

EVALSTGAP2SICS: isolated 4 A single gate driver demonstration board

Introduction

The EVALSTGAP2SICS board allows evaluating all the STGAP2SICS features while driving a half-bridge power stage with voltage rating up to 1200 V in a TO-220 or TO-247 package.

This document refers to both the EVALSTGAP2SICS and EVALSTGAP2SICSC board because the two boards are the same with different default configuration (see Table 2 and Table 7).

The board allows easily selecting and modifying the values of the relevant external components in order to facilitate the driver's performance evaluation under different applicative conditions and fine pre-tuning of the final application's components.

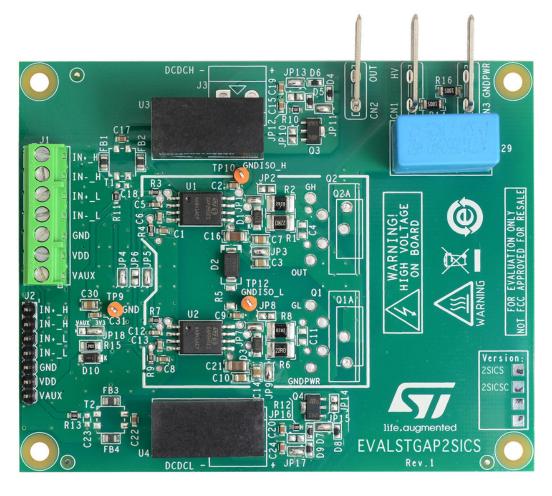


Figure 1. EVALSTGAP2SICS demonstration board

1 Board description and configuration

The board allows tuning several design parameters, giving the possibility to evaluate and optimize the performance and switching characteristics of the power stage.

The user can select and mount the power switch of choice in either a TO-220 or TO-247 package; the board also allows installing an optional heat-sink.

The demonstration board comes populated with isolated DC-DC converters in the standard SIP7 package to supply the gate driving section, which significantly reduce the effort to supply the system and allows fast and easy evaluation of the gate driving performances.

The board is compatible with the whole STGAP2SIC family in an SO-8W package, so it is possible to evaluate the part number of interest just by replacing the gate driver.

Figure 2 shows the position of the main components and connectors on the board.

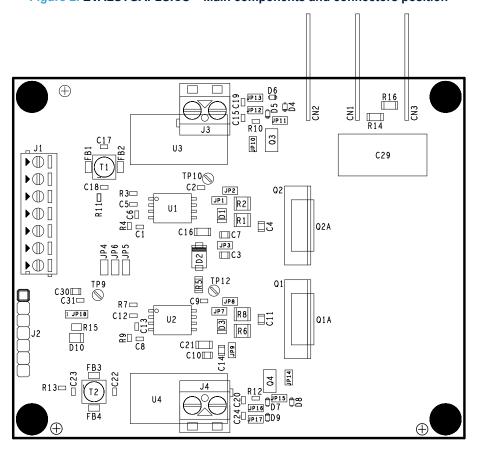


Figure 2. EVALSTGAP2SICS – Main components and connectors position

Table 1. Board connectors

Name	Pin	Label	Description
J4	1 - 2	DCDCL	Low-side VH supply voltage
J3	1 - 2	DCDCH	High-side VH supply voltage
	1	IN+_H	High-side driver logic input, active high
J2	2	INH	High-side driver logic input, active low
J1	3	IN+_L	Low-side driver logic input, active high
	4	INL	Low-side driver logic input, active low

UM2849 - Rev 1 page 2/11

Name	Pin	Label	Description
J2	5	GND	Logic ground
J1	6	VDD	Logic supply voltage
31	7	AUX	Auxiliary power supply
CN3	1	GNDPWR	Power ground
CN2	1	OUT	Power stage output
CN1	1	HV	High voltage power supply

Table 2. Board jumpers setting

Jumper	Permitted configurations	Default condition
JP3	HS gate voltage configuration: selection of negative voltage (refer to Table 5)	Closed
JP4	Input signals configuration: INL connected to IN+_H	Closed
JP5	Input signals configuration: IN+_L connected to INH	Closed
JP6	Input signals configuration: INL connected to INH	Open
JP2	HS gate resistor configuration: connection of CLAMP pin to power gate	Open in EVALSTGAP2SICS Closed in EVALSTGAP2SICSC
JP1	HS gate resistor configuration: connection of GOFF pin to turn-off gate path	Closed in EVALSTGAP2SICS Open in EVALSTGAP2SICSC
JP8	LS gate resistor configuration: connection of CLAMP pin to power gate	Open in EVALSTGAP2SICS Closed in EVALSTGAP2SICSC
JP7	LS gate resistor configuration: connection of GOFF pin to turn-off gate path	Closed in EVALSTGAP2SICS Open in EVALSTGAP2SICSC
JP9	LS gate voltage configuration: selection of negative voltage (refer to Table 5)	Closed
JP14	LS gate voltage configuration: direct connection of DCDCL+ to VH_L net	Open
JP12	HS gate voltage configuration: connection of DCDCH 0V output reference to OUT net	Open
JP13	HS gate voltage configuration: connection of DCDCH- to GNDISO_H net	Closed
JP10	HS gate voltage configuration: direct connection of DCDCH+ to VH_H net	Open
JP11	HS gate voltage configuration: selection of positive voltage (refer to Table 5)	Closed
JP15	LS gate voltage configuration: selection of positive voltage (refer to Table 5)	Closed
JP17	LS gate voltage configuration: connection of DCDCL- to GNDISO_L net	Closed
JP16	LS gate voltage configuration: connection of DCDCL 0V output reference to GNDPWR net	Open
JP18	VDD logic supply configuration (refer to Table 3)	Closed 2-3

1.1 Logic supply voltage (VDD)

It is possible to provide the gate driver control logic supply VDD in three alternative ways to match driver input threshold with the controlling signals voltage swing:

UM2849 - Rev 1 page 3/11

- Using the on-board 3.3 V Zener D10 regulator to supply VDD. The Zener is supplied from DC-DC input voltage VAUX. So only the 5 V VAUX DC-DC supply input is powered to supply the whole system (default configuration).
- Supplying externally VDD net from J1 or J2 (pin 6) with a voltage between 3 V and 5.5 V.
- Supplying externally VDD and VAUX together (VDD max. 5.5 V).

In case the default option is not used, it is required to modify JP18 according to Table 3 and R15 according to Table 4 also to avoid regulator component damage.

VDDJP18Note3.3 V, on-board (default)2-3 closedVDD generated from VAUX with Zener diode D103.3 V, externalOpenVDD directly supplied from J1 or J2 (pin 6)VDD = VAUX, external1-2 closedVDD and VAUX (DC-DC supply) tied together by JP18

Table 3. Logic supply voltage selection (VDD)

The R15 resistor value has been selected for using 5 V input DC-DC module. If a different VAUX input voltage is used, follow Table 4 to modify resistor R15 (which biases Zener D10) to avoid resistor overheating.

DCDC module supply input voltage VAUX	R15	JP18
3.3 V	Do not care	1-2 closed
5 V (default)	240 Ω	2-3 closed or JP18 open
12 V	1200 Ω	2-3 closed or JP18 open
15 V	1500 Ω	2-3 closed or JP18 open
24 V	2700 Ω	2-3 closed or JP18 open

Table 4. R17 value selection with a 3.3 V Zener diode D10 regulator

1.2 Gate driver supply voltage (VH)

It is possible to provide the gate driver supply voltage VH in several alternative ways:

- Using isolated DC-DC converters in the standard SIP7 package (U3, U4)
- Using the bootstrap diode D2 by supplying the low-side driver via J4 and mounting the resistor R5 (initial suggested value 10 Ω)
- Supplying directly J3 and J4 connectors (not mounted) with two separated isolated supplies.

The faster, easier and safer way to supply the board is by using isolated DC-DC converters.

The bootstrap diode supplying method is much simpler and less expensive but does not allow evaluating negative gate driving voltage. The bootstrap diode is 1200 V rated, if a higher bus voltage is required the diode must be replaced accordingly.

Supplying externally via J3 and J4 is in general not recommended, unless using supplies specifically designed for this purpose (with high voltage isolation) or batteries.

Supplies provided from the optional DC-DC or from J3 and J4 connectors are post regulated in order to allow an easy modification of the gate driving voltages. Some predefined supply voltages can be selected through solder jumpers; further tuning can be made by changing the value of the relevant Zener diodes.

UM2849 - Rev 1 page 4/11

Table 5. Gate driving voltage configuration (positive/negative)

Gate driving voltage	JP3, JP9	JP11, JP15
+17 V / 0 V (default)	Closed	Closed
+17 V / -2.7 V	Open	Closed
+19 V / 0 V	Closed	Open
+19 / -2.7 V	Open	Open

The board has been designed for indifferently using 5 V input and 24 V single output or "12 + 12 V" dual output DC-DCs.

Other output voltage DC-DCs can be used by modifying the post regulation network.

Other input voltage DC-DCs can be used by modifying R15 (see Section 1.1).

DC-DC's input voltage is connected to VAUX signal, available on J1 and J2.

DC-DCs with SIP7 footprint are available mostly with 1 W and 2 W output rated power. For most applications, 1 W power modules are enough.

Especially for high dV/dt applications, low input to output isolation capacitance (referred to as input to output coupling capacitance) regulators are recommended.

During applicative output transients (dV/dt), the possible noise generated by the isolation capacitance could make user measurements difficult and noisy. To simplify, user measurements task DC-DC input supply is filtered with FB1, FB2, FB3 and FB4 ferrite beads. In the final application, beads are usually removed for cost reasons. On the other hand, if the user wants a still more improved filter, replacing the beads with a common mode filter (T1 and T2) like, for instance, the TDK ACM4520-142, is suggested.

1.3 Drivers logic input signals

Drivers logic input signals can be applied through the dedicated pins of J1 or J2 connector (refer to Table 1 for details).

It is possible to reduce the required driving signals exploiting the on-board jumpers according to Table 6.

Table 6. Input signals settings

Input configuration	Description	Jumper	Default condition
IN+_H = INL	The same input signal is applied to IN+ of high-side driver U1 and IN- of low-side driver U2	JP4	Closed
IN+_L = INH	The same input signal is applied to IN- of high-side driver U1 and IN+ of low-side driver U2	JP5	Closed
INL = INH	The same input signal is applied to IN- of high-side driver U1 and IN- of low-side driver U2	JP6	Open

1.4 Drivers gate resistors

The gate resistors are selected based on the selected power switch and application topology.

It is possible to evaluate different gate drivers of the STGAP2SIC family by setting few jumpers according to Table 7.

UM2849 - Rev 1 page 5/11

Table 7. Gate driver resistors and jumper settings	Table 7	. Gate driver	resistors and	jumper settings
--	---------	---------------	---------------	-----------------

Gate driver	Feature	JP8, JP2	JP1, JP7	Turn-on resistor	Turn-off resistor
STGAP2SICSM (1)	Separated outputs	Open	Closed	R6, R1	R8, R2
STGAP2ICSCM (2)	Miller Clamp	Closed	Open	R6, R1	R8 // R6 R1 // R2

^{1.} The presence of D1 and D3 does not influence turn-off speed and these diodes are not required in the final application. D1 and D3 are mounted on board to speed up evaluation of STGAP2SC (Miller Clamp version).

1.5 Power stage decoupling

As for all switching applications, high voltage supply is properly decoupled and appropriate decoupling capacitor is connected to the board to reduce bus ringing and power switch overvoltage spikes during operation.

The board is equipped with a small 1.25 kV DC rated film capacitor (C29) in a convenient position to operate the power switches more safely.

Depending on the application, bus decoupling can be modified also by using the provided footprint and holes for the bus capacitors C28, C29, C27, C26, C25.

Danger:

DANGER OF DEATH! High voltage present on the board! Before operating on the board, ensure that all capacitors are discharged.

UM2849 - Rev 1 page 6/11

^{2.} R2, D1, R8 and D3 are only required if differentiated turn-on and turn-off speed are required by the user.

Revision history

Table 8. Document revision history

Date	Version	Changes
12-Mar-2021	1	Initial release.

UM2849 - Rev 1 page 7/11

Contents

1	Boa	rd description and configuration	2
		Logic supply voltage (VDD)	
	1.2	Gate driver supply voltage (VH)	4
	1.3	Drivers logic input signals	5
	1.4	Drivers gate resistors	5
	1.5	Power stage decoupling	6
Rev	ision	history	7
Cor	ntents	;	8
List	t of ta	bles	9
List	t of fic	gures	10

List of tables

Table 1.	Board connectors	2
Table 2.	Board jumpers setting	3
Table 3.	Logic supply voltage selection (VDD)	4
Table 4.	R17 value selection with a 3.3 V Zener diode D10 regulator	
Table 5.	Gate driving voltage configuration (positive/negative)	5
Table 6.	Input signals settings	5
	Gate driver resistors and jumper settings	
Table 8.	Document revision history	7

UM2849 - Rev 1

List of figures

Figure 1.	EVALSTGAP2SICS demonstration board	1
Figure 2.	EVALSTGAP2SICS – Main components and connectors position	2

UM2849 - Rev 1 page 10/11

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

UM2849 - Rev 1 page 11/11