

UM1855 User manual

Evaluation board with STM32L476ZG MCU

Introduction

The STM32L476G-EVAL Evaluation board is designed as a complete demonstration and development platform for the STMicroelectronics Arm® Cortex®-M4 core-based STM32L476ZG microcontroller with three I²C buses, three SPI and six USART ports, CAN port, SWPMI, two SAI ports, 12-bit ADC, 12-bit DAC, LCD driver, internal 128-Kbyte SRAM, 1-Mbyte flash memory, Quad-SPI port, touch sensing capability, USB OTG FS port, LCD controller, flexible memory controller (FMC), JTAG debug port. STM32L476G-EVAL, shown in *Figure 1*, is used as a reference design for user application development, although it is not considered the final application.

A full range of hardware features on the board helps users to evaluate all on-board peripherals such as USB, USART, digital microphones, ADC and DAC, dot-matrix TFT LCD, LCD glass module, IrDA (supported up to version MB1144 C-01 of the board), LDR, SRAM, NOR flash memory device, Quad-SPI flash memory device, microSD™ card, sigma-delta modulators, smartcard with SWP, CAN transceiver, EEPROM, RF-EEPROM. Extension headers allow connecting daughterboards or wrapping boards.

ST-LINK/V2-1 in-circuit debugger and flashing facility are integrated on the main board.

Figure 1. STM32L476G-EVAL Evaluation board

1. Picture not contractual.

Contents UM1855

Contents

1	Features		
2	Orde	ering information	10
	2.1	Codification	10
3	Deve	elopment environment	11
	3.1	System requirements	.11
	3.2	Development toolchains	.11
	3.3	Demonstration software	.11
4	Conv	ventions	11
5	Unpa	acking recommendations	12
6	Hard	ware layout and configuration	13
	6.1	ST-LINK/V2-1	15
		6.1.1 Drivers	. 15
		6.1.2 ST-LINK/V2-1 firmware upgrade	. 16
	6.2	ETM trace	16
	6.3	Power supply	17
		6.3.1 Supplying the board through the ST-LINK/V2-1 USB port	. 17
		6.3.2 Using ST-LINK/2-1 along with powering via the power jack (CN22)	. 18
	6.4	Clock references	21
	6.5	Reset sources	21
	6.6	Boot	22
		6.6.1 Boot options	. 22
		6.6.2 Bootloader limitations	. 23
	6.7	Audio	23
		6.7.1 Digital microphones	. 23
		6.7.2 Headphones outputs	. 24
		6.7.3 Limitations in using audio features	. 25
	6.8	USB OTG FS port	25
		6.8.1 STM32L476G-EVAL used as a USB Device	. 25

	6.8.2	STM32L476G-EVAL used as a USB Host	. 25
	6.8.3	Configuration elements related to the USB OTG FS port	. 26
	6.8.4	Limitations in using the USB OTG FS port	. 27
	6.8.5	Operating voltage	. 27
6.9	RS-232	and IrDA ports	27
	6.9.1	RS-232 port	. 28
	6.9.2	IrDA port	. 28
	6.9.3	Limitations	. 28
	6.9.4	Operating voltage	. 28
6.10	LPUAR	T port	29
6.11	microSI	D™ card	29
	6.11.1	Limitations	. 29
	6.11.2	Operating voltage	. 30
6.12	Motor c	ontrol	30
	6.12.1	Board modifications to enable motor control	. 32
	6.12.2	Limitations	. 33
6.13	CAN .		33
	6.13.1	Limitations	. 34
	6.13.2	Operating voltage	. 34
6.14	Extensi	on connectors (CN6 and CN7)	34
6.15	LCD gla	ass module daughterboard	34
	6.15.1	Limitations	. 39
6.16	TFT LC	D panel	41
6.17	User LE	EDs	42
6.18	Physica	al input devices	42
	6.18.1	Limitations	. 43
6.19	Operati	onal amplifier and comparator	43
	6.19.1	Operational amplifier	. 43
	6.19.2	Comparator	. 44
6.20	Analog	input, output, VREF	44
6.21	_	device	
	6.21.1	Limitations	
	6.21.2	Operating voltage	
6.22	NOR fla	ash memory device	
_	6.22.1	Limitations	

		6.22.2	Operating voltage	. 46
	6.23	EEPRC	М	46
		6.23.1	Operating voltage	. 46
	6.24	RF-EEF	PROM	46
	6.25	Quad-S	PI flash memory device	47
		6.25.1	Limitations	. 48
		6.25.2	Operating voltage	. 48
	6.26	Touch-s	ensing button	48
		6.26.1	Limitations	. 50
	6.27	Smartca	ard, SWP	50
		6.27.1	Limitations	. 52
		6.27.2	Operating voltage	. 52
	6.28	Near fie	eld communication (NFC)	52
	6.29	Dual-ch	annel sigma-delta modulators STPMS2L	53
		6.29.1	STPMS2L presentation	. 53
		6.29.2	STPMS2L settings	. 54
		6.29.3	STPMS2L power metering	. 54
		6.29.4	STPMS2L for PT100 measurement	. 56
		6.29.5	Limitations	
	6.30	STM32	L476ZG current consumption measurement	
		6.30.1	IDD measurement principle - analog part	
		6.30.2	Low-power mode IDD measurement principle - logic part	
		6.30.3	IDD measurement in Dynamic-Run mode	
		6.30.4	Calibration procedure	. 60
7	Conn	ectors		62
	7.1		D-sub male connector (CN9)	
	7.2		connector (CN22)	
	7.3		ughterboard connectors (CN11 and CN14)	
	7.4		on connectors (CN6 and CN7)	
	7.5		C/V2-1 programming connector (CN16)	
	7.5 7.6			
			C/V2-1 Type-B USB connector (CN17)	
	7.7		onnector (CN15)	
	7.8		ace debugging connector (CN12)	
	7.9	microSI	D™ card connector (CN18)	70

	9.1	9.1.1 9.1.2 9.1.3	Part 15.19 Part 15.105 Part 15.21 Compliance Statement Compliance Statement Déclaration de conformité	78 78 78 78 78 78
		9.1.1 9.1.2 9.1.3	Part 15.19	78 78 78 78
	9.1	FCC C 9.1.1 9.1.2	Part 15.19	78 78 78
	9.1	FCC C 9.1.1	Part 15.19	78 78
	9.1	FCC C	·	78
	9.1		Compliance Statement	
		 -		, 0
9			mmunications Commission (FCC) anada Compliance Statements	72
	8.3	Board	revision history	77
	8.2	STM3	2L476G-EVAL product history	76
	8.1	Produ	ct marking	75
8	STM	32L476	G-EVAL board information	75
	7.15	NFC c	connector (CN13)	73
	7.14	CAN E	O-sub male connector (CN5)	73
	7.13	USB C	OTG FS Micro-AB connector (CN1)	72
	7.12	Motor	control connector (CN2)	71
	7.11	RF-EE	EPROM daughterboard connector (CN3)	71
			DAC connector (CN8)	

List of tables UM1855

List of tables

Table 1.	Ordering information	10
Table 2.	Codification explanation	10
Table 3.	ON/OFF conventions	11
Table 4.	Setting of configuration elements for trace connector (CN12)	16
Table 5.	Power-supply-related jumper settings	19
Table 6.	X1-crystal-related solder bridge settings	
Table 7.	X2-crystal-related solder bridge settings	
Table 8.	Boot selection switch	
Table 9.	Bootloader-related jumper setting	22
Table 10.	Digital microphone-related jumper settings	
Table 11.	Configuration elements related to the USB OTG FS port	
Table 12.	Settings of configuration elements for RS-232 and IrDA ports	
Table 13.	Hardware settings for LPUART	
Table 14.	Terminals of microSD™ slot (CN18)	
Table 15.	Motor control terminal and function assignment	
Table 16.	CAN related jumpers	
Table 17.	LCD-daughterboard-related configuration elements	
Table 18.	LCD glass element mapping - segments 0 to 9	
Table 19.	LCD glass element mapping - segments 10 to 19	
Table 20.	LCD glass element mapping - segments 20 to 29	
Table 21.	LCD glass element mapping - segments 30 to 39	39
Table 22.	Access to TFT LCD resources with FMC address lines A0 and A1	
Table 23.	Assignment of CN19 connector terminals to TFT LCD panel	41
Table 24.	Port assignment for control of LED indicators	
Table 25.	Port assignment for control of physical input devices	42
Table 26.	Setting of jumpers related to potentiometer and LDR	
Table 27.	SRAM chip select configuration	
Table 28.	NOR flash memory-related configuration elements	45
Table 29.	Configuration elements related to Quad-SPI device	
Table 30.	Touch-sensing-related configuration elements	49
Table 31.	Assignment of ports for ST8024CDR control	
Table 32.	Configuration elements related to smartcard and SWP	
Table 33.	NFC connector (CN13) terminal assignment	
Table 34.	JP11 jumper settings during IDD measurement with calibration	61
Table 35.	RS-232 D-sub (DE-9M) connector (CN9) with HW flow control and ISP support	62
Table 36.	LCD daughterboard connectors (CN11 and CN14)	63
Table 37.	Daughterboard extension connector (CN6)	64
Table 38.	Daughterboard extension connector (CN7)	65
Table 39.	USB Type-B connector (CN17)	68
Table 40.	JATG debugging connector (CN15)	68
Table 41.	Trace debugging connector (CN12)	
Table 42.	microSD™ card connector (CN18)	70
Table 43.	Analog input-output connector (CN8)	
Table 44.	RF-EEPROM daughterboard connector (CN3)	
Table 45.	Motor control connector (CN2)	72
Table 46.	USB OTG FS Micro-AB connector (CN1)	72
Table 47.	CAN D-sub (DE-9M) 9-pin male connector (CN5)	
Table 48	NFC terminal (CN13) assignment	73

UM1855 Rev 6

UM1855	List of tables
Table 50.	Product history

List of figures UM1855

List of figures

Figure 1.	STM32L476G-EVAL Evaluation board	. 1
Figure 2.	STM32L476G-EVAL hardware block diagram	13
Figure 3.	STM32L476G-EVAL main component layout	14
Figure 4.	USB Composite Device	15
Figure 5.	Power jack (CN22) polarity	18
Figure 6.	CN20, CN21 top view	24
Figure 7.	PCB top-side rework for motor control	32
Figure 8.	PCB underside rework for motor control	33
Figure 9.	LCD glass module daughterboard in display position	35
Figure 10.	LCD glass module daughterboard in I/O-bridge position	36
Figure 11.	LCD glass display element mapping	
Figure 12.	NFC board plugged into STM32L476G-EVAL board	52
Figure 13.	Routing of STPMS2L dual-channel sigma-delta modulators	54
Figure 14.	Power measurement principle schematic diagram	55
Figure 15.	STPMS2L power metering schematic diagram	56
Figure 16.	Temperature measurement principle schematic diagram	57
Figure 17.	Schematic diagram of the analog part of IDD measurement	58
Figure 18.	Schematic diagram of logic part of Low-power mode IDD measurement	59
Figure 19.	Low-power mode IDD measurement timing	60
Figure 20.	RS-232 D-sub (DE-9M) 9-pole connector (front view)	62
Figure 21.	Power supply connector (CN22) (front view)	62
Figure 22.	USB Type-B connector (CN17) (front view)	67
Figure 23.	JTAG debugging connector (CN15) top view	
Figure 24.	Trace debugging connector (CN12) top view	69
Figure 25.	microSD™ card connector (CN18)	
Figure 26.	Analog input-output connector (CN8) top view	
Figure 27.	RF-EEPROM daughterboard connector (CN3) front view	71
Figure 28.	Motor control connector (CN2) top view	
Figure 29.	USB OTG FS Micro-AB connector (CN1) front view	
Figure 30.	CAN D-sub (DE-9M) 9-pole male connector (CN5) front view	
Figure 31.	NFC female connector (CN13) top view	73

UM1855 Features

1 Features

• STM32L476ZG microcontroller with 1-Mbyte flash memory and 128-Kbyte RAM^(a)

- Four power supply options: power jack, ST-LINK/V2-1 USB connector, USB OTG FS connector, daughterboard
- Microcontroller supply voltage: 3.3 V or range of 1.71 to 3.6 V
- Two MEMS digital microphones
- Two jack outputs for stereo audio headphones with independent content
- Slot for microSD™ card supporting SD, SDHC, SDXC
- 4-Gbyte microSD™ card bundled
- 16-Mbit (1M x 16 bit) SRAM device
- 128-Mbit (8M x 16 bit) NOR flash memory device
- 256-Mbit Quad-SPI flash memory device with double transfer rate (DTR) support
- RF-EEPROM with I²C bus
- EEPROM supporting 1 MHz I²C-bus communication speed
- RS-232 port configurable for communication or MCU flashing
- IrDA transceiver
- USB OTG FS Micro-AB port
- CAN 2.0A/B-compliant port
- Joystick with four-way controller and selector
- Reset and wake-up/tamper buttons
- Touch-sensing button
- Light-dependent resistor (LDR)
- Potentiometer
- Coin battery cell for power backup
- LCD glass module daughterboard (MB979) with 40x8-segment LCD driven directly by STM32L476ZG
- 2.8-inch 320x240 dot-matrix color TFT LCD panel with resistive touchscreen
- Smartcard connector and SWP support
- NFC transceiver connector
- Connector for ADC input and DAC output
- Power-metering demonstration with dual-channel sigma-delta modulator
- PT100 thermal sensor with dual-channel sigma-delta modulator
- MCU current consumption measurement circuit
- Access to the comparator and operational amplifier of STM32L476ZG
- Extension connector for motor control module
- JTAG/SWD, ETM trace debug support, user interface through USB Virtual COM port, embedded ST-LINK/V2-1 debug, and flashing facility
- Extension connector for the daughterboard

arm

4

UM1855 Rev 6 9/80

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Ordering information UM1855

2 Ordering information

To order the STM32L476G-EVAL Evaluation board, refer to *Table 1*. Additional information is available from the datasheet and reference manual of the target microcontroller.

Table 1. Ordering information

Order code	Board references	Target STM32
STM32L476G-EVAL	- MB1144 ⁽¹⁾ - MB989 ⁽²⁾ - MB979 ⁽³⁾ - MB1020 ⁽⁴⁾	STM32L476ZGT6

- 1. Main board
- 2. TFT LCD daughterboard
- 3. LCD glass module daughterboard
- 4. Dual-interface EEPROM daughterboard

2.1 Codification

The meaning of the codification is explained in Table 2.

Table 2. Codification explanation

STM32XXYYZ-EVAL	Description	Example: STM32L476G-EVAL
XX MCU series in STM32 32-bit Arm Cortex MCUs		STM32L4 series
YY	MCU product line in the series	STM32L476
Z STM32 flash memory size: – G for 1 Mbyte		1 Mbyte
EVAL Evaluation board		Evaluation board

3 Development environment

3.1 System requirements

- Multi.OS support: Windows® 10, Linux® (a) 64-bit, or macOS® (b)
- USB Type-A or USB Type-C® to Micro-B cable

3.2 Development toolchains

- IAR Systems[®] IAR Embedded Workbench[®] (c)
- Keil[®] MDK-ARM^{(c) (d)}
- STMicroelectronics STM32CubeIDE

3.3 Demonstration software

Demonstration software is preloaded in the STM32L476ZG flash memory, for easy demonstration of the device peripherals in Standalone mode. For more information and to download the latest available version, refer to the STM32L476G-EVAL demonstration software available on the www.st.com website.

4 Conventions

Table 3 defines some conventions used in the present document.

Table 3. ON/OFF conventions

Convention	Definition
Jumper JPx ON	Jumper fitted
Jumper JPx OFF	Jumper not fitted
Solder bridge SBx ON	SBx connections closed by solder
Solder bridge SBx OFF	SBx connections left open

d. All other trademarks are the property of their respective owners.

UM1855 Rev 6 11/80

a. Linux[®] is a registered trademark of Linus Torvalds.

b. $\mathsf{macOS}^{\$}$ is a trademark of Apple Inc. registered in the U.S. and other countries.

c. On Windows® only.

5 Unpacking recommendations

Before the first use, make sure that no damage occurred to the board during shipment and that no socketed components are loosened in their sockets or fallen into the plastic bag.

In particular, pay attention to the following components:

- 1. Quartz crystal (X2 position)
- 2. microSD™ card in its receptacle (CN18)
- 3. RF-EEPROM board (ANT7-M24LR-A) in its connector (CN3)

For product information related to the STM32L476ZG microcontroller, visit the *www.st.com* website.

6 Hardware layout and configuration

The STM32L476G-EVAL Evaluation board is designed around the STM32L476ZG target microcontroller in an LQFP 144-pin package. *Figure 2* illustrates STM32L476ZG connections with peripheral components. *Figure 3* shows the location of the main components on the Evaluation board.

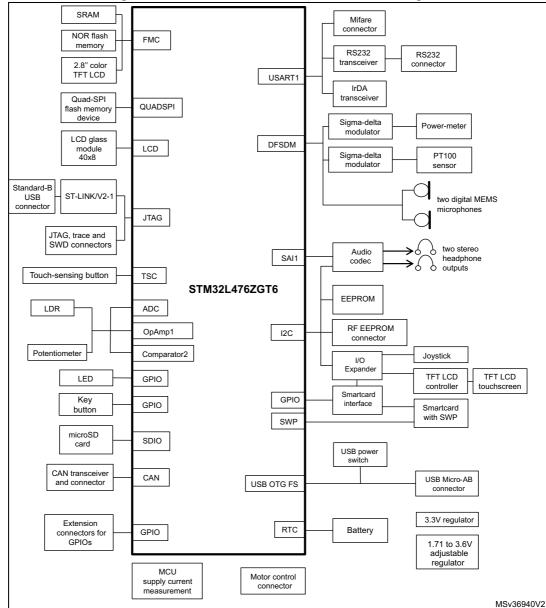


Figure 2. STM32L476G-EVAL hardware block diagram

Note:

If the STM32L476G-EVAL board version is greater than or equal to MB1144 C-02, the IrDA feature is not populated. Any mention of the IrDA feature in this user manual refers to the previous versions of the board (up to MB1144 C-01). The version of the board is written on the sticker placed on the bottom side of the board.

UM1855 Rev 6 13/80

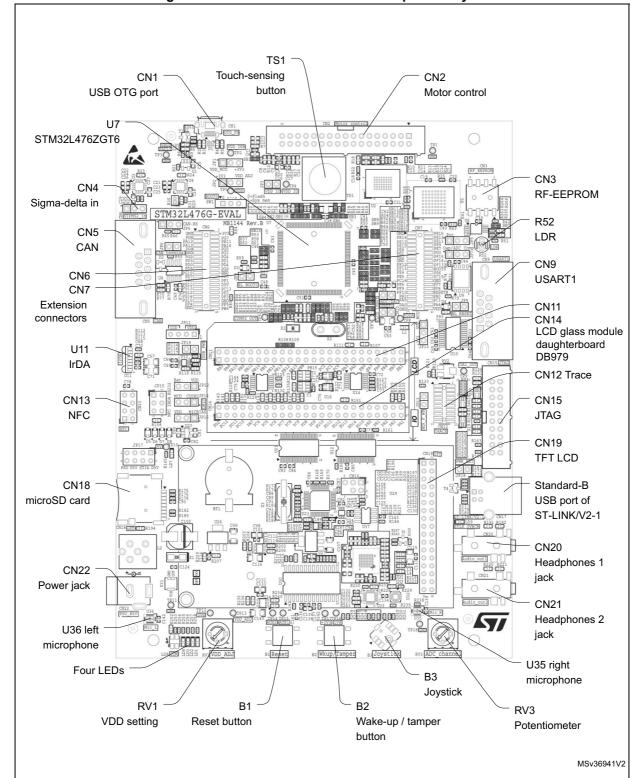


Figure 3. STM32L476G-EVAL main component layout

6.1 ST-LINK/V2-1

ST-LINK/V2-1 facility for debugging and flashing of STM32L476ZG is integrated on the STM32L476G-EVAL Evaluation board.

Compared to the ST-LINK/V2 standalone tool available from STMicroelectronics, ST-LINK/V2-1 offers new features and drops some others.

New features:

- USB software re-enumeration
- Virtual COM port interface on USB
- Mass storage interface on USB
- USB power management request for more than 100 mA current on USB

Features dropped:

SWIM interface

The USB connector (CN17) can be used to power STM32L476G-EVAL regardless of the ST-LINK/V2-1 facility used for debugging or for flashing STM32L476ZG. This holds also when an ST-LINK/V2 standalone tool is connected to the CN12 or CN15 connector and used for debugging or flashing STM32L476ZG. *Section 6.3* provides more detail on powering STM32L476G-EVAL.

For full detail on both versions of the debug and flashing tool, the standalone ST-LINK/V2 and the embedded ST-LINK/V2-1, refer to www.st.com.

6.1.1 Drivers

Before connecting STM32L476G-EVAL to a Windows® 8 or older PC via USB, a driver for ST-LINK/V2-1 must be installed. It can be downloaded from *www.st.com*.

In case the STM32L476G-EVAL Evaluation board is connected to the PC before installing the driver, the Windows device manager might report some USB devices found on STM32L476G-EVAL as *Unknown*. To recover from this situation, after installing the dedicated driver downloaded from www.st.com, the association of Unknown USB devices found on STM32L476G-EVAL to this dedicated driver must be updated in the device manager manually. Proceed as shown in Figure 4 using the USB Composite Device line.

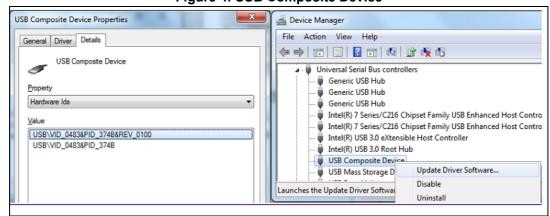


Figure 4. USB Composite Device

UM1855 Rev 6 15/80

6.1.2 ST-LINK/V2-1 firmware upgrade

For its operation, ST-LINK/V2-1 employs a dedicated MCU with flash memory. Its firmware determines ST-LINK/V2-1 functionality and performance. The firmware might evolve during the life span of STM32L476G-EVAL to include new functionality, fix bugs or support new target microcontroller families. It is therefore recommended to keep ST-LINK/V2-1 firmware up to date. The latest version is available from www.st.com.

6.2 ETM trace

The connector CN12 can output trace signals used for debugging. By default, the Evaluation board is configured such that STM32L476ZG PE2 to PE5 signals are not connected to trace outputs Trace_D0, Trace_D1, Trace_D2, Trace_D3, and Trace_CK of CN12. They are used for other functions.

Table 4 shows the setting of configuration elements to shunt PE2, PE3, PE4, and PE5 MCU ports to the CN12 connector, to use them as debug trace signals.

Element Setting		Use of PE2, PE3, PE4, PE5 terminals of STM32L476ZG	
R103 SB26	R103 in SB26 open	Default setting. PE2 connected to LCDSEG38 and memory address line A23.	
	R103 out SB26 closed	PE2 connected to TRACE_CK on CN12. A23 pulled down.	
R104	R104 in	Default setting. PE3 connected to LCDSEG39 and memory address line A19.	
	R104 out	PE3 connected to TRACE_D0 on CN12. A19 pulled down.	
R84	R84 in SB40 open	Default setting. PE4 connected to memory address line A20.	
SB40	R84 out SB40 closed	PE4 connected to TRACE_D1 on CN12. A20 pulled down.	
R85 SB38	R85 in SB38 open	Default setting. PE5 connected to memory address line A21.	
	R85 out SB38 closed	PE5 connected to TRACE_D2 on CN12. A21 pulled down.	
R86	R86 in SB39 open	Default setting. PE6 is used for address bit A22.	
SB39	R86 out SB39 closed	PE6 connected to TRACE_D3 on CN12. A22 pulled down.	

Table 4. Setting of configuration elements for trace connector (CN12)

Warning: Enabling the CN12 trace outputs through the hardware modifications described in *Table 4* results in reducing the memory address bus width to 19 address lines and so the addressable space to 512 Kwords of 16 bits. As a consequence, the onboard SRAM and NOR flash memory usable capacity is reduced to 8 Mbits.

6.3 Power supply

A5 V DC power source might power the STM32L476G-EVAL Evaluation board. It incorporates a precise polymer Zener diode (Poly-Zen) protecting the board from damage due to the wrong power supply. One of the following four 5V DC power inputs can be used, upon an appropriate board configuration:

- Power jack (CN22), marked PSU_E5V on the board. A jumper must be placed in the PSU location of JP17. The positive pole is on the center pin as illustrated in *Figure 5*.
- Type-B USB receptacle (CN17) of ST-LINK/V2-1, offering an enumeration feature described in Section 6.3.1.
- Micro-AB USB receptacle (CN1) of the USB OTG interface, marked OTG_FS on the board. Up to 500mA can be supplied to the board in this way.
- Pin 28 of the extension connector (CN6) for custom daughterboards, marked D5V on the board.

No external power supply is provided with the board.

LD7 red LED turns on when the voltage on the power line marked as +5V is present. All supply lines required for the operation of the components on STM32L476G-EVAL are derived from that +5V line.

Table 5 describes the settings of all jumpers related to powering STM32L476G-EVAL and the extension board. VDD_MCU is STM32L476ZG digital supply voltage line. It can be connected to a fixed 3.3 V or an adjustable voltage regulator controlled with the RV1 potentiometer and producing a range of voltages between 1.71 and 3.6 V.

6.3.1 Supplying the board through the ST-LINK/V2-1 USB port

To power STM32L476G-EVAL in this way, the USB Host (a PC) gets connected to the STM32L476G-EVAL board's Type-B USB receptacle, via a USB cable. This event starts the USB enumeration procedure. In its initial phase, the host's USB port current supply capability is limited to 100 mA. It is enough because only the ST-LINK/V2-1 part of STM32L476G-EVAL draws power at that time. If the jumper header JP18 is open, the ST890 power switch (U37) is set to the OFF position, which isolates the remainder of STM32L476G-EVAL from the power source. In the next phase of the enumeration procedure, the host PC informs the ST-LINK/V2-1 facility of its capability to supply up to 300 mA of current. If the answer is positive, the ST-LINK/V2-1 sets the ST890 switch (U37) to the ON position to supply power to the remainder of the STM32L476G-EVAL board. If the PC USB port cannot supply up to 300 mA of current, the power jack (CN22) can be used to supply the board.

If a short circuit might occur on the board, the ST890 power switch protects the USB port of the host PC against a current demand exceeding 600 mA. In such an event, the LD9 LED turns on.

The STM32L476G-EVAL board can also be supplied from a USB power source not supporting enumeration, such as a USB charger. In this particular case, the JP18 header must be fitted with a jumper as shown in *Table 5*. ST-LINK/V2-1 turns the ST890 power switch ON regardless of the enumeration procedure result and passes the power unconditionally to the board.

The LD7 red LED turns on whenever the whole board is powered.

UM1855 Rev 6 17/80

6.3.2 Using ST-LINK/2-1 along with powering via the power jack (CN22)

The board might require more than 300 mA of supply current. It cannot be supplied from the host PC connected to the ST-LINK/2-1 USB port for debugging or flashing STM32L476ZG. In such a case, the board can be supplied through CN22 (marked PSU _E5V on the board).

To do this, it is important to power the board **before** connecting it with the host PC, which requires the following sequence to be respected:

- 1. Set the jumper in the JP15 header in the PSU position.
- 2. Connect the external 5 V power source to CN22.
- 3. Check that the red LED (LD7) is turned on.
- 4. Connect the host PC to the USB connector (CN17).

In case the board demands more than 300 mA and the host PC is connected via USB before the board is powered from CN22, there is a risk of the following events occurring, in the order of severity:

- The host PC can supply 300 mA (the enumeration succeeds) but it does not incorporate any protection on its USB port. It is damaged due to an overcurrent.
- The host PC can supply 300 mA (the enumeration succeeds) and it has built-in
 overcurrent protection on its USB port, limiting or shutting down the power out of its
 USB port when the excessive current demand from STM32L476G-EVAL is detected.
 This causes an operating failure to STM32L476G-EVAL.
- 3. The host PC cannot supply 300 mA (the enumeration fails) so ST-LINK/V2-1 does not supply the remainder of STM32L476G-EVAL from its USB port VBUS line.

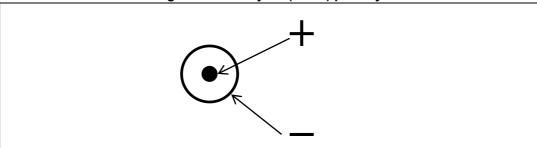


Table 5. Power-supply-related jumper settings

Jumper array	Jumper setting	Configuration
	JP17	STM32L476G-EVAL is supplied via the power jack marked PSU_E5V (CN22). The extension connector (CN6) does not pass the 5 V of STM32L476G-EVAL to the daughterboard.
	JP17	STM32L476G-EVAL is supplied through the Micro-AB USB connector (CN1). The extension connector (CN6) does not pass the 5 V of STM32L476G-EVAL to the daughterboard.
JP17 Power source selector	JP17	Default setting. STM32L476G-EVAL is supplied through the Micro-B USB connector (CN17). CN6 extension connector does not pass the 5 V of STM32L476G-EVAL to the daughterboard. Check JP18 setting in <i>Table 5</i> .
	JP17	STM32L476G-EVAL is supplied through pin 28 of the extension connector (CN6).
	JP17	STM32L476G-EVAL is supplied via the power jack marked PSU_E5V (CN22). The extension connector (CN6) passes the 5 V of STM32L476G-EVAL to the daughterboard. Make sure to disconnect from the daughterboard any power supply that could generate conflict with the power supply on the power jack (CN22).
JP12	JP12 1 2 3 • • •	V _{bat} is connected to the battery.
V _{bat} connection	JP12 1 2 3 ● ●	

UM1855 Rev 6

Table 5. Power-supply-related jumper settings (continued)

Jumper array	Jumper setting	Configuration
JP2 VDD_MCU connection	JP2 1 2 3 ● ●	Default setting. VDD_MCU (VDD terminals of STM32L476ZG) is connected to fixed +3.3 V.
	JP2 1 2 3 ● ●	VDD_MCU is connected to voltage in the range of +1.71 to +3.6 V, adjustable with potentiometer RV1.
JP10	JP10 1 2 3 ● ●	Default setting. VDDA terminal of STM32L476ZG is connected to VDD_MCU.
VDDA connection	JP10 1 2 3 ●●●	VDDA terminal of STM32L476ZG is connected to +3.3 V.
JP1	JP1 1 2 3 ● ●	Default setting. VDD_USB (VDDUSB terminal of STM32L476ZG) is connected to VDD_MCU.
VDD_USB connection	JP1 1 2 3 ● ●	VDD_USB is connected to +3.3V.
JP3	JP3	Default setting. VDD_IO (VDDIO2 terminals of STM32L476ZG) is connected to VDD_MCU
VDD_IO connection	JP3 1 2 • •	VDD_IO is open.
JP18 Powering through USB of ST-LINK/V2-1	JP18 1 2 • •	Default setting. The Micro-B USB connector (CN17) of ST-LINK/V2-1 can supply power to the STM32L476G-EVAL board remainder, depending on the powering capability of the host PC USB port declared in the enumeration.
	JP18 1 2	Type-B USB connector CN17 of ST-LINK/V2-1 supplies power to the STM32L476G-EVAL board remainder. Setting for powering the board through CN17 using USB charger.

6.4 Clock references

Two clock references are available on STM32L476G-EVAL for the STM32L476ZG target microcontroller:

- 32.768 kHz crystal X1, for embedded RTC
- 8 MHz crystal X2, for main clock generator

The main clock can also be generated using an internal RC oscillator. The X2 crystal is in a socket. It can be removed when the internal RC oscillator is used.

Table 6. X1-crystal-related solder bridge settings

iubio or ser or joint rollatou oblati unugo obtainigo					
Solder bridge	Setting	Description			
SB41	Open	Default setting. PC14-OSC32_IN terminal is not routed to extension connector CN7. X1 is used as a clock reference.			
	Closed	PC14-OSC32_IN is routed to extension connector CN7. R87 must be removed, for the X1 quartz circuit might disturb the clock reference or source on the daughterboard.			
SB33	Open	Default setting. PC15-OSC32_OUT terminal is not routed to extension connector CN7. X1 is used as a clock reference.			
	Closed	PC15-OSC32_OUT is routed to extension connector CN7. R88 must be removed, for the X1 quartz circuit not to disturb the clock reference on the daughterboard.			

Table 7. X2-crystal-related solder bridge settings

Solder bridge	Setting	Configuration
SP24	Open	Default setting. PH0-OSC_IN terminal is not routed to extension connector CN7. X2 is used as a clock reference.
SB24	Closed	PH0-OSC_IN is routed to extension connector CN7. X2 and C54 must be removed, in order not to disturb the clock reference or source on the daughterboard.
SB23	Open	Default setting. PH1-OSC_OUT terminal is not routed to extension connector CN7. X2 is used as a clock reference.
	Closed	PH1-OSC_OUT is routed to extension connector CN7. R95 must be removed, in order not to disturb the clock reference or source on the daughterboard.

6.5 Reset sources

The reset signal of the STM32L476G-EVAL board is active at a low level.

Sources of reset are:

- Reset button (B1)
- JTAG/SWD connector (CN15) and ETM trace connector (CN12) (reset from debug tools)
- Through extension connector CN7, pin 32 (reset from daughterboard)
- ST-LINK/V2-1
- RS-232 connector CN9, terminal 8 (CTS signal), if JP9 is closed (open by default)

6.6 Boot

6.6.1 Boot options

After reset, the STM32L476ZG MCU can boot from the following embedded memory locations:

- Main (user, nonprotected) flash memory
- System (protected) flash memory
- RAM, for debugging

The microcontroller is configured to one of the listed boot options by setting the STM32L476ZG port BOOT0 level by the switch SW1 and by setting the nBOOT1 bit of FLASH_OPTR option bytes register, as shown in *Table 8*. Depending on JP8, the BOOT0 level can be forced high and, SW1 action overruled, by the DSR line of RS-232 connector CN9, as shown in *Table 9*. This can be used to force the execution of the bootloader and start the user flash memory flashing process (ISP) from the RS-232 interface.

The option bytes of STM32L476ZG and their modification procedure are described in the reference manual RM0351. The application note AN2606 details the bootloader mechanism and configurations.

Table 8. Boot selection switch

Switch	Setting	Description
SW1	0 <> 1	Default setting . The BOOT0 line is tied low. STM32L476ZG boots from the user flash memory.
SW1	0 <> 1	The BOOT0 line is tied high. STM32L476ZG boots from the system flash memory (nBOOT1 bit of FLASH_OPTR register is set high) or from the RAM (nBOOT1 is set low).

Table 9. Bootloader-related jumper setting

Jumper	Setting	Description
JP8	JP8 1 2 • •	Default setting. The BOOT0 level only depends on the SW1 switch position
JFO	JP8	BOOT0 can be forced high with terminal 6 of the CN9 connector (RS-232 DSR line). This configuration is used to allow the device to connect via RS-232 to initiate the STM32L476ZG flashing process.

6.6.2 Bootloader limitations

Boot from the system flash memory results in executing **bootloader** code stored in the system flash memory protected against write and erase. This allows in-system programming (ISP), that is, flashing the MCU user flash memory. It also allows writing data into RAM. The data come in via one of the communication interfaces.

The bootloader version can be identified by reading the bootloader ID at the address 0x1FF66FFE.

All information about the device bootloader is described in the application note "STM32 microcontroller system memory boot mode" (AN2606) available at the www.st.com website.

Refer to this document and follow the description of the bootloader versions and limitations.

6.7 Audio

A codec connected to the SAI interface of STM32L476ZG supports the TDM feature of the SAI port. TDM feature offers STM32L476ZG the capability to stream two independent stereo audio channels to two separate stereo analog audio outputs, simultaneously.

There are two digital microphones on the STM32L476G-EVAL board.

6.7.1 Digital microphones

U35 and U36 on the STM32L476G-EVAL board are MEMS digital omnidirectional microphones providing PDM (pulse density modulation) outputs. To share the same data line, their outputs are interlaced. The combined data output of the microphones is directly routed to STM32L476ZG terminals, thanks to the integrated input digital filters. The microphones are supplied with a programmable clock generated directly by STM32L476ZG.

As an option, the microphones can be connected to an audio codec device (U29). In this configuration, U29 also supplies the PDM clock to the microphones.

Regardless of where the microphones are routed to, STM32L476ZG or audio codec device, they can be power-supplied from either the VDD or MICBIAS1 output of the codec device.

Table 10 shows the settings of all jumpers associated with the digital microphones on the board.

Jumper Setting Configuration

JP14

Default setting.
PDM clock for digital microphones comes from STM32L476ZG

JP14

JP14

1 2 3
PDM clock for digital microphones comes from the audio codec.

Table 10. Digital microphone-related jumper settings

Jumper Setting Configuration

JP16

1 2 3

Default setting. The power supply of digital microphones is VDD.

JP16

1 2 3

The power supply of digital microphones is generated by the audio codec.

Table 10. Digital microphone-related jumper settings (continued)

6.7.2 Headphones outputs

The STM32L476G-EVAL Evaluation board can drive two sets of stereo headphones. Identical or different stereo audio content can be played back in each set of headphones. The STM32L476ZG sends up to two independent stereo audio channels, via its SAI1 TDM port, to the audio codec device. The codec device converts the digital audio stream to stereo analog signals. It then boosts them to drive directly headphones connected to 3.5 mm stereo jack receptacles on the board, CN20 for Audio-output1 and CN21 for Audio_output2. Figure 6 shows a top view of the CN20 and CN21 headphone jack receptacles.

The CN21 jack takes its signal from the output of the audio codec device intended for driving an amplifier for loudspeakers. A hardware adaptation is incorporated on the board to make it compatible with a direct headphone drive. The adaptation consists of coupling capacitors blocking the DC component of the signal, attenuator, and antipop resistors. Software in Class AB Linear mode and not in Class D Switching mode must configure the loudspeaker output of the audio codec device.

The I²C-bus address of the audio codec device is 0b0011010.

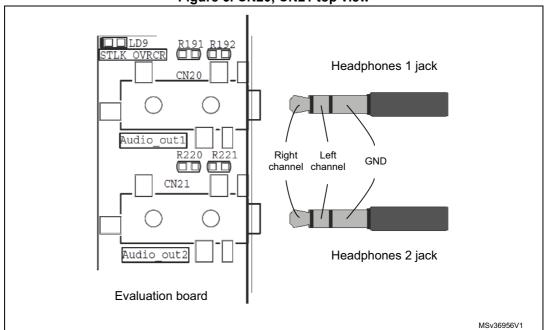


Figure 6. CN20, CN21 top view

4

6.7.3 Limitations in using audio features

Due to the share of some terminals of STM32L476ZG by multiple peripherals, the following limitations apply in using the audio features:

- If the SAI1_SDA is used as part of the SAI1 port, it cannot be used as the FMC_NWAIT signal for the NOR flash memory device. However, FMC_NWAIT is not necessary for operating the NOR flash memory device. More details on FMC_NWAIT are available in Section 6.22: NOR flash memory device.
- If the SAI1 port of STM32L476ZG is used for streaming audio to the WM8994 codec IC, STM32L476ZG cannot control the motor.
- If the digital microphones are attached to STM32L476ZG, the LCD glass module cannot be driven.

6.8 USB OTG FS port

The STM32L476G-EVAL board supports USB OTG full-speed (FS) communication. The USB OTG connector (CN1) is Micro-AB.

6.8.1 STM32L476G-EVAL used as a USB Device

When a USB Host connection to the Micro-AB USB connector (CN1) of STM32L476G-EVAL is detected, the STM32L476G-EVAL board starts behaving as a "USB Device". Depending on the powering capability of the USB host, the board can take power from the VBUS terminal of CN1. In the board schematic diagrams, the corresponding power voltage line is called U5V. *Section 6.3* provides information on how to set associated jumpers for this powering option. The JP19 jumper must be left open to prevent STM32L476G-EVAL from sourcing a 5 V to the VBUS terminal, which would cause conflict with the 5 V sourced by the USB host. This might happen if the PC6 GPIO is controlled by the software of the STM32L476ZG such that, it enables the output of the U1 power switch.

6.8.2 STM32L476G-EVAL used as a USB Host

When a USB Device connection to the Micro-AB USB connector (CN1) is detected, the STM32L476G-EVAL board starts behaving as a "USB Host". It sources 5 V on the VBUS terminal of the Micro-AB USB connector (CN1) to power the USB Device. For this to happen, the STM32L476ZG MCU sets the U1 power switch STMPS2151STR to the ON state. The LD5 green LED marked VBUS indicates that the peripheral is supplied from the board. The LD6 red LED marked FAULT lights up if overcurrent is detected. The JP19 jumper must be closed to allow the PC6 GPIO to control the U1 power switch. In any other STM32L476G-EVAL powering option, the JP19 jumper must be open, to avoid accidental damage caused to an external USB Host.

UM1855 Rev 6 25/80

6.8.3 Configuration elements related to the USB OTG FS port

The following STM32L476ZG terminals related to the USB OTG FS port control are shared by other resources of the STM32L476G-EVAL board:

- PB12 used as USB overcurrent input (USBOTG_OVRCR signal). It is shared with SWP, touch sensing, LCD glass module, and motor control resources
- PB13 used as USB power ready input (USBOTG_PRDY signal); it is shared with NFC, touch sensing and LCD glass module resources
- PC6 used as USB power switch control (USBOTG_PPWR signal); it is shared with touch sensing, LCD glass module, and motor control

Configuration elements related to the USB OTG FS port, such as jumpers, solder bridges, and zero-ohm resistors, shunt the shared ports toward different resources or determine the operating mode of the USB OTG FS port. By default, they are set such as to enable the USB OTG FS port operation where STM32L476G-EVAL plays a USB Device role and can be connected to a USB Host. *Table 11* gives an overview of all configuration elements related to the USB OTG FS port. The LCD glass module daughterboard must be connected in the I/O position.

USBOTG_OVRCR and USBOTG_PRDY signals, requiring the PB12 and PB13 ports of STM32L476ZG, are only exploited when STM32L476G-EVAL acts as a USB Host. That is why, the USB Host function of STM32L476G-EVAL is exclusive to alternate functions also requiring PB12 and PB13 ports of STM32L476ZG - NFC, touch sensing, motor control, SWP.

The PB12 and PB13 ports of STM32L476ZG are not required for the USB OTG FS port to operate as a USB Device.

Element	Setting	Description
JP19 -	Open	USB OTG FS port can be connected to a USB Host and get power from it. If connected to the USB Device, STM32L476G-EVAL cannot supply power to it.
	Closed	Default setting. USB OTG FS port can be connected to a USB Device and supply power to it. It must not be connected to the USB Host.
R36	ln	Default setting PC6 is shunted to control the U1 power switch, transiting through the LCD glass module daughterboard connector. LCD glass module daughterboard must be in I/O position, with SB2 and SB27 open.
	Out	PC6 is disconnected from the LCD glass module daughterboard connector. It can be shunted to one of the alternate resources, either touch sensing (SB2 closed) or motor control (SB27 closed).

Table 11. Configuration elements related to the USB OTG FS port

Element	Setting	Description
R39	ln	Default setting. PB12 receives the USBOTG_OVRCR signal from the U1 power switch, transiting through the LCD glass module daughterboard connector. SB3 must be open, R109 in, and no smartcard in the CN23 slot.
	Out	PB12 is disconnected from the LCD glass module daughterboard connector. It can be shunted to one of the alternate resources, either touch sensing or motor control (SB3 closed).
R38	ln	Default setting. PB13 receives the USBOTG_PRDY signal from the CN1 connector, transiting through the LCD glass module daughterboard connector. SB6 must be open and no daughterboard inserted in the NFC connector (CN13).
	Out	PB13 s disconnected from the LCD glass module daughterboard connector. It can be shunted to touch sensing (SB6 closed).

Table 11. Configuration elements related to the USB OTG FS port (continued)

6.8.4 Limitations in using the USB OTG FS port

- The USB OTG FS port operation as a USB Host is exclusive to NFC, SWP, LCD glass module, touch sensing, motor control
- The USB OTG FS port operation as a USB Device is exclusive to the LCD glass module, touch sensing, motor control

6.8.5 Operating voltage

The USB-related operating supply voltage of STM32L476ZG (VDD_USB line) must be within the range of 3.0 to 3.6 V.

6.9 RS-232 and IrDA ports

The STM32L476G-EVAL board offers one RS-232 communication port and one IrDA port.

If the STM32L476G-EVAL board version is greater than or equal to MB1144 C-02, the IrDA transceiver (TFDU6300) is not populated, but it is possible to solder manually the TDFU6300 on the U11 footprint to support the IRDA feature.

6.9.1 RS-232 port

The RS-232 communication port uses the DE-9M 9-pole connector (CN9). RX, TX, RTS, and CTS signals of the USART1 port of STM32L476ZG are routed to CN9. bootloader_RESET_3V3 and Bootloader_BOOT0_3V3 signals can also be routed to CN9, for ISP (in-system programming) support. To route Bootloader_RESET_3V3 to CN9, the R93 resistor must be removed and the JP9 jumper closed (open by default). To route Bootloader_BOOT0_3V3 to CN9, the JP8 jumper must be closed.

For configuration elements related to the RS-232 port operation, refer to *Table 9* and *Table 12*.

Section 6.10 brings information on using the LPUART port of STM32L476ZG for RS-232, instead of its USART1 port.

6.9.2 IrDA port

The IrDA communication port uses an IrDA transceiver (U11). *Table 12* shows the configuration elements related to the IrDA port operation.

Element Setting Description JP15 Default setting. 1 • • 2 RS-232 selected: PB7 port of STM32L476ZG receives signal **3** ● **4** originating from the RXD terminal of CN9. $5 \bullet \bullet 6$ JP15 1 • • 2 IrDA selected: PB7 port of STM32L476ZG is connected to the RxD JP15 terminal of the IrDA transceiver U11. 3 ● • 4 5 • • 6 JP15 NFC selected: PB7 port of STM32L476ZG receives NFC_IRQOUT 1 • • 2 signal from NFC peripheral. Section 6.28 provides more detail on the 3 ● ● 4 NFC peripheral. **5** ● ● 6 R93, R118, Required for IrDA operation In R116 Out R158, R119 Required for IrDA operation

Table 12. Settings of configuration elements for RS-232 and IrDA ports

6.9.3 Limitations

The operation of the RS-232 and IrDA ports is mutually exclusive. The operation of either port is also mutually exclusive to the NFC peripheral operation.

6.9.4 Operating voltage

The RS-232- and IrDA-related operating supply voltage of STM32L476ZG (VDD line) must be within the range of 1.71 to 3.6 V.

6.10 LPUART port

On top of the USART1 port for serial communication, the STM32L476ZG offers LPUART, a low-power UART port.

In the default configuration of STM32L476G-EVAL, the RX and TX terminals of the LPUART port are routed to the USB Virtual COM port of ST-LINK/V2-1, and the RX and TX terminals of the USART1 port to the RS-232 connector (CN9).

For specific purposes, the TX and RX of the LPUART port of STM32L476ZG can be routed to the RS-232 connector (CN9) instead. As the RTS and CTS terminals (CN9) keep routed to the USART1 port, they might block the LPUART communication flow. To avoid this, set the USART1 hardware flow control off.

The default settings of LPUART are 115200b/s, 8bits, no parity, one stop bit, and no flow control.

LPUART port use	R188	R189	R158	R119	R118	JP15 1-2
Default setting USB Virtual COM port of ST-LINK/V2-1	In	In	Out	Out	Do not care	Do not care
RS-232 (RX and TX)	Out	Out	In	In	Out	Closed

Table 13. Hardware settings for LPUART

6.11 microSD™ card

The slot for the microSD™ card (CN18) is routed to STM32L476ZG's SDIO port, accepting SD (up to 2 Gbytes), SDHC (up to 32 Gbytes), and SDXC (up to 2 Tbytes) cards. One 4-Gbyte microSD™ card is delivered as part of STM32L476G-EVAL. The card insertion switch is routed to the PA8 GPIO port.

Terminal	Terminal name (MCU port)	Terminal	Terminal name (MCU port)
1	SDIO_D2 (PC10)	6	Vss/GND
2	SDIO_D3 (PC11)	7	SDIO_D0 (PC8)
3	SDIO_CMD (PD2)	8	SDIO_D1 (PC9)
4	VDD	9	GND
5	SDIO_CLK (PC12)	10	MicroSDcard_detect (PA8)

Table 14. Terminals of microSD™ slot (CN18)

For microSD™ card operation, the LCD glass module daughterboard must be plugged into CN11 and CN14 in the I/O-bridge position, as explained in Section 6.15.

6.11.1 Limitations

Due to the sharing of SDIO port and PA8 terminals, the following limitations apply:

- The microSD™ card cannot be operated simultaneously with the LCD glass module or with motor control.
- The microSD™ card insertion cannot be detected when the PA8 is used as microcontroller clock output (MCO), one of the alternate functions of PA8.

UM1855 Rev 6 29/80

6.11.2 Operating voltage

The supply voltage for STM32L476G-EVAL microSD $^{\text{TM}}$ card operation must be within the range of 2.7 to 3.6 V.

6.12 Motor control

The CN2 connector is designed to receive a motor-control (MC) module. *Table 15* shows the assignment of CN2 and STM32L476ZG terminals.

Table 15 also lists the modifications to be made on the board versus its by-default configuration. See Section 6.12.1 for further details.

Table 15. Motor control terminal and function assignment

Motor control connector (CN2)		STM32L476ZG microcontroller				
Terminal	Terminal name	Port name	Function	Alternate function	Board modifications for enabling motor control	
1	Emergency Stop	PC9	TIM8_BKIN2	-	Close SB29 Remove MB979 daughterboard	
2	GND	-	GND	-	-	
3	PWM_1H	PC6	TIM8_CH1	-	Close SB27 Open SB2 Remove MB979 daughterboard	
4	GND	-	GND	-	-	
5	PWM_1L	PA7	TIM8_CH1N	-	Close SB19 Open SB18 Remove R66	
6	GND	-	GND	-	-	
7	PWM_2H	PC7	TIM8_CH2	-	Close SB30 Open SB4 Remove R33	
8	GND	-	GND	-	-	
9	PWM_2L	PB0	TIM8_CH2N	-	Close SB15 Open SB14 Remove R62	
10	GND	-	GND	-	-	
11	PWM_3H	PC8	TIM8_CH3	-	Close SB28 Remove MB979 daughterboard	
12	GND	-	GND	-	-	
13	PWM_3L	PB1	TIM8_CH3N	-	Close SB13 Open SB12	
14	Bus Voltage	PC5	ADC12_IN	-	Close SB16 Remove MB979 daughterboard	

Table 15. Motor control terminal and function assignment (continued)

Motor control connector (CN2)		STM32L476ZG microcontroller			
Terminal	Terminal name	Port name	Function	Alternate function	Board modifications for enabling motor control
15	PhaseA current+	PC0	ADC123_IN	-	Close SB34 Remove MB979 daughterboard
16	PhaseA current-	-	GND	-	-
17	PhaseB current+	PC1	ADC123_IN	-	Close SB36
18	PhaseB current-	-	GND	-	-
19	PhaseC current+	PC2	ADC123_IN	-	Close SB42 Remove MB979 daughterboard
20	PhaseC current-	-	GND	-	-
21	ICL Shutout	PG6	GPIO	-	Close SB5 Remove R35
22	GND	-	GND	-	-
23	Dissipative Brake	PB2	GPIO	-	Close SB11 Remove R54
24	PFC ind. curr.	PC4	ADC12_IN	-	Close SB17 Remove MB979 daughterboard
25	+5V	-	+5V	-	-
26	Heatsink Temp.	PA3	ADC12_IN	-	Close SB22 Remove MB979 daughterboard
27	PFC Sync	PF9	TIM15_CH1	-	Close SB25 Remove R90
28	+3.3V	-	+3.3V	-	-
29	PFC PWM	PF10	TIM15_CH2	-	Close SB37 Remove R91
30	PFC Shutdown	PB12	TIM15_BKIN	-	Close SB3 Remove MB979 daughterboard
31	Encoder A	PA0	TIM2_CH1	ADC12_IN	Close SB35 Remove R83
32	PFC Vac	PA6	ADC12_IN	-	Close SB20 Open SB21 Remove MB979 daughterboard
33	Encoder B	PA1	TIM2_CH2	ADC12_IN	Close SB32 Remove MB979 daughterboard
34	Encoder Index	PA2	TIM2_CH3	ADC12_IN	Close SB31 Remove MB979 daughterboard

6.12.1 Board modifications to enable motor control

Figure 7 (top side) and Figure 8 (bottom side) illustrate the board modifications listed in Table 15, required for the operation of motor control. The red color denotes a component to be removed. The green color denotes a component to be fitted.

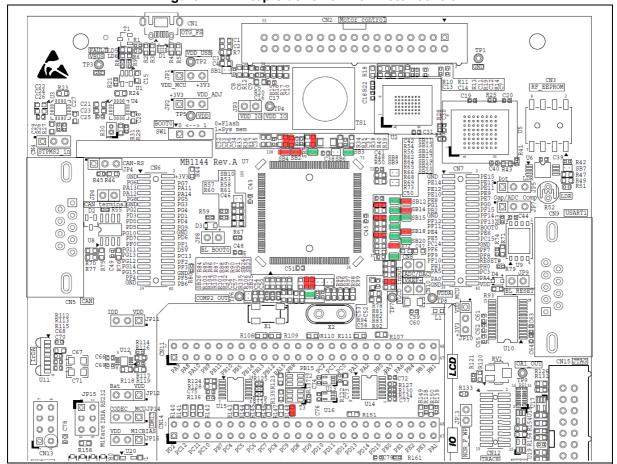


Figure 7. PCB top-side rework for motor control

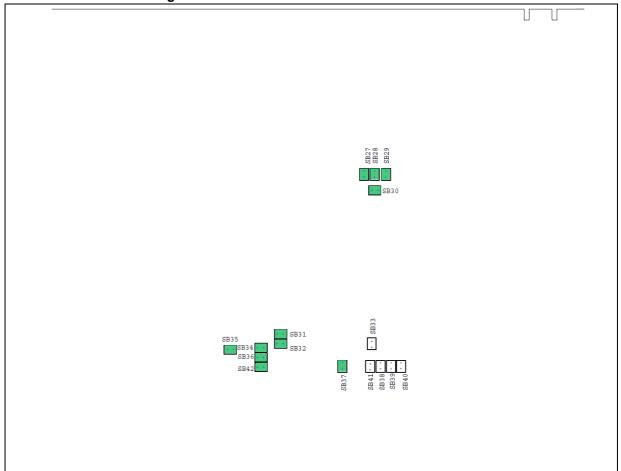


Figure 8. PCB underside rework for motor control

6.12.2 Limitations

The motor-control operation is exclusive to the LCD glass module, the Quad-SPI flash memory device, audio codec, potentiometer, LDR, smartcard, LED1 drive, and the use of sigma-delta modulators.

6.13 CAN

The STM32L476G-EVAL board supports one CAN2.0A/B channel compliant with CAN specification. The 9-pole male connector (CN5) of the DE-9M type is available as a CAN interface. A 3.3 V CAN transceiver is fitted between the CN5 connector and the CAN controller port of STM32L476ZG.

The JP4 jumper allows selecting one of the High-speed, Standby, and Slope-control modes of the CAN transceiver. The JP6 jumper can fit a CAN termination resistor in.

Jumper	Setting	Configuration
JP4	JP4 1 2 3 ● ●	Default setting CAN transceiver operates in High-speed mode
JF4	JP4 1 2 3 ● ● ●	CAN transceiver is in Standby mode
JP6	JP6 1 2 • •	No termination resistor on CAN physical link
	JP6 1 2 ●●	Default setting Termination resistor fitted on CAN physical link

Table 16. CAN related jumpers

6.13.1 Limitations

CAN operation is exclusive to LCD glass module operation.

6.13.2 Operating voltage

The supply voltage for STM32L476G-EVAL CAN operation must be within the range of 3.0 to 3.6 V.

6.14 Extension connectors (CN6 and CN7)

The CN6 and CN7 headers complement the LCD glass module daughterboard connector, to give access to all GPIOs of the STM32L476ZG microcontroller. In addition to GPIOs, the following signals and power supply lines are also routed on CN6 or CN7:

- GND
- +3V3
- DSV
- RESET#
- VDD
- Clock terminals PC14-OSC32 IN, PC15-OSC32 OUT, PH0-OSC IN, PH1-OSC OUT

Each header has two rows of 20 pins, with 1.27 mm pitch and 2.54 mm row spacing. For extension modules, SAMTEC RSM-120-02-L-D-xxx and SMS-120-x-x-D can be recommended as SMD and through-hole receptacles, respectively (**x** is a wild card).

6.15 LCD glass module daughterboard

The MB979 daughterboard delivered in the STM32L476G-EVAL package bears a segmented LCD glass module. The daughterboard inserts into the extension headers (CN11 and CN14) of the main board, each having two rows of pins. The corresponding

female connectors on the daughterboard have three rows of holes each. One raw is routed to segments of the LCD. The other two rows are interconnected forming a series of jumpers.

The way of inserting the LCD glass module daughterboard into the CN11 and CN14 headers determines two functions of the LCD glass module daughterboard. In its display function, STM32L476ZG terminals are routed to LCD segments. In its I/O-bridge function, they are not. Instead, they transit from one row of CN11 pins to the other and from one row of CN14 pins to the other, thanks to interconnections fitted by the LCD glass module daughterboard.

Figure 9 shows how the LCD glass module daughterboard must be positioned for the display function. This position is designated in the document as the **display position**.

Figure 10 shows how the LCD glass module daughterboard must be positioned for the I/O-bridge function. This position is designated in the document as the **I/O-bridge position**.

The arrow indicates the side of the CN11 and CN14 headers where the extra row of holes of each counterpart on the LCD glass module daughterboard has to protrude.

When the LCD glass module daughterboard is not plugged in, CN11 and CN14 give access to the ports of the target microcontroller. Refer to the related schematic diagram.

Table 17 shows the default settings of board configuration elements linked with extension connectors (CN11 and CN14) and the LCD glass module daughterboard.

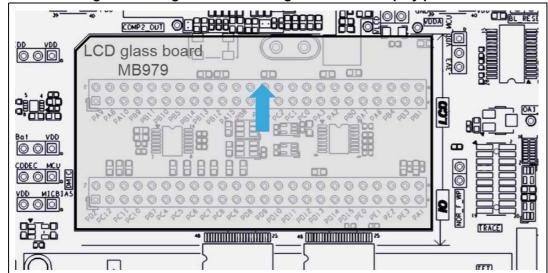


Figure 9. LCD glass module daughterboard in display position

4

UM1855 Rev 6 35/80

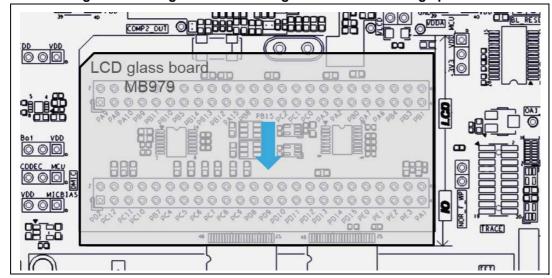


Figure 10. LCD glass module daughterboard in I/O-bridge position

Table 17. LCD-daughterboard-related configuration elements

Table 17. EOD-daughterboard-related configuration elements			
LCD segment	Element	Setting to enable LCD glass module	Description
SEG0	R82	In	PA1 routed to LCDSEG0
	SB32	Open	PA1 not routed to motor control
SEG1	R81	In	PA2 routed to LCDSEG1
	SB31	Open	PA2 not routed to motor control
SEG2	R78	In	PA3 routed to LCDSEG2
	SB22	Open	PA3 not routed to motor control
SEG3	R68	In	PA6 routed to LCDSEG3
	SB21	Open	PA6 not routed to the Quad-SPI flash memory device
	SB20	Open	PA6 not routed to the motor control
SEG4	R66	In	PA7 routed to LCDSEG4
	SB18	Open	PA7 not routed to Quad-SPI flash memory device
	SB19	Open	PA7 not routed to motor control
SEG5	R62	In	PB0 routed to LCDSEG5
	SB14	Open	PB0 not routed to Quad-SPI flash memory device
	SB15	Open	PB0 not routed to motor control
SEG6	R56	In	PB1 routed to LCDSEG6
	SB12	Open	PB1 not routed to Quad-SPI flash memory device
	SB13	Open	PB1 not routed to motor control
SEG10	R50	In	PB10 routed to LCDSEG10
	SB9	Open	PB10 not routed to Quad-SPI flash memory device
			ļ.

Table 17. LCD-daughterboard-related configuration elements (continued)

LCD segment	Element	Setting to enable LCD glass module	Description
SEG11	R48	In	PB11 routed to LCDSEG11
SEGII	SB8	Open	PB11 not routed to Quad-SPI flash memory device
SEG12	R39	In	PB12 routed to LCDSEG12
3LG12	SB3	Open	PB12 not routed to Quad-SPI flash memory device
SEG13	R38	In	PB13 routed to LCDSEG13
32013	SB6	Open	PB13 not routed to Touch sensing
SEG18	R97	In	PC0 routed to LCDSEG18
SEG16	SB34	Open	PC0 not routed to motor control
SEG19	R98	In	PC1 routed to LCDSEG19
32019	SB36	Open	PC1 not routed to motor control
SEG20	R99	In	PC2 routed to LCDSEG20
SEG20	SB42	Open	PC2 not routed to motor control
SEG22	R65	In	PC4 routed to LCDSEG22
OLOZZ	SB17	Open	PC4 not routed to motor control
SEG23	R64	In	PC5 routed to LCDSEG23
3LG23	SB16	Open	PC5 not routed to motor control
	R36	In	PC6 routed to LCDSEG24
SEG24	SB2	Open	PC6 not routed to Touch sensing
	SB27	Open	PC6 not routed to for motor control
	R33	In	PC7 routed to LCDSEG25
SEG25	SB4	Open	PC7 not routed to Touch sensing
	SB30	Open	PC7 not routed to for motor control
SEG26	SB28	Open	PC8 not routed to motor control
SEG27	SB29	Open	PC9 not routed to motor control
SEG38	R103	In	PE2 routed to LCDSEG38
0230	SB26	Open	PE2 not routed to Trace
SEG39	R104	In	PE3 routed to LCDSEG39

The custom LCD glass module used on the MB979 daughterboard is XHO5002B. To optimize the number of driving signals, the display elements are connected to eight common planes called COMx (LCDCOMx in the schematic diagrams), where x can be substituted with figures from 0 to 7. The other pole of each display element is called a SEGy segment (LCDSEGy in the schematic diagrams), where y can be substituted with figures from 0 to 39. Each combination of COMx and SEGy addresses one display element. *Table 18*, *Table 19*, *Table 20* and *Table 25* show the LCD element mapping. The COMx are ordered in rows, SEGy in columns. The table cells then display the display element names

UM1855 Rev 6 37/80

corresponding to each COMx and SEGy combination. Names in quoting marks denote elements forming textual symbols, for example, " μ A" or "+". Figure 11 shows the physical location and shape of each segment on the LCD glass module.

Table 18. LCD glass element mapping - segments 0 to 9

	SEG0	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9
СОМО	01	5D	Q4	04	6D	Q5	ST	7D	Q6	S5
COM1	02	5K	5L	О3	6K	6L	"nA"	7K	7L	S6
COM2	13b	12b	11b	16b	15b	14b	19b	18b	17b	1b
СОМЗ	13a	12a	11a	16a	15a	14a	19a	18a	17a	1a
COM4	51	5A	5G	61	6A	6G	71	7A	7G	11
COM5	5B	5H	5F	6B	6H	6F	7B	7H	7F	1B
СОМ6	5C	5M	P4	6C	6M	P5	7C	7M	P6	1C
COM7	5J	5N	5E	6J	6N	6E	7J	7N	7E	1J

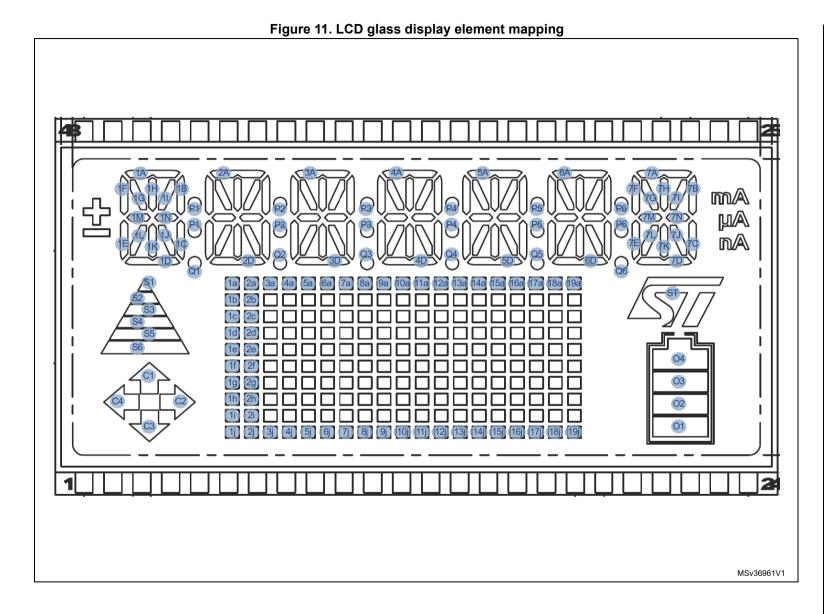
Table 19. LCD glass element mapping - segments 10 to 19

	SEG10	SEG11	SEG12	SEG13	SEG14	SEG15	SEG16	SEG17	SEG18	SEG19
СОМО	1D	" <u>"</u>	C1	2D	Q1	C4	3D	Q2	"μΑ"	4D
COM1	1K	1L	C2	2K	2L	C3	3K	3L	"mA"	4K
COM2	S4	S2	4b	3b	2b	7b	6b	5b	10b	9b
сомз	S3	S1	4a	3a	2a	7a	6a	5a	10a	9a
COM4	1A	1G	21	2A	2G	31	3A	3G	41	4A
COM5	1H	1F	2B	2H	2F	3B	3H	3F	4B	4H
СОМ6	1M	"+"	2C	2M	P1	3C	3M	P2	4C	4M
СОМ7	1N	1E	2J	2N	2E	3J	3N	3E	4J	4N

Table 20. LCD glass element mapping - segments 20 to 29

	SEG20	SEG21	SEG22	SEG23	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29
COM0	Q3	1e	2e	3e	4e	5e	6e	7e	8e	9e
COM1	4L	1f	2f	3f	4f	5f	6f	7f	8f	9f
COM2	8b	1c	2c	3c	4c	5c	6c	7c	8c	9c
COM3	8a	1d	2d	3d	4d	5d	6d	7d	8d	9d
COM4	4G	1j	2j	3j	4j	5j	6j	7 <u>j</u>	8j	9j
COM5	4F	1i	2i	3i	4i	5i	6i	7i	8i	9i
COM6	P3	1h	2h	3h	4h	5h	6h	7h	8h	9h
COM7	4E	1g	2g	3g	4g	5g	6g	7g	8g	9g

Table 21. LCD glass element mapping - segments 30 to 39


	SEG30	SEG31	SEG32	SEG33	SEG34	SEG35	SEG36	SEG37	SEG38	SEG39
COM0	10e	11e	12e	13e	14e	15e	16e	17e	18e	19e
COM1	10f	11f	12f	13f	14f	15f	16f	17f	18f	19f
COM2	10c	11c	12c	13c	14c	15c	16c	17c	18c	19c
COM3	10d	11d	12d	13d	14d	15d	16d	17d	18d	19d
COM4	10j	11j	12j	13j	14j	15j	16j	17j	18j	19j
COM5	10i	11i	12i	13i	14i	15i	16i	17i	18i	19i
COM6	10h	11h	12h	13h	14h	15h	16h	17h	18h	19h
COM7	10g	11g	12g	13g	14g	15g	16g	17g	18g	19g

6.15.1 Limitations

LCD glass module operation is exclusive to all other features of the board.

UM1855 Rev 6 39/80

6.16 TFT LCD panel

STM32L476G-EVAL is delivered with MB989, a daughterboard plugged into the extension connector (CN19). It bears a TFT 2.8-inch color LCD panel with a resistive touchscreen and an onboard controller. *Section 6.18* provides further information.

Thanks to level shifters on all signal lines, the TFT LCD panel can operate with the entire operating voltage range of STM32L476G-EVAL.

The TFT LCD panel is attached to the 16-bit data bus and accessed with FMC. The base address is 0x6800 0000, corresponding to NOR/SRAM3 bank1. The panel is selected with the LCD_NE3 chip select signal generated by the PG10 port of the STM32L476ZG. Address lines A0 and A1 determine the panel resources addressed, as depicted in *Table 22*.

Table 23 gives the extension connector (CN19) terminal assignment.

Table 22. Access to TFT LCD resources with FMC address lines A0 and A1

Address	A 1	Α0	Usage
0x6800_0000	0	0	Read register
0x6800_0002	0	1	Read Graphic RAM (GRAM)
0x6800_0004	1	0	Write register
0x6800_0006	1	1	Write graphic RAM (GRAM)

Table 23. Assignment of CN19 connector terminals to TFT LCD panel

CN19 terminal	Terminal name	MCU port	CN19 terminal	Terminal name	MCU port
1	CSN	PG10	2	RS	PF0
3	WRN	PD5	4	RDN	PD4
5	RSTN	RESET#	6	D0	PD14
7	D1	PD15	8	D2	PD0
9	D3	PD1	10	D4	PE7
11	D5	PE8	12	D6	PE9
13	D7	PE10	14	D8	PE11
15	D9	PE12	16	D10	PE13
17	D11	PE14	18	D12	PE15
19	D13	PD8	20	D14	PD9
21	D15	PD10	22	BL_GND	-
23	BL_CONTROL	-	24	+3V3	-
25	+3V3	-	26	26	-
27	GND	-	28	BL_VDD	-
29	SDO	-	30	SDI	-
31	XL	I/O expander_X-	32	XR	I/O expander_X+
33	YD	I/O expander_Y-	34	YU	I/O expander_Y+

577

UM1855 Rev 6 41/80

6.17 User LEDs

Four general-purpose color LEDs (LD1, LD2, LD3, LD4) are available as light indicators. Each LED is light-emitting with a low level of the corresponding control port. They are controlled either by the STM32L476ZG or by the I/O expander IC U32, named IOExpander1 in the schematic diagram. *Table 24* gives the assignment of control ports to the LED indicators.

User LED	Control port	Control device			
LED1 (Green)	PB2	STM32L476ZG			
LED2 (Orange)	GPIO0	IOExpander1			
LED3 (Red)	PC1	STM32L476ZG			
LED4 (Blue)	GPIO2	IOExpander1			

Table 24. Port assignment for control of LED indicators

6.18 Physical input devices

The STM32L476G-EVAL board provides several input devices for physical human control. These are:

- Four-way joystick controller with select key (B3)
- Wake-up/tamper button (B2)
- Reset button (B1)
- · Resistive touchscreen of the TFT LCD panel
- 10 kΩ potentiometer (RV3)
- Light-dependent resistor, LDR (R52)

Table 25 shows the assignment of ports routed to the physical input devices. They are either ports of the STM32L476ZG or of one of the two I/O expander ICs on the board, named, in the schematic diagrams, IOExpander1 and IOExpander2.

Table 25. Port assignment for control of physical input devices

Input device	Control port	Control device
Joystick SEL	GPIO0	IOExpander2
Joystick DOWN	GPIO1	IOExpander2
Joystick LEFT	GPIO2	IOExpander2
Joystick RIGHT	GPIO3	IOExpander2
Joystick UP	GPIO4	IOExpander2
Wake-up/ tamper B2	PC13	STM32L476ZG
Reset B1	NRST	STM32L476ZG
Resistive touch screen X+	X+	IOExpander1
Resistive touch screen X-	X-	IOExpander1
Resistive touch screen Y+	Y+	IOExpander1

 Input device
 Control port
 Control device

 Resistive touch screen Y Y IOExpander1

 Potentiometer
 PB4 or PA0
 STM32L476ZG

 LDR
 PA0 or PB4
 STM32L476ZG

Table 25. Port assignment for control of physical input devices (continued)

The potentiometer and the light-dependent resistor can be routed, mutually exclusively, to either PB4 or to the PA0 port of STM32L476ZG. *Table 26* depicts the setting of associated configuration jumpers.

As illustrated in the schematic diagram, the PB4 port is routed, in the STM32L476ZG, to the noninverting input of comparator Comp2. The PA0 is routed to the noninverting input of the operational amplifier OpAmp1. However, depending on register settings, it can also be routed to ADC1 or ADC2.

Jumper Setting Routing JP5 JP7 JP5 1 2 3 1 2 3 Potentiometer is routed to pin PB4 of STM32L476ZG. JP7 • • • • • • JP5 JP7 JP5 1 2 3 Default setting. 1 2 3 JP7 Potentiometer is routed to pin PA0 of STM32L476ZG. • • • • • JP5 JP7 JP5 1 2 3 1 2 3 LDR is routed to pin PB4 of STM32L476ZG. JP7 • • • • • JP7 JP5 JP5 1 2 3 1 2 3 LDR is routed to pin PA0 of STM32L476ZG. JP7 • • • • •

Table 26. Setting of jumpers related to potentiometer and LDR

6.18.1 Limitations

The potentiometer and the light-dependent resistor are mutually exclusive.

6.19 Operational amplifier and comparator

6.19.1 Operational amplifier

STM32L476ZG provides two onboard operational amplifiers, one of which, OpAmp1, is made accessible on STM32L476G-EVAL. OpAmp1 has its inputs and its output routed to I/O ports PA0, PA1, and PA3, respectively. The noninverting input PA0 is accessible on terminal 1 of the JP7 jumper header. On top of the possibility of routing either of the

UM1855 Rev 6 43/80

potentiometer or LDR to the PA0, an external source can also be connected to it, using terminal 1 of JP7.

The PA3 output of the operational amplifier can be accessed on test point TP9. Refer to the schematic diagram.

The ratio of the variable resistor RV2 and the resistor R121, as shown in the following equation, determines the OpAmp1 gain.

Gain =
$$1 + (RV2) \div (R121)$$

With the RV2 ranging from 0 to 10 k Ω and R121 being 1 k Ω , the gain can vary from 1 to 11. The R63 resistor in series with PA0 is beneficial for reducing the output offset.

6.19.2 Comparator

STM32L476ZG provides two onboard comparators, one of which, Comp2, is made accessible on STM32L476G-EVAL. Comp2 has its noninverting input and its output routed to I/O ports PB4 and PB5, respectively. The input is accessible on terminal 3 of the JP7 jumper header. On top of the possibility of routing either the potentiometer or LDR to PB4, an external source can also be connected to it, using terminal 3 of JP7.

The PB5 output of the comparator can be accessed on test point TP6. Refer to the schematic diagram.

6.20 Analog input, output, VREF

STM32L476ZG provides an onboard analog-to-digital converter, ADC, and a digital-to-analog converter, DAC. The port PA4 can be configured to operate either as ADC input or as DAC output. PA4 is routed to the two-way header (CN8) allowing it to fetch signals to or from PA4 or to ground it by fitting a jumper into CN8.

Parameters of the ADC input low-pass filter formed with R72 and C47 can be modified by replacing these components according to application requirements. Similarly, the parameters of the DAC output low-pass filter formed with R73 and C47 can be modified by replacing these components according to application requirements.

The VREF+ terminal of STM32L476ZG is used as a reference voltage for both ADC and DAC. By default, it is routed to VDDA through a jumper fitted into the two-way header (CN10). The jumper can be removed and an external voltage applied to terminal 1 of CN10, for specific purposes.

6.21 SRAM device

A 16-Mbit static RAM (SRAM), 1 M x16 bit, is fitted on the STM32L476G-EVAL main board, in the U2 position. The STM32L476G-EVAL main board as well as the addressing capabilities of FMC allow hosting SRAM devices up to 64 Mbytes. This is the reason why the schematic diagram mentions several SRAM devices.

The SRAM device is attached to the 16-bit data bus and accessed with FMC. The base address is 0x6000 0000, corresponding to NOR/SRAM1 bank1. The SRAM device is selected with the FMC_NE1 chip selection signal. FMC_NBL0 and FMC_NBL1 signals allow selecting 8-bit and 16-bit data word operating modes.

By removal of R18, a zero-ohm resistor, the SRAM is deselected and the STM32L476ZG ports PD7, PE0, and PE1 corresponding to FMC_NE1, FMC_NBL0 and FMC_NBL1 signals, respectively, can be used for other application purposes.

Resistor Fitting Configuration

In Default setting.
SRAM chip select is controlled with FMC_NE1

Out SRAM is deselected. FMC_NE1 is freed for other application purposes.

Table 27. SRAM chip select configuration

6.21.1 Limitations

The SRAM addressable space is limited if some or all of the A19, A20, A21, A22, and A23 FMC address lines are shunted to the debug trace purpose connector (CN12). In such a case, pull-down resistors drive the disconnected addressing inputs of the SRAM device. Section 6.2 provides information on the associated configuration elements.

6.21.2 Operating voltage

The operating voltage of the SRAM device is in the range of 2.4 to 3.6 V.

6.22 NOR flash memory device

A 128-Mbit NOR flash memory, 8 M x16 bit, is fitted on the STM32L476G-EVAL main board, in the U5 position. The STM32L476G-EVAL main board as well as the addressing capabilities of FMC allow hosting a 256-Mbit NOR flash memory device.

The NOR flash memory device is attached to the 16-bit data bus and accessed with FMC. The base address is 0x6400 0000, corresponding to NOR/SRAM2 bank1. The NOR flash memory device is selected with the FMC_NE2 chip select signal. A pull-up resistor connected to the BYTE terminal of the NOR flash memory selects the 16-bit data word operation mode. The jumper JP13 is dedicated to the write-protect configuration.

By default, the FMC_NWAIT signal is not routed to the RB port of the NOR flash memory device, and, to know its ready status, its status register is polled by the demonstration software fitted in STM32L476G-EVAL. This can be modified with configuration elements, as shown in *Table 28*.

Table 28. NOR flash memory-related configuration elements

Element	Setting	Configuration
JP13	JP13 1 2 • •	Default setting. NOR flash memory write is enabled.
01 10	JP13	NOR flash memory write is inhibited. Write protect is activated.

45/80

Element	Setting	Configuration
R53 SB10	R53 In SB10 open	Default setting. PD6 port of STM32L476ZG is used for SAI1_SDA signal and routed to audio codec. NOR flash memory device's status register can be accessed.
3510	R53 Out SB10 closed	PD6 port of STM32L476ZG is used for the FMC_NWAIT signal and routed to NOR flash memory device's RB port. NOR flash memory device's status register cannot be accessed.

Table 28. NOR flash memory-related configuration elements

6.22.1 Limitations

- FMC NWAIT and SAI1 SDA signals are mutually exclusive.
- The addressable space of the NOR flash memory device is limited if any of the A19, A20, A21, A22, and A23 FMC address lines are shunted to the debug trace purpose connector (CN12). In such a case, pull-down resistors drive the disconnected addressing inputs of the NOR flash memory device. Section 6.2 provides information on the associated configuration elements.

6.22.2 Operating voltage

The NOR flash memory operating voltage must be in the range of 1.65 to 3.6 V.

6.23 **EEPROM**

A 128-Kbit I^{*}C-bus EEPROM device is fitted on the main board of STM32L476G-EVAL, in the U6 position. It is accessed with I2C-bus lines I2C2 SCL and I2C2 SDA of STM32L476ZG. It supports all I²C-bus modes with speeds up to 1 MHz. The base I²C-bus address is 0xA0. Write-protecting the EEPROM is possible by opening the SB7 solder bridge. By default, SB7 is closed and writing into the EEPROM enabled.

6.23.1 Operating voltage

The M24128-DFDW6TP EEPROM device's operating voltage must be in the range of 1.7 to 3.6 V.

6.24 RF-EEPROM

RF-EEPROM daughterboard, ANT7-M24LR-A, can be connected to the STM32L476G-EVAL board connector (CN3). STM32L476ZG can access the RF-EEPROM in two ways, wired through an I²C bus or wireless using a 13.56 MHz RF band reserved for RFID and NFC equipment. For wireless access, the CR95HF reader daughterboard plugged into the CN13 connector can be used, for example.

The I²C address of the RF-EEPROM device is 0xA6.

6.25 Quad-SPI flash memory device

A 256-Mbit Quad-SPI flash memory device is fitted on the STM32L476G-EVAL main board, in the U9 position. It allows evaluating STM32L476ZG Quad-SPI flash memory device interface.

This Quad-SPI flash memory can operate in single transfer rate (STR) and double transfer rate (DTR) modes.

By default, the Quad-SPI flash memory device is not accessible. *Table 29* shows the configuration elements and their settings allowing to access the Quad-SPI flash memory device. The LCD glass module daughterboard MB979 takes an active part in the configuration. It must be removed from the main board (denoted as "MB979 out"), to operate the Quad-SPI flash memory device. *Section 6.12: Motor control* provides additional information.

Table 29. Configuration elements related to Quad-SPI device

Element	Setting	Configuration
SB12 SB13	SB12 open SB13 open	Default setting. QSPI_D0 data line is not available at Quad-SPI flash memory device: PB1 port of STM32L476ZG is only routed to the MB979 daughterboard connector (CN11).
MB979	SB12 closed SB13 open MB979 out	QSPI_D0 data line is available at Quad-SPI flash memory device: PB1 port of STM32L476ZG is routed to the DQ0 port of the Quad-SPI flash memory device.
SB14 SB15	SB14 open SB15 open	Default setting. QSPI_D1 data line is not available at Quad-SPI flash memory device: PB0 port of STM32L476ZG is only routed to the MB979 daughterboard connector (CN11).
MB979	SB14 closed SB15 open MB979 out	QSPI_D1 data line is available at Quad-SPI flash memory device: PB0 port of STM32L476ZG is routed to the DQ1 port of the Quad-SPI flash memory device.
SB18 SB19	SB18 open SB19 open	Default setting. QSPI_D2 data line is not available at Quad-SPI flash memory device: PA7 port of STM32L476ZG is only routed to the MB979 daughterboard connector (CN11).
MB979	SB18 closed SB19 open MB979 out	QSPI_D2 data line is available at Quad-SPI flash memory device: PA7 port of STM32L476ZG is routed to the DQ2 port of the Quad-SPI flash memory device.
SB21 SB20	SB21 open SB20 open	Default setting. QSPI_D3 data line is not available at Quad-SPI flash memory device: PA6 port of STM32L476ZG is only routed to the MB979 daughterboard connector (CN11).
MB979	SB21 closed SB20 open MB979 out	QSPI_D3 data line is available at Quad-SPI flash memory device: PA6 port of STM32L476ZG is routed to the DQ3 port of the Quad-SPI flash memory device.

Element Setting Configuration Default setting. QSPI CLK clock line is not available at Quad-SPI flash memory device: SB9 open PB10 port of STM32L476ZG is only routed to the MB979 daughterboard SB9 connector (CN11). **MB979** QSPI CLK clock line is available at Quad-SPI flash memory device: SB9 closed PB10 port of STM32L476ZG is routed to the C port of the Quad-SPI MB979 out flash memory device. Default setting. QSPI_CS line is not available at Quad-SPI flash memory device: SB8 open The PB11 port of STM32L476ZG is only routed to the MB979 SB8 daughterboard connector (CN11). **MB979** QSPI CS line is available at Quad-SPI flash memory device: SB8 closed PB11 port of STM32L476ZG is routed to the S# port of the Quad-SPI MB979 out flash memory device.

Table 29. Configuration elements related to Quad-SPI device (continued)

6.25.1 Limitations

Quad-SPI operation is exclusive to the LCD glass module and with motor control.

6.25.2 Operating voltage

The voltage of the Quad-SPI flash memory device is in the range of 2.7 to 3.6 V.

6.26 Touch-sensing button

The STM32L476G-EVAL Evaluation board supports a touch sensing button based on either RC charging or on charge-transfer technique. The latter is enabled, by default.

The touch-sensing button is connected to the PB12 port of STM32L476ZG and the related charge capacitor is connected to PB13.

An active shield is designed in layer two of the main PCB, under the button footprint. It allows the reduction of disturbances from other circuits to prevent false touch detections.

The active shield is connected to the PC6 port of STM32L476ZG through the resistor R37. The related charge capacitor is connected to PC7.

Table 30 shows the configuration elements related to the touch-sensing function. Some of them serve to enable or disable its operation. However, most of them serve to optimize the touch-sensing performance, by isolating copper tracks to avoid disturbances due to their antenna effect.

Table 30. Touch-sensing-related configuration elements

Table 30. Touch-sensing-related configuration elements			
Element	Setting	Configuration	
R39	In	Default setting. PB12 port is routed to the LCD glass module daughterboard connector (CN11). This setting is not good for the robustness of touch sensing.	
	Out	PB12 port is cut from CN11. This setting is good for the robustness of touch sensing.	
SB3	Open	Default setting. PB12 is not routed to motor control. This setting is good for the robustness of touch sensing.	
363	Closed	PB12 is routed to motor control. This setting is not good for the robustness of touch sensing.	
R38	ln	Default setting. PB13 port is routed to the LCD glass module daughterboard connector (CN11). This setting is not good for the robustness of touch sensing.	
	Out	PB13 port is cut from CN11. This setting is good for the robustness of touch sensing.	
SB6	Open	Default setting. PB13 is not routed to the sampling capacitor. Touch sensing cannot operate.	
	Closed	PB13 is routed to the sampling capacitor. Touch sensing can operate.	
R36	ln	Default setting. PC6 port is routed to the LCD glass module daughterboard connector (CN14). This setting is not good for the robustness of touch sensing.	
	Out	PC6 port is cut from CN14. This setting is good for the robustness of touch sensing.	
SB2	Open	Default setting. PC6 is not routed to the active shield under the touch-sensing button. This setting is not good for the robustness of touch sensing.	
	Closed	PC6 is routed to the active shield under the touch-sensing button. This setting is good for the robustness of touch sensing.	
SB27	Open	Default setting. PC6 port of STM32L476ZG is not routed to motor control. This setting is good for the robustness of touch sensing.	
OBZI	Closed	PC6 is routed to motor control. This setting is not good for the robustness of touch sensing.	
R33	ln	Default setting. PC7 port is routed to the LCD glass module daughterboard connector (CN14). This setting is not good for the robustness of touch sensing.	
	Out	PC7 port is cut from CN14. This setting is good for the robustness of touch sensing.	
SB4	Open	Default setting. PC7 port of STM32L476ZG is not routed to the sampling capacitor of the active shield under the touch-sensing button. This setting is not good for the robustness of touch sensing.	
) SB4	Closed	PC7 is routed to the sampling capacitor of the active shield under the touch-sensing button. This setting is good for the robustness of touch sensing.	

UM1855 Rev 6 49/80

Element	Setting	Configuration		
SB30	Open	Default setting. PC7 port of STM32L476ZG is not routed to the motor control. This setting is good for the robustness of touch sensing.		
	Closed	PC7 is routed to motor control. This setting is not good for the robustness of touch sensing.		

 Table 30. Touch-sensing-related configuration elements (continued)

6.26.1 Limitations

The touch-sensing button is exclusive to the LCD glass module, thermal sensor PT100 via sigma-delta conversion, and USB OTG FS port operating as USB Host, SWP, and NFC.

6.27 Smartcard, SWP

An interface device for 3 and 5-V asynchronous smartcards, is fitted on the STM32L476G-EVAL main board, in the U30 position. This interface performs all supply protection and control functions of the smartcard.

This interface device is controlled, in its turn, by STM32L476ZG, directly through its ports or indirectly through the ports of the U33 I/O expander device (IOExpander2), as shown in *Table 31*.

The SWIO port of the smartcard for the single-wire protocol (SWP) communication is managed directly by the PB12 port of STM32L476ZG.

ST8024CDR port	Function	Control port
5V/3V	Smartcard power supply selection pin.	IOexpander2 GPIO7
I/OUC	Data I/O line	STM32L476ZG PC4
XTAL1	Quartz crystal or external clock input	STM32L476ZG PB0
OFF	Card presence detection	IOexpander2 GPIO8
RSTIN	Card reset command input	IOexpander2 GPIO5
CMDVCC	Activation sequence start command input (active low)	IOexpander2 GPIO6

Table 31. Assignment of ports for ST8024CDR control

Table 32 provides information on configuration elements related to smartcard operation. Refer to *Table 11*, *Table 15*, *Table 29*, and *Table 30* for complementary information. Bridging of CN11 and CN14 rows of I/Os can be done through the MB979 daughterboard plugged into CN11 and CN14 in the I/O-bridge position, as explained in *Section 6.15*.

Table 32. Configuration elements related to smartcard and SWP

Element	Setting	Configuration
	R109 in R39 in SB3 open CN11 I/O-bridged	Default setting. Smartcard SWP cannot be handled: PB12 is routed to the USB OTG FS port as the USBOTG_OVRCR line, on top of being routed to the SWIO port of the smartcard Configuration dedicated to USB OTG FS operation.
R39 SB3 R109	R109 out R39 in SB3 open CN11 I/O-bridged	Smartcard SWP can be handled: PB12 is routed to the SWIO port of the smartcard. It is disconnected from any other resource that could affect the SWP operation Configuration dedicated to smartcard SWP operation
CN11	R39 out SB3 closed	Smartcard SWP cannot be handled: PB12 is routed to the motor control as MC_PFC_Shutdown Configuration dedicated to motor control operation
	R39 out SB3 open	Smartcard SWP cannot be handled: PB12 is only routed to the touch-sensing button and it is disconnected from any other resource. Configuration dedicated to touch-sensing button operation.
	R62 in SB14 open SB15 open CN11 I/O-bridged	Default setting. Smartcard controller U30 is supplied with a clock: PB0 port is routed to XTAL1 of U30, as SmartCard_CLK line and it is not routed to other resources. Configuration dedicated to smartcard operation.
R62 SB14 SB15	R62 out SB14 closed SB15 open	Smartcard controller U30 is not supplied with a clock: PB0 is routed to the Quad-SPI flash memory device as QSPI_D1 and it is not routed to other resources. Configuration dedicated to Quad-SPI flash memory device operation.
	R62 out SB14 open SB15 closed	Smartcard controller U30 is not supplied with a clock: PB0 is routed to the motor control as MC_PWM_2L line and it is not routed to other resources. Configuration dedicated to motor control operation.
R65 SB17	R65 in SB17 open CN14 I/O-bridged	Default setting. Smartcard controller gets SmartCard_IO line: PC4 port of MCU is routed to the IOUC port of U30, as SmartCard_IO line and it is not routed to other resources. Configuration dedicated to smartcard operation.
CN14	R65 out SB17 closed	Smartcard controller does not get SmartCard_IO line: PC4 port of MCU is routed to the motor control as MC0PFC0IndCur line and it is not routed to other resources. Configuration dedicated to motor control operation.

UM1855 Rev 6 51/80

6.27.1 Limitations

The following limitations apply to the smartcard operation:

- Smartcard operation is mutually exclusive to the LCD glass module, the Quad-SPI flash memory device, and the motor control operation.
- SWP operation is mutually exclusive to the LCD glass module, touch-sensing button, motor control, and USB OTG FS port operation if the last operates as a USB Host. SWP can operate concurrently with a USB OTG FS port acting as a USB Device.

6.27.2 Operating voltage

Smartcard operating V_{DD} ranges from 2.7 to 3.6 V. However, the SWP only operates with a supply voltage of 3.3 V.

6.28 Near field communication (NFC)

The STM32L476G-EVAL board can host an NFC transceiver board plugged into the extension connector (CN13).

Figure 12 illustrates the way of attaching an NFC board.

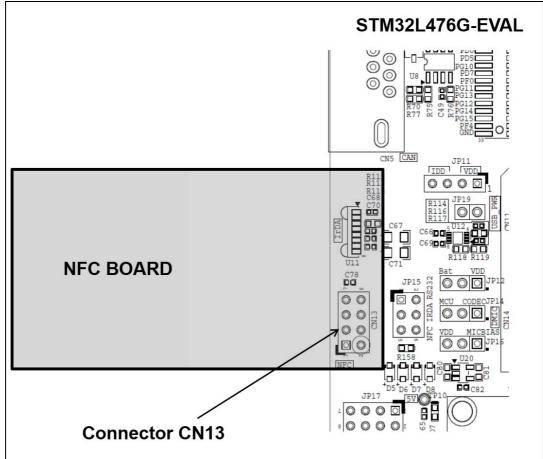


Figure 12. NFC board plugged into STM32L476G-EVAL board

Table 33 shows the assignment of signals to the CN13 connector.

The serial communication with the module plugged in CN13 can either use the SPI communication protocol (default) or the UART communication protocol.

CN13 terminal	NFC line name	MCU port	Function
1	NFC_IRQOUTN or UART_TX	PB7	Interrupt output for NFC device Connected to STM32L476ZG UART RX
2	NFC_IRQINN or UART_RX	PB6	Interrupt input for NFC device Connected to STM32L476ZG UART TX
3	NFC_NSS	PF11	SPI slave select
4	NFC_MISO	PB14	SPI data, slave output
5	NFC_MOSI	PB15	SPI data, slave input
6	NFC_SCK	PB13	SPI serial clock
7	+3V3	-	Main power supply/power supply for RF drivers
8	GND	-	Ground

Table 33. NFC connector (CN13) terminal assignment

6.29 Dual-channel sigma-delta modulators STPMS2L

6.29.1 STPMS2L presentation

With its DFSDM interface, the STM32L476ZG microcontroller can directly interact with sigma-delta modulator devices, such as STPMS2L.

STPMS2L comprises two analog measuring channels based on second-order sigma-delta modulators. Typically, it can be used in power metering where both voltage and current need to be known. One channel measures the voltage and the other channel measures the current.

DAT port outputs converted measurement data on the DFSDM_DATIN1 line, received by the STM32L476ZG DFSDM controller. The data from STPMS2L are synchronized with the DFSDM_CKOUT clock generated by the STM32L476ZG DFSDM controller and received on the CLK terminal of STPMS2L.

There are two STPMS2L devices on STM32L476G-EVAL, sharing the DFSDM clock. One is wired such as to support a power-metering demonstrator. The other allows measuring temperature using the PT100 sensor.

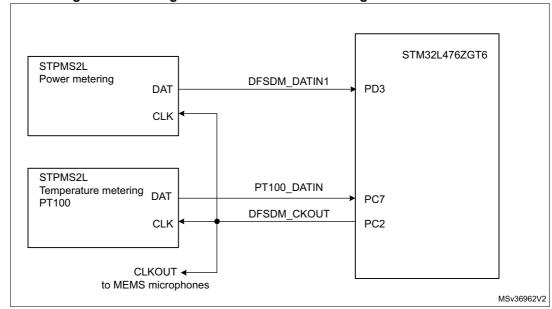


Figure 13. Routing of STPMS2L dual-channel sigma-delta modulators

6.29.2 STPMS2L settings

STPMS2L operating parameters are set through its configuration terminals MS0, MS1, MS2, and MS3. On STM32L476G-EVAL, both devices are configured as follows:

- Voltage channel range: differential voltage +/- 300mV
- Current channel range: differential voltage +/- 300mV
- Internal voltage reference is used
- Input bandwidth: 0 to 1 kHz
- Temperature compensation: flattest +30ppm/°C
- DAT output: voltage and current samples multiplexed
- DATn output: not used
- Hardware mode selected for settings

6.29.3 STPMS2L power metering

STPMS2L in the U3 position simulates low-voltage AC power metering, with capacitive load impedance, to give a different phase to voltage, and current.

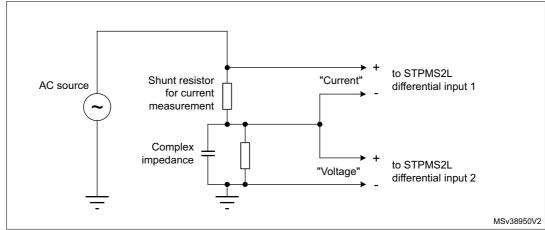


Figure 14. Power measurement principle schematic diagram

A low-voltage AC generator is to be applied by the user as shown in *Figure 14*. The shunt resistor is connected in series with the load to provide current measurement points to one of the STPMS2L input channels. The voltage measurement points for the other input channel are taken across the load. *Figure 15* shows an extract of the corresponding schematic diagram.

Warning: Do not connect AC mains!

Test example:

The output of a low-voltage AC generator is connected to CN4, terminals 1 and 3. The amplitude is set between 200 and 300 mV and the frequency is adjustable between 10 Hz and 100 Hz.

With 34 Hz frequency, and the load formed of R27 of 1 k Ω in parallel with C29 of 4.7 μ F, the voltage phase and the current phase are theoretically 45 degrees apart.

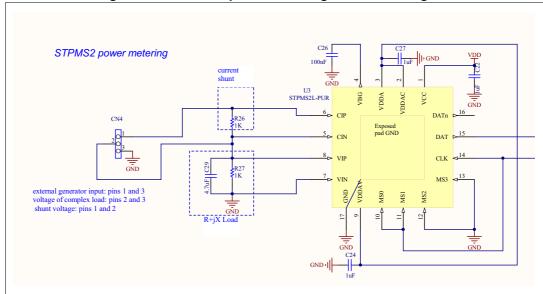


Figure 15. STPMS2L power metering schematic diagram

6.29.4 STPMS2L for PT100 measurement

PT100 is a resistor with temperature-dependent resistance.

Usually, one of two methods is used for measuring temperature with a temperature-dependent resistor. In the first method, a known current is driven through the measuring resistor. The voltage measured across the resistor represents the temperature. In the second method, a known voltage is applied to the resistor, and the current flowing through is measured, representing the temperature. In these methods, either an accurate current source or an accurate voltage source is required.

With the dual-input measurement with STPMS2L in the U4 position, no such accurate current or voltage sources are required. Instead, a precision shunt resistor is required. One channel of the STPMS2L measures the voltage across the precise shunt resistor, representing the current flowing through PT100. The other channel measures the voltage across PT100.

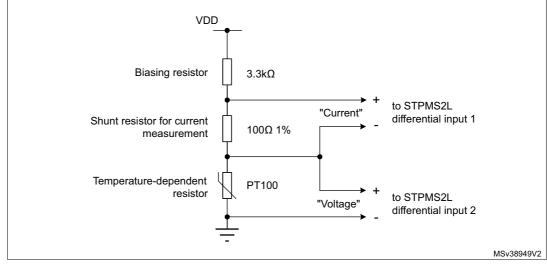


Figure 16. Temperature measurement principle schematic diagram

With voltage across and current through the PT100 resistor, the STM32L476ZG microcontroller computes the PT100 resistance.

For temperatures lower than +100°C, the following equation gives the temperature, where PT100 is the resistance of the PT100 resistor and T is the temperature in degrees centigrade:

$$T = (PT100 - 100) / (0.385)$$

6.29.5 Limitations

The operating voltage must be in the range of 3.2 to 3.6 V.

6.30 STM32L476ZG current consumption measurement

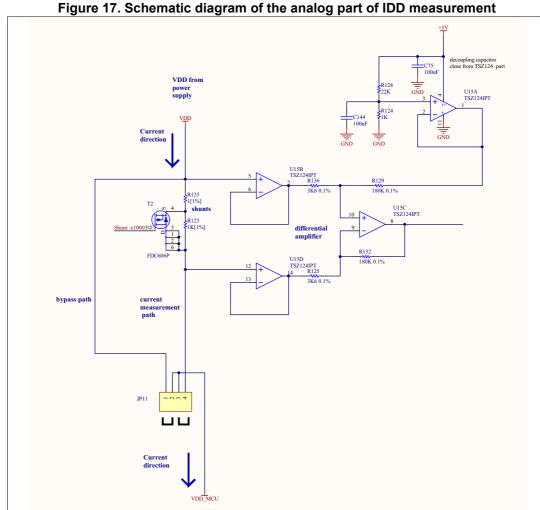
STM32L476ZG has a built-in circuit allowing it to measure its current consumption (IDD) in Run and Low-power modes, except for Shutdown mode.

It is strongly recommended that the MCU supply voltage (VDD_MCU line) does not exceed 3.3 V. This is because there are components on STM32L476G-EVAL supplied from 3.3 V that communicate with the MCU through I/O ports. Voltage exceeding 3.3 V on the MCU output port might inject current into 3.3 V-supplied peripheral I/Os and false the MCU current consumption measurement.

6.30.1 IDD measurement principle - analog part

The analog part is based on measuring the voltage drop across a shunt resistor, amplified with a differential amplifier. The STM32L476ZG microcontroller supply current is shunted, by jumper settings, to flow through the measurement 1 Ω resistor R135: JP11 terminals 1 and 2 are to be open, terminals 3 and 4 closed. When the transistor T2 is in a conductive state, the MCU supply current is proportional to the voltage across R135. When T2 is in a high-impedance state, the MCU supply current is proportional to the voltage across the series of

57/80


R135 and R123. The former state is used for measuring the current consumption in Dynamic-Run mode, the latter in Low-power mode.

The differential amplifier uses three stages U15B, U15C, and U15D of the quadruple operational amplifier device U15, TSZ124. The gain is set to 50, so an additional 50 mV at the U15C output, terminal 8 of U15 represents every 1 mA of supply current.

The resistance formed with the series of R135 and R123, when T2 is in a high-impedance state, is 1001 Ω . It makes the voltage on terminal 8 of U15 increase by approximately 50 mV for every μA of MCU power consumption. The full-scale range, with VDD at 1.8 V is about 30 µA.

Even with precision resistors R136, R125, R129, and R132 to set the gain of the differential amplifier, the output voltage might theoretically become negative. To avoid the need for a negative power supply, a positive offset of about 220 mV is created at the output, at zero current consumption of the MCU. This offset does not need to be precise. Any dispersion is compensated through a calibration procedure detailed in Section 6.30.4.

For allowing the IDD measurement, the jumper in the JP11 header must short its terminals 3and 4.

6.30.2 Low-power mode IDD measurement principle - logic part

The target microcontroller can only carry out actions for measuring a voltage when in Dynamic-Run mode. This is the reason why, a voltage representing the current consumed by the microcontroller when in Low-power mode needs to be held by a sample-and-hold circuit, which the microcontroller exploits later, when back in Dynamic-Run mode. The sample-and-hold (S&H) circuit is built with a U13 switch, R122 resistor, and C73 sampling capacitor.

The measurement of Low-power mode current consumption starts and ends with the microcontroller in its Dynamic-Run mode. As, between the start and end event, the microcontroller must transit through one of its Low-power modes, extra logic is required to time and control events during this state. It consists of the U14 counter, the U16 inverter, and the transistor T3. Figure 18 shows the corresponding schematic diagram.

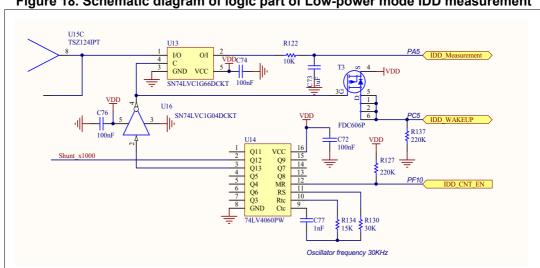


Figure 18. Schematic diagram of logic part of Low-power mode IDD measurement

The measurement process consists of three phases:

Phase 1 - start and transiting to Low-power mode

While in Dynamic-Run mode, the MCU sets the IDD CNT EN signal on its PF10 port low, starting the measurement process. This makes the counters in U14 start counting the clock pulses generated with their RC oscillator. At about 150 ms from the start, the Q12 output of U14 goes high, terminating phase 1. After starting the measurement process, the MCU transits to Low-power mode. The duration of phase 1 of about 150ms allows the MCU enough time to transit into Low-power mode.

Phase 2 - sampling

The MCU is now in Low-power mode. Phase 2 starts with the Q12 port of U14 going high, 150 ms after the MCU, at that time in Dynamic-Run mode, started the Low-power mode consumption current measurement process. The transistor T2 goes in High-impedance mode, which results in setting the analog part in the high-sensitivity state, needed for measuring very low currents. The Q13 port of U14 keeps the path between ports I/O and O/I of U13 conductive. The sampling capacitor C73 is charged through the resistor (R122) to the voltage at the output of the differential analog amplifier, representing the current consumed by the MCU in Low-power mode. The duration of phase 2 is about 150 ms. This time is needed to allow the voltage on the sampling capacitor C73 to stabilize.

UM1855 Rev 6 59/80

Phase 3 - exiting Low-power mode, measurement, and end

The MCU is in Low-power mode. The voltage across the C73 capacitor is now stabilized so it represents the current consumed by the MCU in Low-power mode. Phase 3 starts by setting the U13 path between ports O/I and I/O to a nonconductive state, for the voltage across C73 to hold. The same event causes the IDD_WAKEUP signal for the MCU to change state, to signal to the MCU that the voltage on C73 is now ready for being measured. The MCU transits from Low-power mode to Dynamic-Run mode. The MCU measures the voltage on C73 representing the current that the MCU formerly consumed in Low-power mode, using the ADC port PA5, and stored. The Q12 port transits to a low state at the same time as the Q13 goes high. As a consequence, the analog part of the IDD measurement circuit is back to the Low-sensitivity mode adapted for measuring the microcontroller supply current in its Dynamic-Run mode. Phase 3 and the whole measurement process end with the microcontroller setting the IDD CNT EN signal back high. Figure 19 illustrates the timing of the Low-power mode current consumption measurement process.

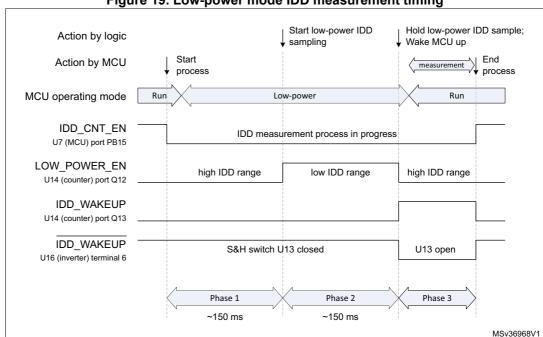


Figure 19. Low-power mode IDD measurement timing

6.30.3 IDD measurement in Dynamic-Run mode

In Dynamic-Run mode, the IDD CNT EN remains high. The T2 is in a conductive state, setting the shunt resistor to 1 Ω . The U13 path from port 1 to 2 is permanently conductive and the voltage on the capacitor C73 follows the MCU current consumption. R122 allows filtering fast changes.

6.30.4 Calibration procedure

For the measurement to be precise, it is mandatory to perform a calibration before the measurement. The calibration allows subtracting, from the voltage measured across C73, the offset at the differential amplifier output, described in Section 6.30.1.

The calibration procedure consists in measuring the offset voltage when the current through the shunt resistor is zero. The current consumption values measured by the microcontroller are then compensated for offset, by subtracting the now-known offset number from the measured number. Setting the current through the shunt resistor to zero is reached through an appropriate setting of jumpers in the JP11 jumper header.

Calibration procedure and current measurement compensation steps:

- On JP11, short terminals 1 and 2 and open terminals 3 and 4. The current through the shunt resistor is now zero.
- Run Low-power mode IDD measurement as described in Section 6.30.2. The V_{offset} value measured corresponds to the offset of the differential amplifier.
- On JP11, add a second jumper to short terminals 3 and 4. Then remove the jumper from terminals 1 and 2 of JP11. The MCU supply has not been interrupted and the supply current now passes through the shunt resistor.
- Run Low-power mode IDD measurement as described in Section 6.30.2. The
 V_{measured} value obtained corresponds to the sum of the MCU supply current and the
 V_{offset} differential amplifier offset.
- The software computes a V_{out} number representing the MCU supply current as
 V_{out} = V_{measured} V_{offset}

Table 34. JP11 jumper settings during IDD measurement with calibration

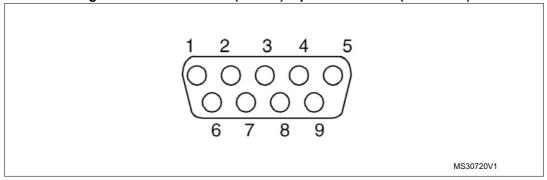
Jumper	Setting	Description
	JP11 1 2 3 4	Configuration used to measure V _{offset} . JP11 in VDD position STM32L476ZG supply current does not flow through the shunt resistor.
JP11	JP11 1 2 3 4	Configuration to transit from direct to shunted supply to STM32L476ZG, without ever interrupting the MCU supply.
	JP11 1 2 3 4 ● ● ●	Default setting. Configuration used to measure the MCU supply current. JP11 in IDD position STM32L476ZG supply current flows through the shunt resistor.

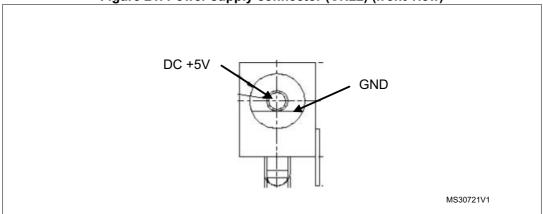
Connectors UM1855

7 Connectors

7.1 RS-232 D-sub male connector (CN9)

Figure 20. RS-232 D-sub (DE-9M) 9-pole connector (front view)




Table 35. RS-232 D-sub (DE-9M) connector (CN9) with HW flow control and ISP support

Terminal	Terminal name	Terminal	Description
1	NC	6	Bootloader_BOOT0
2	RS232_RX (PB7)	7	NC
3	RS232_TX (PG12)	8	Bootloader_RESET
4	NC	9	NC
5	GND	-	-

7.2 Power connector (CN22)

The STM32L476G-EVAL board can be powered from a DC-5V external power supply via the CN22 jack illustrated in *Figure 21*. The central pin of CN22 must be positive.

Figure 21. Power supply connector (CN22) (front view)

UM1855 Connectors

7.3 LCD daughterboard connectors (CN11 and CN14)

Two 48-pin male headers (CN11 and CN14) are used to connect to the LCD glass module daughterboard MB979. The type of connectors, their mutual orientation, distance, and terminal assignment are kept for several STMicroelectronics MCU Evaluation boards. This standardization allows the development of daughterboards that can be used with multiple Evaluation boards. The width between CN11 pin 1 and CN14 pin 1 is 700 mils (17.78 mm).

STM32L476ZG ports routed to these two connectors can be accessed on odd CN11 and CN14 pins (the row of pin 1) when no daughterboard is plugged in.

Daughterboards plugging into CN11 and CN14 must keep the even terminals of CN11 and CN14 open.

Table 36 shows the signal assignment to terminals.

Table 36. LCD daughterboard connectors (CN11 and CN14)

С	N11		N14
Odd pin	MCU port	Odd pin	MCU port
1	PA9	1	PD2
3	PA8	3	PC12
5	PA10	5	PC11
7	PB9	7	PC10
9	PB11	9	PB7
11	PB10	11	PC4
13	PB5	13	PC5
15	PB14	15	PC6
17	PB13	17	PC7
19	PB12	19	PC8
21	PA15	21	PC9
23	PB8	23	PD8
25	PB15	25	PD9
27	PC2	27	PD10
29	PC1	29	PD11
31	PC0	31	PD12
33	PA3	33	PD13
35	PA2	35	PD14
37	PB0	37	PD15
39	PA7	39	PE0
41	PA6	41	PE1
43	PB4	43	PE2

Connectors UM1855

Table 36. LCD daughterboard connectors (CN11 and CN14) (continued)

CI	N11	CN	l14
Odd pin	MCU port	Odd pin	MCU port
45	PB3	45	PE3
47	PB1	47	PA1

7.4 Extension connectors (CN6 and CN7)

Table 37. Daughterboard extension connector (CN6)

Pin	Description	Alternative Functions	How to disconnect Alternative functions to use on the extension connector
1	GND	-	-
3	PG6	CODEC_INT, MC_ICL_Shutout	Remove R35, Open SB5
5	PA13	TMS/SWDIO	Do not use Trace connector (CN12) and JTAG connector (CN15)
7	PA12	USBOTG_DP	Remove R4
9	PG8	LPUART_RX_3V3	Remove R158, R188
11	GND	-	-
13	PG2	A12	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
15	PD3	DFSDM_DATIN1	Remove R23
17	PD0	D2	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
19	PD5	FMC_NWE	Cannot be disconnected from SRAM and flash memory, but is an input for SRAM and flash memory
21	PG10	LCD_NE3	Cannot be disconnected from TFT LCD level shifters U21 and U22, but is an input for TFT LCD.
23	PD7	FMC_NE1	Remove R18
25	PF0	A0	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
27	PG11	USART1_CTS_3V3	Remove R93
29	PG13	I2C_SDA	Remove R58
31	PG12	USART1_RTS	Remove R116
33	PG14	I2C_SCL	Remove R61
35	PG15	IOExpander_INT	Remove R228
37	PF4	A4	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5

UM1855 Connectors

Table 37. Daughterboard extension connector (CN6) (continued)

Pin	Description	Alternative Functions	How to disconnect Alternative functions to use on the extension connector
39	GND	-	-
2	+3V3	-	-
4	PG7	LPUART_TX	Remove R119, R189
6	PA11	USBOTG_DM	Remove R3
8	PA14	TCK/SWCLK	Do not use Trace connector (CN12) and JTAG connector (CN15)
10	PG5	A15	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
12	PG3	A13	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
14	PG4	A14	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
16	PD1	D3	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
18	PD4	FMC_NOE	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
20	PG9	FMC_NE2	Remove R43
22	GND	-	-
24	PD6	SAI1_SDA, FMC_NWAIT	Remove R53, open SB10
26	PF1	A1	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
28	D5V	-	-
30	PC13	Wake-up	Remove R244
32	PF2	A2	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
34	PF3	А3	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
36	GND	-	-
38	PF5	A5	Remove R18 to deselect SRAM U2 Remove R43 to deselect flash memory U5
40	PB6	USART1_TX	Remove R118

Table 38. Daughterboard extension connector (CN7)

Pin	Description	Alternative Functions	How to disconnect Alternative functions to use on the extension connector
1	GND	-	-
3	PE14	D11	-

Connectors UM1855

Table 38. Daughterboard extension connector (CN7) (continued)

		Ι	How to disconnect Alternative functions to
Pin	Description	Alternative Functions	How to disconnect Alternative functions to use on the extension connector
5	PE12	D9	-
7	PE10	D7	-
9	PE8	D5	-
11	PG1	A11	-
13	PB2	LED1, MC_DissipativeBrake	Remove R54, SB11
15	GND	-	-
17	PF12	A6	-
19	PF11	NFC_NSS	Do not connect the NFC daughterboard to connector (CN13).
21	PE4	A20, TRACE_D1	Remove R84, SB40
23	PE5	A21, TRACE_D2	Remove R85, SB38
25	PC14	OSC32_IN	Remove R87, Close SB41
27	PF6	SAI1_SDB	Remove R105
29	PF9	SAI1_FSB, MC_PFC_sync	Remove R90, SB25
31	PF10	IDD_CNT_EN, MC_PFC_PWM	Remove R91, SB37
33	PH1	OSC_OUT	Remove R95, close SB23
35	PA5	IDD_Measurement	Remove R69
37	PA0	OpAmp1_INP, MC_EncA	Remove R83, SB35
39	GND	-	-
2	PE15	D12	-
4	PE13	D10	-
6	PE11	D8	-
8	PE9	D6	-
10	PE7	D4	-
12	PG0	A10	-
14	PF15	A9	-
16	PF14	A8	-
18	PF13	A7	-
20	воото	BootLoader from UART	Remove JP8
22	PE6	A21, TRACE_D3	Remove R86, SB39
24	PC15	OSC32_OUT	Remove R88, close SB33

UM1855 Connectors

Pin	Description	Alternative Functions	How to disconnect Alternative functions to use on the extension connector
26	GND	-	-
28	PF7	SAI1_MCKB	Remove R106
30	PF8	SAI1_SCKB	Remove R89
32	RESET#	-	-
34	PH0	OSCIN	Remove crystal X2, C54, close SB24
36	PC3	VLCD	Remove R94
38	PA4	ADC_DAC	Remove R73
40	VDD	-	-

Table 38. Daughterboard extension connector (CN7) (continued)

7.5 ST-LINK/V2-1 programming connector (CN16)

The connector (CN16) is used only for embedded ST-LINK/V2-1 programming, during board manufacture. It is not populated by default and is not for use by the end user.

7.6 ST-LINK/V2-1 Type-B USB connector (CN17)

The USB connector (CN17) is used to connect the onboard ST-LINK/V2-1 facility to the PC for flashing and debugging software.

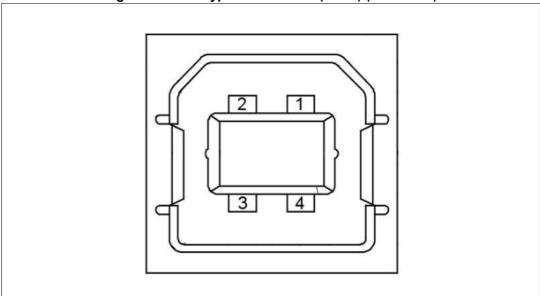


Figure 22. USB Type-B connector (CN17) (front view)

Connectors UM1855

Table 39. USB Type-B connector (CN17)

Terminal	Description	Terminal	Description
1	VBUS(power)	4	GND
2	DM	5,6	Shield
3	DP	-	-

7.7 JTAG connector (CN15)

Figure 23. JTAG debugging connector (CN15) top view

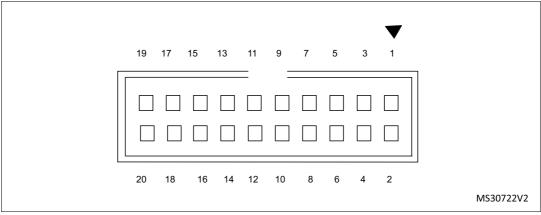


Table 40. JATG debugging connector (CN15)

Terminal	Function / MCU port	Terminal	Function / MCU port
1	VDD power	2	VDD power
3	PB4	4	GND
5	PA15	6	GND
7	PA13	8	GND
9	PA14	10	GND
11	RTCK	12	GND
13	PB3	14	GND
15	RESET#	16	GND
17	DBGRQ	18	GND
19	DBGACK	20	GND

UM1855 Connectors

7.8 ETM trace debugging connector (CN12)

Figure 24. Trace debugging connector (CN12) top view

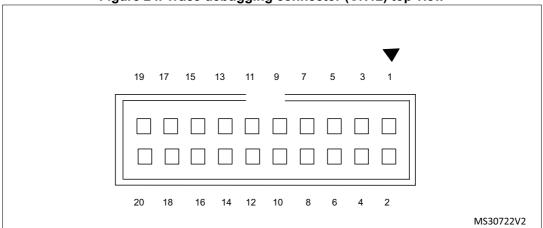


Table 41. Trace debugging connector (CN12)

Terminal	Function / MCU port	Terminal	Function / MCU port	
1	VDD power	2	TMS/PA13	
3	GND	4	TCK/PA14	
5	GND	6	TDO/PB3	
7	KEY 8 TDI/PA15		TDI/PA15	
9	GND 10 RESET		RESET#	
11	GND 12		TraceCLK/PE2	
13	GND	GND 14 TraceD0/PE3 or SWO/PB		
15	GND	16	TraceD1/PE4 or nTRST/PB4	
17	GND	18	TraceD2/PE5	
19	GND 20 TraceD3/PE6		TraceD3/PE6	

UM1855 **Connectors**

microSD™ card connector (CN18) 7.9

Evaluation board 0 microSD **CN18** card 0 R185 CN18 uSD 🔲 🗆 R194 MSv38995V1

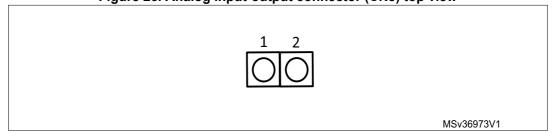

Figure 25. microSD™ card connector (CN18)

Table 42. microSD™ card connector (CN18)

Terminal	Terminal name (MCU port)	Terminal	Terminal name (MCU port)
1	SDIO_D2 (PC10)	6	Vss/GND
2	SDIO_D3 (PC11)		SDIO_D0 (PC8)
3	SDIO_CMD (PD2)	8	SDIO_D1 (PC9)
4	4 VDD		GND
5	SDIO_CLK (PC12)	10	MicroSDcard_detect (PA8)

ADC/DAC connector (CN8) 7.10

Figure 26. Analog input-output connector (CN8) top view

UM1855 Connectors

Table 43. Analog input-output connector (CN8)

Terminal	Function / MCU port	Terminal	Function / MCU port
1	GND	2	analog input-output PA4

7.11 RF-EEPROM daughterboard connector (CN3)

Figure 27. RF-EEPROM daughterboard connector (CN3) front view

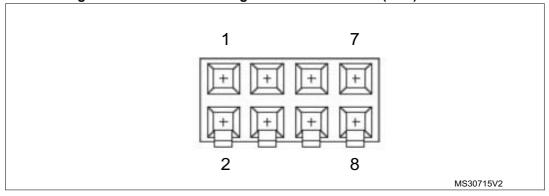
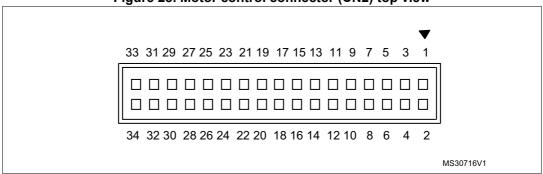



Table 44. RF-EEPROM daughterboard connector (CN3)

Terminal	Terminal name (MCU port)	Terminal	Terminal name (MCU port)
1	I2C_SDA (PG13)	5	+3V3
2	NC	6	NC
3	I2C_SCL (PG14)	7	GND
4	EXT_RESET(PC6)	8	+5 V

7.12 Motor control connector (CN2)

Figure 28. Motor control connector (CN2) top view

Connectors UM1855

Table 45. Motor control connector (CN2)

CN2 terminal	Description	MCU port	CN2 terminal	MCU port	Description	
1	Emergency STOP	PC9	2	-	GND	
3	PWM_1H	PC6	4	-	GND	
5	PWM_1L	PA7	6	-	GND	
7	PWM_2H	PC7	8	-	GND	
9	PWM_2L	PB0	10	-	GND	
11	PWM_3H	PC8	12	-	GND	
13	PWM_3L	PB1	14	PC5	BUS VOLTAGE	
15	CURRENT A	PC0	16	-	GND	
17	CURRENT B	PC1	18	-	GND	
19	CURRENT C	PC2	20	-	GND	
21	ICL Shutout	PG6	22	-	GND	
23	DISSIPATIVE BRAKE	PB2	24	PC4	PCD Ind Current	
25	+5V power	-	26	PA3	Heat sink temperature	
27	PFC SYNC	PF9	28	-	3.3 V power	
29	PFC PWM	PF10	30	PB12	PFC Shut Down	
31	Encoder A	PA0	32	PA6	PFC Vac	
33	Encoder B	PA1	34	PA2	Encoder Index	

7.13 USB OTG FS Micro-AB connector (CN1)

72/80

Figure 29. USB OTG FS Micro-AB connector (CN1) front view

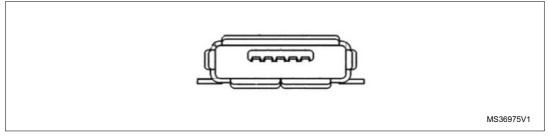


Table 46. USB OTG FS Micro-AB connector (CN1)

Terminal	Terminal name (MCU port)	Terminal	Terminal name (MCU port)
1	VBUS (PA9 & PB13)	4	ID (PA10)
2	D- (PA11)	5	GND
3	3 D+ (PA12)		-

UM1855 Rev 6

UM1855 Connectors

7.14 CAN D-sub male connector (CN5)

Figure 30. CAN D-sub (DE-9M) 9-pole male connector (CN5) front view

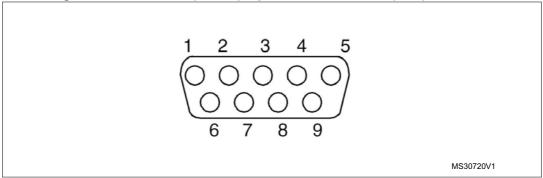


Table 47. CAN D-sub (DE-9M) 9-pin male connector (CN5)

Terminal	Terminal name	Terminal	Terminal name
1,4,8,9	NC	7	CANH
2	CANL	3,5,6	GND

7.15 NFC connector (CN13)

Figure 31. NFC female connector (CN13) top view

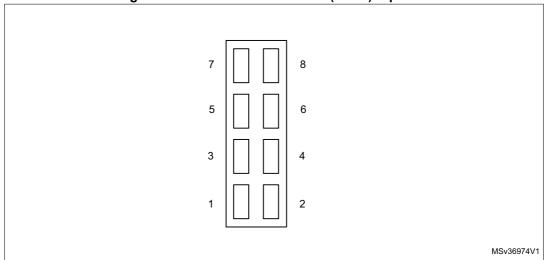


Table 48. NFC terminal (CN13) assignment

, ,					
CN13 terminal	NFC signal	MCU port	Description		
1	NFC_IRQOUTN or UART_TX	PB7	Interrupt output for NFC Connected to STM32L476ZG UART RX		
2	NFC_IRQINN or UART_RX	PB6	Interrupt input for CR95HF Connected to STM32L476ZG UART TX		

Connectors UM1855

Table 48. NFC terminal (CN13) assignment (continued)

CN13 terminal	NFC signal	MCU port	Description
3	NFC_NSS	PF11	SPI slave select
4	NFC_MISO	PB14	SPI data, slave output
5	NFC_MOSI	PB15	SPI data, slave input
6	NFC_SCK	PB13	SPI serial clock
7	+3V3	PB6	Main power supply/power supply for RF drivers
8	GND	PB7	Ground

8 STM32L476G-EVAL board information

8.1 Product marking

The stickers located on the top or bottom side of all PCBs provide product information:

 First sticker: product order code and product identification, generally placed on the main board featuring the target device.
 Example:

Product order code Product identification

 Second sticker: board reference with revision and serial number, available on each PCB.

Example:

On the first sticker, the first line provides the product order code, and the second line the product identification.

On the second sticker, the first line has the following format: "MBxxxx-Variant-yzz", where "MBxxxx" is the board reference, "Variant" (optional) identifies the mounting variant when several exist, "y" is the PCB revision and "zz" is the assembly revision, for example B01. The second line shows the board serial number used for traceability.

Parts marked as "ES" or "E" are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

"E" or "ES" marking examples of location:

- On the targeted STM32 that is soldered on the board (for an illustration of STM32 marking, refer to the STM32 datasheet *Package information* paragraph at the www.st.com website).
- Next to the evaluation tool ordering part number that is stuck or silk-screen printed on the board.

Some boards feature a specific STM32 device version, which allows the operation of any bundled commercial stack/library available. This STM32 device shows a "U" marking option at the end of the standard part number and is not available for sales.

To use the same commercial stack in their applications, the developers might need to purchase a part number specific to this stack/library. The price of those part numbers includes the stack/library royalties.

5

UM1855 Rev 6 75/80

8.2 STM32L476G-EVAL product history

Table 49. Product history

Order code	Product identification	Product details	Product change description	Product limitations
STM32L476G-EVAL	STM32L476G-EVAL/	MCU: - STM32L476ZGT6U revision "3, 4"		No limitations except IrDA not supported from MB1144-DEFAULT-C02
		MCU errata sheet: - STM32L476xx/STM32L4 86xx device limitations (ES0250)		
		Boards: - MB1144-DEFAULT-B02 or MB1144-DEFAULT- C02 (main board) - MB989/P-B02 or MB989/P-B03 (TFT LCD daughterboard) - MB979-A01 (LCD glass module daughterboard) - MB1020-A02 (dual-interface EEPROM daughterboard)	The product is delivered with different versions of boards but with specific identification on the insert card.	
	VA32L476G\$AU1	MCU: - STM32L476ZGT6U revision "4"		IrDA not supported
		MCU errata sheet: - STM32L476xx/STM32L4 86xx device limitations (ES0250)	- Packaging: plastic blister replaced by a	
		Boards: - MB1144-DEFAULT-C04 (main board) - MB989/P-C01 (TFT LCD daughterboard) - MB979-A01 (LCD glass module daughterboard) - MB1020-A02 (dual-interface EEPROM daughterboard)	carton box - Main board and LCD glass module daughterboard revision changes	

8.3 Board revision history

Table 50. Board revision history

Board reference	Board variant and revision	Board change description	Board limitations
	DEFAULT-B02	Initial revision	No limitation
	DEFAULT-C02	PCB change to avoid issues with BGA and silkscreen correction LD5/LD6 and removed IrDA feature (U11 obsolete)	IrDA not supported
MB1144 (main board)	DEFAULT-C04	Main components changed for EOL (see BOM for details): - Several LEDs references - Memory U2 ISSI IS61WV102416BLL-10MLI replaced by ISSI IS61WV102416BLL-10MLI-TR - Memory U5 Micron M29W128GL70ZA6E replaced by Micron M728EW128ABA1LPC-0SIT - Memory U9 Micron N25Q256A13EF840E replaced by Micron M725QL256ABA1EW9-0SIT - Microphones MEMS U35, U36 STMicroelectronics MP34DT01TR replaced by STMicroelectronics IMP34DT05TR	IrDA not supported
	/P-B02	Initial revision	No limitation
MB989	/P-B03	LCD reference changed and not fitted CN2	No limitation
(TFT LCD daughterboard)	/P-C01	Change SPI connection through three connectors (version S)	No limitation
MB979 (LCD glass module daughterboard)	-A01	Initial revision	No limitation
MB1020 (dual-interface EEPROM daughterboard)	-A02	Initial revision	No limitation

9 Federal Communications Commission (FCC) and ISED Canada Compliance Statements

9.1 FCC Compliance Statement

9.1.1 Part 15.19

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

9.1.2 Part 15.105

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

9.1.3 Part 15.21

Any changes or modifications to this equipment not expressly approved by STMicroelectronics may cause harmful interference and void the user's authority to operate this equipment.

9.2 ISED Compliance Statement

9.2.1 Compliance Statement

ISED Canada ICES-003 Compliance Label: CAN ICES-3 (B)/NMB-3(B)

9.2.2 Déclaration de conformité

Étiquette de conformité à la NMB-003 d'ISDE Canada : CAN ICES-3 (B)/NMB-3(B)

UM1855 Revision history

10 Revision history

Table 51. Document revision history

Date	Revision	Changes
22-Jul-2015	1	Initial Version
29-Jul-2015	2	Added Section 6.6.2: Bootloader limitations. Classification change from ST Restricted to Public.
09-Sep-2015	3	Figure 3: swap of FAULT and VBUS prints in the upper-left corner of the board. Section 6.8.3: swap of LD5 and LD6. 9: modified Section 9.1.3 and Section 9.2 text. Table 16: JP6 default setting modified. Section 6.5 and Section 6.9.1: JP9 by-default setting added. Table 34: JP11 default setting modified and position information added. Table 11: JP19 default setting modified. Table 45: CN2 instead of CN1 Section 7.2: CN2 corrected in CN22 Multiple language or typographical corrections.
07-Jul-2016	4	Updated Table 36: LCD daughterboard connectors (CN11 and CN14).
20-Nov-2016	5	Updated Introduction, Features, Section 2: Hardware layout and configuration, Section 2.9: RS-232 and IrDA ports, since IrDA transceiver is no more supported since board revision C-02. Updated board schematics in Section Appendix A: Schematic diagrams.
12-Jun-2023	6	Document reshuffled to align with the latest standards, from Introduction to Unpacking recommendations Added STM32L476G-EVAL board information Removed Schematic diagrams

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved