC filter was added on each input and placed as close as possible to the IPM. The filter is designed using a time constant of 10 ns (1 k Ω and 10 pF).

4.2 Bootstrap capacitor

In the 3-phase inverter, the emitters of the low side MOSFETs are connected to the negative DC bus (VDC-) as common reference ground, which allows all low side gate drivers to share the same power supply, while the emitter of high side MOSFETs is alternately connected to the positive (VDC+) and negative (VDC-) DC bus during running conditions.


A bootstrap method is a simple and cheap solution to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode. The SLLIMM 2nd series family includes a patented integrated structure that replaces the external diode. It is realized with a high voltage DMOS functioning as diode with series resistor. An internal charge pump provides the DMOS driving voltage. The value of the CBOOT capacitor should be calculated according to the application condition.

This curve is taken from application note AN4768 (available on www.st.com); calculations are based on the STGIB15CH60TS-L device, which represents the worst case scenario for this kind of calculation.

Figure 9. C_{BOOT} graph selection shows the behavior of C_{BOOT} (calculated) versus switching frequency (f_{sw}), with different values of ΔV_{CBOOT} for a continuous sinusoidal modulation and a duty cycle $\delta = 50\%$.

The boot capacitor must be two or three times larger than the C_{BOOT} calculated in the graph. For this design, a value of 2.2 μ F was selected.

Figure 9. C_{BOOT} graph selection

4.3 Overcurrent protection

The SLLIMM 2nd series integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference VREF (510 mV typ.) connected to the inverting input, while the non-inverting input available on the CIN pin can be connected to an external shunt resistor to implement the overcurrent protection function.

When the comparator triggers, the device enters the shutdown state.

The comparator output is connected to the SD pin in order to send the fault message to the MCU.

4.3.1 SD Pin

The \overline{SD} is an input/output pin (open drain type if used as output). Taking into account the voltage reference on SD (3.3 V), a pull up resistor of $10\text{ k}\Omega$ (R28) is used to guarantee the right bias and consequently to keep the current on the open drain DMOS (I_{OD}) lower than 3 mA.

The filter on \overline{SD} (R28 and C20) has to be sized to obtain the desired re-starting time after a fault event and placed as close as possible to the SD pin.

A shutdown event can be managed by the MCU, in this case the \overline{SD} functions as the input pin.

Conversely, the \overline{SD} functions as an output pin when an overcurrent or undervoltage condition is detected.

4.3.2 Fault management

The SLLIMM 2nd series integrates a specific kind of fault management, useful when SD is functioning as output, able to identify the type of fault event.

As previously described, as soon as a fault occurs, the open-drain (DMOS) is activated and LVGx outputs are forced low.

Two types of fault can be signaled:

- Overcurrent (OC) sensed by the internal comparator (CIN);
- Undervoltage (UVLO) on supply voltage (VCC).

Each fault enables the SD open drain for a different time (see the table below).

The duration of a shutdown event therefore tells us the type of failure that has occurred.

Table 1. Fault timing

Symbol	Parameter	Event time	SD open-drain enable time result
OC	Overcurrent event	$\leq 24\text{ }\mu\text{s}$	$24\text{ }\mu\text{s}$
		$> 24\text{ }\mu\text{s}$	OC time
UVLO	Undervoltage lockout event	$\leq 70\text{ }\mu\text{s}$	$70\text{ }\mu\text{s}$
		$> 70\text{ }\mu\text{s until }V_{CC_LS}$ exceeds the V_{CC_LS} UV turn on threshold	UVLO time

Note: typical value ($T_J = -40\text{ }^{\circ}\text{C}$ to $125\text{ }^{\circ}\text{C}$)

Note: without contribution of RC network on SD

Figure 10. SD failure due to overcurrent shows a shutdown as the result of an overcurrent event. During the overcurrent, the voltage on the comparator (CIN) exceeds the threshold (0.51 V typ.) and the shutdown is able to stop the application. In this case, the SD event time is about 24 μ s (for OC event less than 24 μ s).

Figure 10. SD failure due to overcurrent

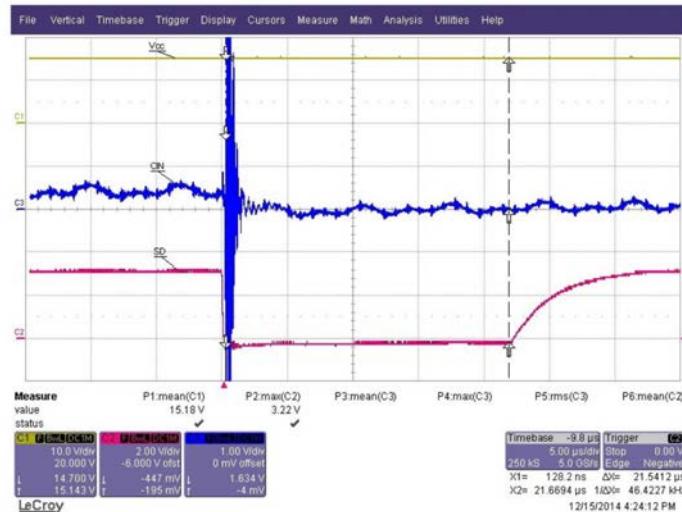


Figure 11. SD failure due to undervoltage (UVLO below 70 μ s) shows the shutdown event as the result of an undervoltage condition on the V_{CC} supply. If V_{CC} drops below the undervoltage threshold, the shutdown can stop the application. If the voltage on V_{CC} rises above the V_{CC} on threshold in less than 70 μ s, the SD event time is about 70 μ s.

Figure 11. SD failure due to undervoltage (UVLO below 70 μ s)

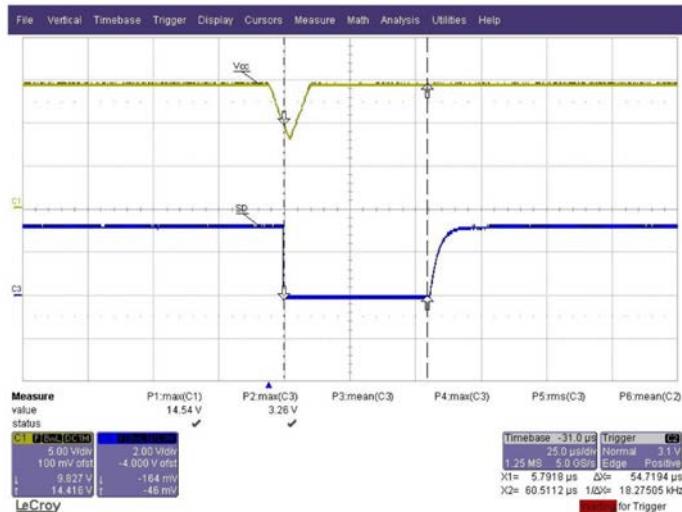
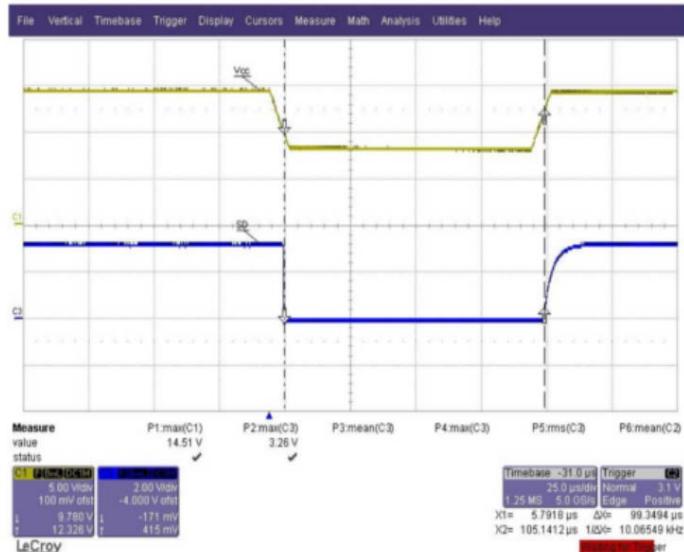



Figure 12. SD failure due to undervoltage (UVLO above 70 μ s) shows the shutdown event as the result of an undervoltage condition on the V_{CC} supply. In this case, the drop on V_{CC} is greater than 70 μ s. The SD event time is the same as the duration of drop.

Figure 12. SD failure due to undervoltage (UVLO above 70 μ s)

4.3.3 Shunt resistor selection

The value of the shunt resistor is calculated by the following equation:

$$R_{SH} = \frac{V_{ref}}{I_{OC}} \quad (1)$$

Where V_{ref} is the internal comparator (CIN) (0.51 V typ.) and I_{OC} is the current of overcurrent detection level. The maximum value of overcurrent protection level should be set less than the pulsed collector current in the datasheet. In this design the over current threshold level is fixed @ $I_{OC} = 13$ A.

$$R_{SH} = \frac{V_{ref} \cdot \left(\frac{R_{23} + R_{53}}{R_{53}} \right) + V_F}{I_{OC}} = \frac{0.51 \cdot \left(\frac{1000 + 4700}{4700} \right) + 0.18}{13} = 0.0614 \Omega \quad (2)$$

Where V_F is the voltage drop across diodes D3, D4 and D5.

The commercial value chosen was 0.06 Ω to which corresponds a level of 13.1 A.

The power rating of the shunt resistor is calculated by the following equation:

$$P_{SH} = \frac{1}{2} \cdot \frac{I_{load(max)}^2 \cdot R_{SH} \cdot \text{margin}}{\text{Derating ratio}} \quad (3)$$

Where:

- $I_{load(max)}$: Maximum load current of inverter
- R_{SH} : Shunt resistor value at $T_c=25^\circ\text{C}$
- Derating ratio: Power derating ratio of shunt resistor @ 100°C
- Margin: Safety margin of 30%

$I_{load(max)}$ is calculated considering the RMS value of the IPM nominal current including a safety margin.

$$I_{load(max)} = \frac{I_{nom}(@80^\circ\text{C})}{\sqrt{2}} * 0.85 = 6.04_{rms} \quad (4)$$

Power shunt value is:

(5)

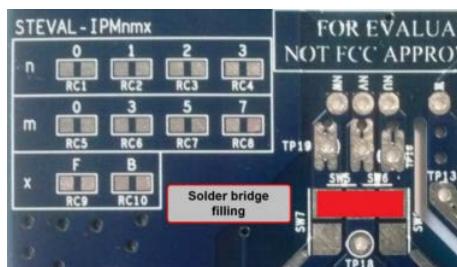
$$P_{SH} = \frac{1}{2} \cdot \frac{6.0^2 \cdot 0.06 \cdot 1.3}{0.8} = 1.772W$$

Considering the commercial value, 2W shunt resistor was selected.

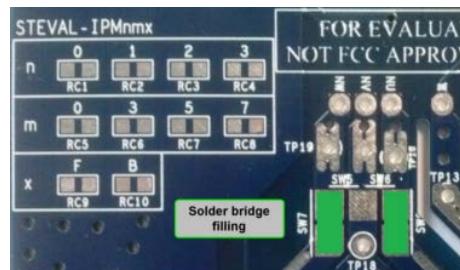
Based on the previous equations and conditions, minimum shunt resistance and power rating is summarized in [Section 4.3.3 table](#).

Table 2. Shunt selection

Device	OCP _(peak) [A]	I _{load(max)} [Arms]	R _{SHUNT} [Ω]	Shunt power rating P _{SH} [W]
STIB1560DM2T-L	13.1	6.0	0.06	2


4.3.4 RC filter

An RC filter network is required to prevent undesired short circuit operation due to the noise on the shunt resistor. In this design, the RC filter, composed of R23, R18, R21, R24 and C19, has a constant time of about 1.3 μ s. Adding the turn-off propagation delay of the gate driver and the MOSFET turn-off time (hundreds of nanoseconds in total), the total delay time is less than 5 μ s of short circuit withstand MOSFET time.


4.3.5 Single- or three-shunt selection

Single- or three-shunt resistor circuits can be adopted by setting the solder bridges SW5, SW6, SW7 and SW8. The figures below illustrate how to set up the two configurations.

Figure 13. One-shunt configuration

Figure 14. Three-shunt configuration

5 Current sensing amplifying network

The [STEVAL-IPMM15B](#) motor control evaluation board can be configured to run in three-shunt or single-shunt configurations for field oriented control (FOC).

The current can be sensed thanks to the shunt resistor and amplified by using the on board operational amplifiers or by the MCU (if equipped with op-amp).

Once the shunt configuration is chosen by setting solder bridge on SW5, SW6, SW7 and SW8 (as described in Section 4.3.5 Single- or three-shunt selection), the user can choose to send the voltage shunt to the MCU amplified or unamplified.

Single-shunt configuration requires a single op amp and three-shunt configuration requires three op amps; therefore, in single-shunt configuration, the only voltage which is sent to the MCU to control the sensing is connected to phase V through SW2.

SW1, SW2, SW4 can select which signals are sent to micro, as described below:

Table 3. Op-amp sensing configuration

Symbol	Configuration	Bridge	Sensing
SW1	Single	1-2	open
	Shunt	2-3	open
	Three	1-2	On-board op-amp
	Shunt	2-3	MCU op-amp
SW2	Single	1-2	On-board op-amp
	Shunt	2-3	MCU op-amp
	Three	1-2	On-board op-amp
	Shunt	2-3	MCU op-amp
SW4	Single	1-2	open
	Shunt	2-3	open
	Three	1-2	On-board op-amp
	Shunt	2-3	MCU op-amp

The operational amplifier TSV994 used on amplifying networks has a 20 MHz gain bandwidth and operates with a single positive supply of 3.3 V.

The amplification network must allow bidirectional current sensing, so that an output offset $VO = +1.65$ V represents zero current.

Referencing the [STIB1560DM2T-L](#) ($IOCP = 13.1$ A; $RSHUNT = 0.06\Omega$), the maximum measurable phase current, considering that the output swings from $+1.65$ V to $+3.3$ V (MCU supply voltage) for positive currents and from $+1.65$ V to 0 for negative currents is:

$$MaxMeasCurrent = \frac{\Delta V}{r_m} = 13.1A \quad (6)$$

$$r_m = \frac{\Delta V}{MaxMeasCurrent} = \frac{1.65}{13.1} = 0.126\Omega \quad (7)$$

The overall trans-resistance of the two-port network is:

$$r_m = R_{SHUNT} \cdot AMP = 0.06 \cdot AMP = 0.126\Omega \quad (8)$$

$$AMP = \frac{r_m}{R_{SHUNT}} = \frac{0.126}{0.06} = 2.1 \quad (9)$$

Finally choosing $R_a=R_b$ and $R_c=R_d$, the differential gain of the circuit is:

$$AMP = \frac{R_c}{R_a} = 2.1 \quad (10)$$

An amplification gain of 2.1 was chosen. The same amplification is obtained for all the other devices, taking into account the OCP current and the shunt resistance, as described in Table 1.

The RC filter for output amplification is designed to have a time constant that matches noise parameters in the range of 1.5 μ s:

$$4 \cdot \tau = 4 \cdot R_e \cdot C_c = 1.5 \mu\text{s} \quad (11)$$

$$C_c = \frac{1.5 \mu\text{s}}{4 \cdot 1000} = 375 \text{ pF} \quad (330 \text{ pF selected}) \quad (12)$$

Table 4. Amplifying networks

Phase	Amplifying network				RC filter	
	R_a	R_b	R_c	R_d	R_e	C_c
Phase U	R30	R32	R29	R33	R31	C25
Phase V	R35	R37	R34	R39	R36	C29
Phase W	R40	R42	R38	R43	R41	C31

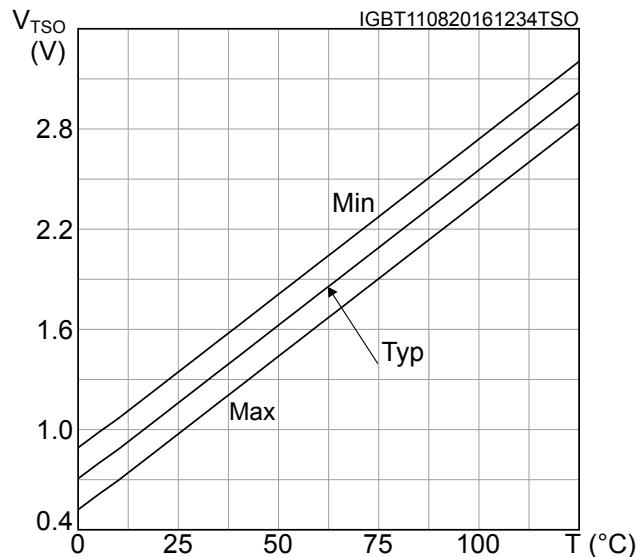
6 Temperature monitoring

The SLLIMM 2nd series family integrates a temperature sensor (VTSO) on the low side gate driver and an NTC thermistor placed close to the power stage.

They can be selected via SW3.

The board is designed to use both of them to monitor the internal IPM temperature through the MCU.

6.1 Thermal sensor (VTSO)

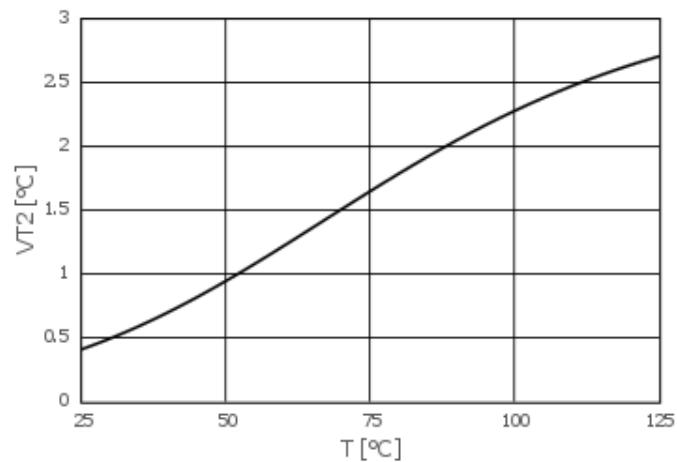

A voltage proportional to the temperature is available on the TSO pin (17) and easily measurable on the TP20 test pin.

To improve noise immunity, a 1 nF (C16) capacitor filter is placed on this pin.

The thermal sensor does not need any pull down resistors.

The following graph shows typical voltage variation as a function of temperature.

Figure 15. Thermal sensor voltage vs temperature



6.2 NTC Thermistor

The embedded thermistor (85 kΩ at 25 °C) in the IPM is connected between pins T1 and T2 (26, 25).

A 12 kΩ pull down resistor (R10) ensures that the voltage variation on the NTC as a function of temperature is almost linear. This voltage is easily monitored on TP1 test pin.

The figure below shows the typical voltage on T2 as function of temperature.

Figure 16. NTC voltage vs temperature

7

Firmware configuration for STM32 PMSM FOC SDK

The following table summarizes the parameters which customize the latest version of the ST FW motor control library for permanent magnet synchronous motor (PMSM): STM32 PMSM FOC SDK for this [STEVAL-IPMM15B](#).

Table 5. ST motor control workbench GUI parameters

Block	Parameter	Value
Over current protection	Comparator threshold	$V_{ref} \cdot \left(\frac{R_{23} + R_{53}}{R_{53}} \right) + V_F = 0.8V \quad (13)$
	Overcurrent network offset	0
	Overcurrent network gain	Comparator threshold (see equation) / loop (see Shunt resistor selection)
Bus voltage sensing	Bus voltage divider	1/125
Rated bus voltage info	Min rated voltage	125 V
	Max rated voltage	400 V
	Nominal voltage	325 V
Current sensing	Current reading typology	Single- or three-shunt
	Shunt resistor value	See shunt value in Shunt resistor selection
	Amplifying network gain	2.1
Command stage	Phase U Driver	HS and LS: Active high
	Phase V Driver	HS and LS: Active high
	Phase W Driver	HS and LS: Active high

8 Connectors, jumpers and test pins

Table 6. Connectors

Connector	Description/pinout	
	Motor control connector	
J2	1 - emergency stop 3 - PWM-1H 5 - PWM-1L 7 - PWM-2H 9 - PWM-2L 11 - PWM-3H 13 - PWM-3L 15 - current phase A 17 - current phase B 19 - current phase C 21 - NTC bypass relay 23 - dissipative brake PWM 25 - +V power 27- PFC sync. 29 - PWM VREF 31 - measure phase A 33 - measure phase B	2 - GND 4 - GND 6 - GND 8 - GND 10 - GND 12 - GND 14 - HV bus voltage 16 - GND 18 - GND 20 - GND 22 - GND 24 - GND 26 - heat sink temperature 28 - VDD_m 30 - GND 32 - GND 34 - measure phase C
J3	Motor connector • phase A • phase B • phase C	
J4	VCC supply (20 VDC max) • positive • negative	
J5	Hall sensors / encoder input connector 1. Hall sensors input 1 / encoder A+ 2. Hall sensors input 2 / encoder B+ 3. Hall sensors input 3 / encoder Z+ 4. 3.3 or 5 Vdc 5. GND	
J7	Supply connector (DC – 125V to 400 V) 1. + (positive terminal) 2. - (negative terminal)	

Table 7. Jumpers

Jumper	Description	
SW3	TSO/NTC	
	TSO: jumper on 1-2	
	NTC: jumper on 2-3	
SW1	To choose current U to send to control board:	
	Jumper on 1-2: from amplification	
	Jumper on 2-3: directly from motor output	
SW2	To choose current V to send to control board	
	Jumper on 1-2: from amplification	
	Jumper on 2-3: directly from motor output	
SW4	To choose current W to send to control board:	
	Jumper on 1-2: from amplification	
	Jumper on 2-3: directly from motor output	
SW13	To modify phase A hall sensor network	
SW14	To modify phase B hall sensor network	
SW15	To modify phase C hall sensor network	
SW9, SW16	To choose input power for Hall/Encoder	
	Jumper on 1-2: 5 V	
	Jumper on 2-3: 3.3 V	
SW5, SW6SW7, SW8	To choose one-shunt or three-shunt configuration. (Through solder bridge)	
	SW5, SW6 closed	one shunt
	SW7, SW8 open	
	SW5, SW6 open	three shunt
	SW7, SW8 closed	

Table 8. Test pins

Test pin	Description
TP1	NTC (T2 pin)
TP2	VBOOTw
TP3	VBOOTv
TP4	VBOOTu
TP5	HinU (high side U control signal input)
TP6	HinV (high side V control signal input)
TP7	HinW (high side W control signal input)
TP8	VCCH
TP9	phase A (U pin)
TP10	phase B (V pin)
TP11	Ground
TP12	LinU (high side U control signal input)
TP13	phase C (W pin)
TP14	LinV (high side V control signal input)
TP15	LinW (high side W control signal input)
TP16	Negative DC input for U phase
TP17	CIN
TP18	Negative DC input for V phase
TP19	Negative DC input for W phase
TP20	TSO (TSO pin)
TP21	Ground
TP22	Ground
TP23	SD (shutdown pin)
TP24	Current_A_amp
TP25	Current_B_amp
TP26	Current_C_amp

9 PCB design guide

Optimization of PCB layout for high voltage, high current and high switching frequency applications is a critical point. PCB layout is a complex matter as it includes several aspects, such as length and width of track and circuit areas, but also the proper routing of the traces and the optimized reciprocal arrangement of the various system elements in the PCB area.

A good layout can help the application to properly function and achieve expected performance. On the other hand, a PCB without a careful layout can generate EMI issues, provide overvoltage spikes due to parasitic inductance along the PCB traces and produce higher power loss and even malfunction in the control and sensing stages.

In general, these conditions were applied during the design of the board:

- PCB traces designed as short as possible and the area of the circuit (power or signal) minimized to avoid the sensitivity of such structures to surrounding noise
- Good distance between switching lines with high voltage transitions and the signal line sensitive to electrical noise
- The shunt resistors were placed as close as possible to the low side pins of the SLLIMM. To decrease the parasitic inductance, a low inductance type resistor (SMD) was used
- RC filters were placed as close as possible to the SLLIMM pins in order to increase their efficiency

9.1 Layout of reference board

All the components are inserted on the top of the board. Only the IPM module is inserted on the bottom to allow the insertion of a suitable heatsink for the application.

Figure 17. Silk screen and etch - top side

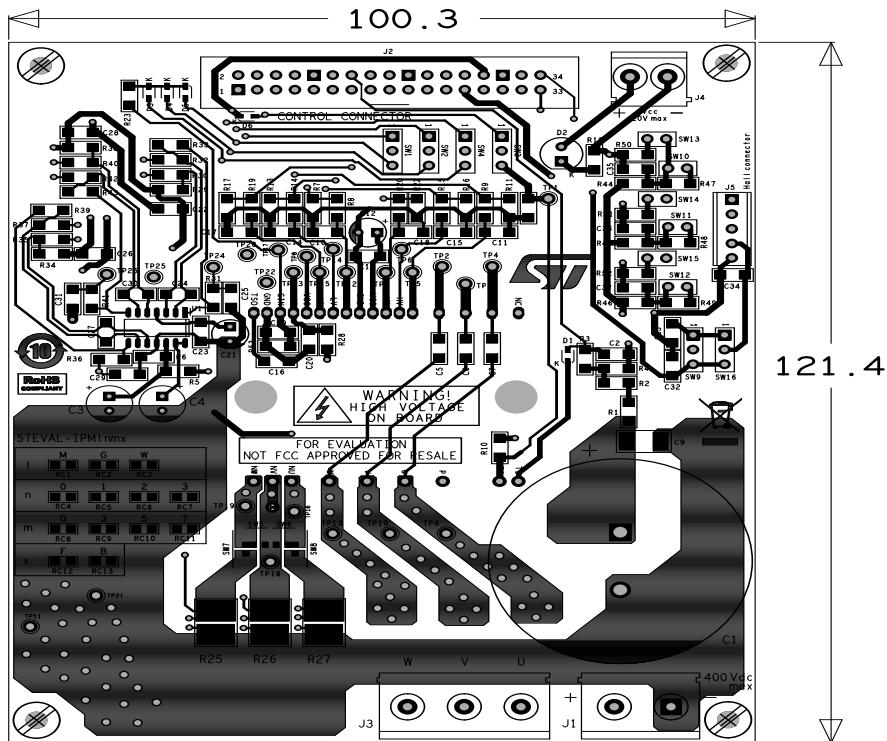
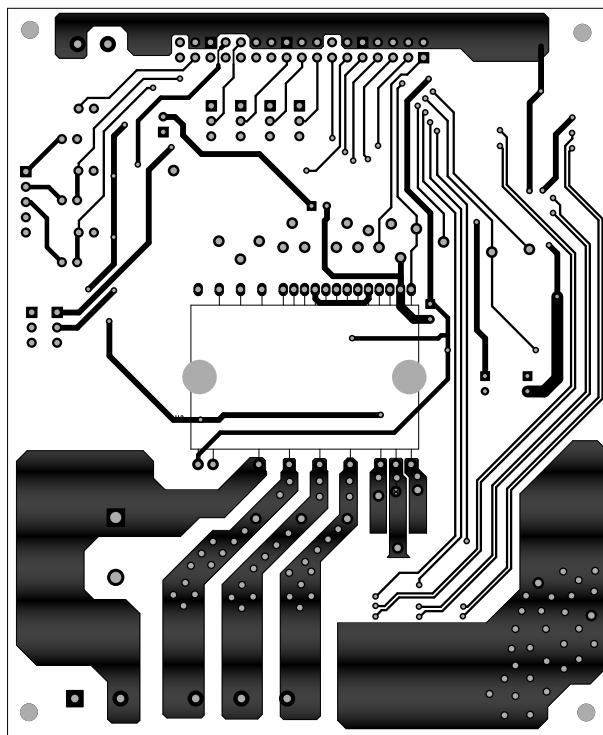



Figure 18. Silk screen and etch - bottom side

10 Bill of materials

Table 9. STEVAL-IPMM15B bill of materials

Item	Q.ty	Ref.	Part / Value	Description	Manufacturer	Order code
1	4	C2,C22,C26,C28	10 nF	Capacitor, SMD 1206	AVX	12065C103KAT2A
2	9	C10,C11,C14,C15,C17,C18,C35,C36, C37	10 pF	Capacitor, SMD 1206	AVX	12061A100JAT2A
3	4	C20,C25,C29,C31	330 pF	Capacitor, SMD 1206	AVX	12065A331JAT2A
4	3	C5,C6,C7	2.2 uF	Capacitor, SMD 1206	Murata	GCM31MR71E225KA57L
5	6	C8,C13,C23,C32,C33,C34	100 nF	Capacitor, SMD 1206	AVX	12065C104KAZ2A
6	2	C12,C21	4.7 uF	Electrolytic Capacitor	any	
7	2	C19,C16	1 nF	Capacitor, SMD 1206	Kemet	C1206C102K5RACTU
8	1	C9	0.1 uF	Capacitor, SMD 1812	Murata	GRM43DR72J104KW01L
9	3	C24,C27,C30	100 pF	Capacitor, SMD 1206	Kemet	C1206C101J1GACTU
10	2	C3,C4	47 uF	Electrolytic Capacitor	any	
11	5	D1,D3,D4,D5 D6	Diode BAT48J	Schottky Diode, SOD323	STMicroelectronics	BAT48J
12	1	D2	LED Red	LED 3 mm, 2 mA, universal	Ledtech	L4RR3000G1EP4
13	1	J2	Connector 34P	445-6043-2-ND connector 34-pins	RS	625-7347
14	1	J3	Connector - 7,5 mm - 3P	Connector - 7 mm - 3 pole	TE Connectivity AMP Connectors	282845-3
15	1	J4	Conector - 5 mm - 2P	Connector - 5 mm - 2 pole	Phoenix Contact	1935161
16	1	J1	Conector - 7.5 mm - 2P	Connector - 7 mm - 2 pole	On Shore Technology Inc	OSTVI024152
17	1	J5	Connector - 2.54 mm - 5P	Five pins of pin header	RS	W81136T3825RC
18	2	R1,R2	470 kΩ	Resistor, SMD 1206	any	
19	1	R4	7.5 kΩ	Resistor, SMD 1206	Panasonic	ERJP08F7501V
20	1	R3	120 Ω	Resistor, SMD 1206	any	
21	3	R7,R13,R17	3.9 kΩ	Resistor, SMD 1206	any	

Item	Q.ty	Ref.	Part / Value	Description	Manufacturer	Order code
22	18	R5,R6,R8,R9,R14,R15,R19,R20,R23,R30,R32,R31,R36,R35,R41,R42,R40,R37	1 kΩ	Resistor, SMD 1206	any	
23	3	R11,R16,R22	3.3 kΩ	Resistor, SMD 1206	any	
24	1	R28	10 kΩ	Resistor, SMD 1206	any	
25	1	R10	12 kΩ	Resistor, SMD 1206	any	
26	6	R29,R33,R34,R38,R39,R43	2.1 kΩ	Resistor, SMD 1206	any	
27	1	R12	5.6 kΩ	Resistor, SMD 1206	any	
28	3	R25,R26,R27	0,060 Ω	Resistor, SMD 2816	Vishay / Dale	WSL2816R0600FEB
29	7	R44,R45,R46,R50,R51,R52,R53	4.7 kΩ	Resistor, SMD 1206	any	
30	3	R47,R48,R49	2.4 kΩ	Resistor, SMD 1206	any	
31	6	SW1,SW2,SW3,SW4,SW9,SW16	Jumper 2.54	Three pins of pin header	RS	W81136T3825RC
32	6	SW10,SW11,SW12,SW13,SW14,SW15	Jumper 2.54	Two pins of pin header	RS	W81136T3825RC
33	12	-	2.54mm,low profile,connector	-	RS	881545-2
34	42	SW7,SW8	Solder Bridge	-	-	
35	2	SW5,SW6	open	-	-	
36	26	TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8,TP9,TP10,TP11,TP12,TP13,TP14,TP15,TP16,TP17,TP18,TP19,TP20,TP21,TP22,TP23,TP24,TP25,TP26	PCB terminal 1mm	Test pin	KEYSTONE	5001
37	1	U1	TSV994	Op amp, SO14	STMicroelectronics	TSV994
38	1	U2	3-phase inverter, 15A, 600V Power MOSFET	SDIP2B-26L type L1	STMicroelectronics	STIB1560DM2T-L

Item	Q.ty	Ref.	Part / Value	Description	Manufacturer	Order code
39	4	RC1,RC5,R C10,RC13	0 OHM	Resistor, SMD 0805	ANY	
40	9	RC2,RC3,R C4,RC6,RC 7,RC8,RC9, RC11,RC12	NOT ASSEMBLY	NOT ASSEMBLY	NOT ASSEMBLY	NOT ASSEMBLY
41	9	to close switch for: SW1, SW2, SW3, SW4, SW9, SW10, SW11, SW12, SW16	-	-	TE Connectivity	1-881545-1
42	1	PCB	100.3x121.4x1. 6mm			

11 Recommendations and suggestions

- The BOM list is not provided with a bulk capacitor already inserted in the PCB. However, the necessary space has been included (C1). In order to obtain a stable supply voltage, according to the application conditions and current ripple requirements, it's advisable to use an adequate bulk capacitor. For general motor control applications, an electrolytic capacitor of at least 100 μ F is suggested
- Similary, the PCB does not come with an heat sink, it can be placed above the IPM on the back of the PCB with thermal conductive foil and screws. Heat sink R_{TH} value is an important factor for good thermal performance and depends on certain factors such as current phase, switching frequency, power factor and ambient temperature. For an adequate heat sink dimensioning, it is suggest to use ST PowerStudio software (STSW-POWERSTUDIO), available on www.st.com.
- The board requires +5 V and +3.3 V to be supplied externally through the 34-pin motor control connector J2. Please refer to the relevant board manuals for information on key connections and supplies.

12 General safety instructions

Danger:

The evaluation board works with high voltage which could be deadly for the users. Furthermore all circuits on the board are not isolated from the line input. Due to the high power density, the components on the board as well as the heat sink can be heated to a very high temperature, which can cause a burning risk when touched directly. This board is intended for use by experienced power electronics professionals who understand the precautions that must be taken to ensure that no danger or risk may occur while operating this board.

Caution: After the operation of the evaluation board, the bulk capacitor C1 (if used) may still store a high energy for several minutes. So it must be first discharged before any direct touching of the board.

Important:

To protect the bulk capacitor C1, we strongly recommended using an external brake chopper after C1 (to discharge the high brake current back from the induction motor).

Revision history

Table 10. Document revision history

Date	Version	Changes
14-Apr-2020	1	Initial release.

Contents

1	Key features	2
2	Circuit schematics	3
2.1	schematic diagrams	4
3	Main characteristics	9
4	Filters and key parameters	10
4.1	Input signals	10
4.2	Bootstrap capacitor	10
4.3	Overcurrent protection	10
4.3.1	SD Pin	11
4.3.2	Fault management	11
4.3.3	Shunt resistor selection	13
4.3.4	RC filter	14
4.3.5	Single- or three-shunt selection	14
5	Current sensing amplifying network	15
6	Temperature monitoring	17
6.1	Thermal sensor (VTSO)	17
6.2	NTC Thermistor	17
7	Firmware configuration for STM32 PMSM FOC SDK	19
8	Connectors, jumpers and test pins	20
9	PCB design guide	23
9.1	Layout of reference board	23
10	Bill of materials	25
11	Recommendations and suggestions	28
12	General safety instructions	29
Revision history		30
Contents		31
List of tables		32
List of figures		33

List of tables

Table 1.	Fault timing	11
Table 2.	Shunt selection	14
Table 3.	Op-amp sensing configuration	15
Table 4.	Amplifying networks	16
Table 5.	ST motor control workbench GUI parameters	19
Table 6.	Connectors	20
Table 7.	Jumpers	21
Table 8.	Test pins	22
Table 9.	STEVAL-IPMM15B bill of materials	25
Table 10.	Document revision history	30

List of figures

Figure 1.	SLIMM 2nd serie motor control internal demo board (top view)	1
Figure 2.	SLIMM 2nd serie motor control internal demo board (bottom view)	1
Figure 3.	STEVAL-IPMM15B board schematic (1 of 5)	4
Figure 4.	STEVAL-IPMM15B board schematic (2 of 5)	5
Figure 5.	STEVAL-IPMM15B board schematic (3 of 5)	6
Figure 6.	STEVAL-IPMM15B board schematic (4 of 5)	7
Figure 7.	STEVAL-IPMM15B board schematic (5 of 5)	8
Figure 8.	STEVAL-IPMM15B architecture	9
Figure 9.	C _{BOOT} graph selection.	10
Figure 10.	SD failure due to overcurrent	12
Figure 11.	SD failure due to undervoltage (UVLO below 70 μ s)	12
Figure 12.	SD failure due to undervoltage (UVLO above 70 μ s)	13
Figure 13.	One-shunt configuration.	14
Figure 14.	Three-shunt configuration	14
Figure 15.	Thermal sensor voltage vs temperature	17
Figure 16.	NTC voltage vs temperature.	18
Figure 17.	Silk screen and etch - top side	23
Figure 18.	Silk screen and etch - bottom side.	24

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved