

UM2135 User manual

Discovery kit with STM32F413ZH MCU

Introduction

With the STM32F413 Discovery kit (32F413HDISCOVERY), users develop applications easily on the STM32F4 series high-performance microcontrollers based on Arm [®] Cortex [®]-M4 core. The Discovery kit combines the STM32F413 features with 240×240 pixel LCD with touch panel, LEDs, I²S audio codec, MEMS microphones, USB OTG FS, Quad-SPI NOR flash memory, and microSD TM card connector.

An embedded ST-LINK/V2-1 debugger/programmer is included. Specialized add-on boards can be connected through the ARDUINO® Uno V3 or expansion connectors.

Figure 2. 32F413HDISCOVERY board

STANDO AND STANDARD STA

(Bottom view with STM32F413ZHT6)

Pictures are not contractual.

March 2025 UM2135 Rev 3 1/46

Contents UM2135

Contents

1	Feat	res 6
2	Orde	ing information
	2.1	Codification
3	Deve	opment environment
	3.1	System requirements
	3.2	Development toolchains
	3.3	CAD resources
4	Conv	entions
5	Safe	recommendations10
	5.1	Targeted audience
	5.2	Handling the board 10
6	Hard	vare layout and configuration
	6.1	32F413HDISCOVERY Discovery kit layout
	6.2	Embedded ST-LINK/V2-1
		6.2.1 Drivers
		6.2.2 ST-LINK/V2-1 firmware upgrade
		6.2.3 Power supply
	6.3	Programming/debugging when the power supply is not from ST-LINK/V2-1
	6.4	Clock sources
	6.5	Reset sources
	6.6	Audio
	6.7	USB OTG FS
	6.8	microSD [™] card
	6.9	PSRAM memory
	6.10	Quad-SPI NOR flash memory
	6.11	Virtual COM port
	6.12	LCD
		-

	6.13	Capacitive control touch panel	19
	6.14	Wi-Fi [®] 802.11 b/g/n module	19
	6.15	Buttons and LEDs	20
7	Conr	nectors	21
	7.1	ARDUINO® Uno V3 connectors	21
	7.2	USB OTG FS Micro-AB connector (CN17)	23
	7.3	LCD connector (CN16)	24
	7.4	Touch-panel connector (CN10)	25
	7.5	microSD [™] connector (CN1)	26
	7.6	ST-LINK/V2-1 USB Micro-AB connector (CN2)	27
	7.7	TAG connector (CN11)	28
	7.8	Audio line output (green jack) connector (CN5)	29
	7.9	Extension microphone connector (CN12)	30
	7.10	Optional audio stereo speakers (CN3 and CN4)	31
8	32F4	13HDISCOVERY I/O assignment	32
9	32F4	13HDISCOVERY board information	37
	9.1	Product marking	37
	9.2	32F413HDISCOVERY product history	38
	9.3	Board revision history	39
10		eral Communications Commission (FCC)	40
		SED Canada Compliance Statements	
	10.1	FCC Compliance Statement	
	10.2	ISED Compliance Statement	41
11	UKC	A Compliance Statement	42
12	RED	Compliance Statement	43
13	Prod	uct disposal	44
Revisi	on histo	ry	45

List of tables UM2135

List of tables

Table 1.	List of available products	6
Table 2.	Codification explanation	7
Table 3.	ON/OFF conventions	9
Table 4.	Assignment of the control ports to the LED indicators	. 20
Table 5.	Pinout of the ARDUINO® connector	. 21
Table 6.	USB OTG Micro-AB pinout (front view)	. 23
Table 7.	USB OTG FS power management	. 23
Table 8.	Pinout of the LCD connector	. 24
Table 9.	Backlight power management	. 25
Table 10.	Pinout of the touch panel	. 26
Table 11.	Pinout of the microSD™ connector	. 27
Table 12.	USB Micro-AB connector	. 28
Table 13.	Pinout of the TAG connector	. 29
Table 14.	Audio jack connector	. 29
Table 15.	Extension microphone connector	. 30
Table 16.	32F413HDISCOVERY I/O assignment	. 32
Table 17.	Product history	. 38
Table 18.	Board revision history	. 39
Table 19	Document revision history	45

UM2135 Rev 3

UM2135 List of figures

List of figures

Figure 1.	32F413HDISCOVERY board	1
Figure 2.	32F413HDISCOVERY board	1
Figure 3.	Hardware block diagram	. 11
Figure 4.	32F413HDISCOVERY Discovery kit (top side)	. 12
Figure 5.	32F413HDISCOVERY Discovery kit (bottom side)	. 13
Figure 6.	USB composite device	
Figure 7.	JP3: 5V_ST_LINK selection	. 15
Figure 8.	JP3: 5V_ARD selection from CN7 (VIN_5V_ARD)	. 15
Figure 9.	JP3: 5V_USB_FS	. 15
Figure 10.	JP3: 5V_USB_CHARGER selection	. 16
Figure 11.	Wi-Fi [®] module	. 19
Figure 12.	ARDUINO® connector (top view)	. 21
Figure 13.	USB OTG FS Micro-AB connector (front view)	
Figure 14.	LCD connector	. 24
Figure 15.	Touch panel connector pinout	
Figure 16.	$microSD^TM$ connector (front view)	. 26
Figure 17.	USB Micro-AB connector (front view)	. 27
Figure 18.	TAG connector	. 28
Figure 19.	TC2050-IDC-NL cable	. 28
Figure 20.	Audio jack connector (front view)	. 29
Figure 21.	Extension microphone connector (front view)	. 30

UM2135 Rev 3 5/46

Features UM2135

1 Features

 STM32F413ZHT6 microcontroller with 1.5 Mbytes of flash memory and 320 Kbytes of SRAM, in an LQFP144 package

- 240x240-pixel LCD with a parallel interface and capacitive touch panel
- Integrated Wi-Fi[®] module (802.11 b/g/n compliant)
- USB OTG FS
- I²S audio codec
- Stereo digital ST-MEMS microphones
- 8-Mbit 16-bit wide PSRAM
- 128-Mbit Quad-SPI NOR flash memory
- 2 color user LEDs
- User and reset push-buttons
- Board connectors:
 - microSD[™] card
 - User USB with Micro-AB
 - Jack for audio line with microphone input and stereo output
 - Expansion connector to embedded MEMS microphone daughterboard featuring five MEMS microphones
 - ARDUINO[®] Uno V3 expansion connectors
- Flexible power-supply options: ST-LINK USB V_{BUS}, user USB FS connector, or external sources
- Comprehensive free software libraries and examples available with the STM32Cube MCU Package
- On-board ST-LINK/V2-1 debugger/programmer with USB re-enumeration capability: mass storage, Virtual COM port, and debug port
- Support of a wide choice of Integrated Development Environments (IDEs) including IAR Embedded Workbench[®], MDK-ARM, and STM32CubeIDE

2 Ordering information

To order the 32F413HDISCOVERY Discovery kit, refer to *Table 1*. For a detailed description, refer to its user manual on the product web page. Additional information is available from the datasheet and reference manual of the target microcontroller.

Table 1. List of available products

Order code	Board reference	Target STM32
STM32F413H-DISCO	MB1274 ⁽¹⁾ MB1299 ⁽²⁾	STM32F413ZHT6

- 1. Main board
- 2. MEMS microphone daughterboard

2.1 Codification

The meaning of the codification is explained in $\ensuremath{\textit{Table}}$ 2.

Table 2. Codification explanation

STM32F4XXY-DISCO	Description	Example: STM32F413H- DISCO	
STM32F4	MCU series in STM32 32-bit Arm Cortex MCUs	STM32F4 series	
XX	MCU product line in the series	STM32F413	
Y	STM32 flash memory size: H for 1.5 Mbytes	1.5 Mbytes	
DISCO	Discovery kit	Discovery kit	

3 Development environment

The 32F413HDISCOVERY Discovery kit runs with the STM32F413ZHT6 32-bit microcontroller based on the $Arm^{@(a)}$ Cortex $^{@}$ -M4 core.

3.1 System requirements

- Multi-OS support: Windows[®] 10, Linux^{®(b)} 64-bit, or macOS^{®(c)(d)}
- USB Type-A or USB Type-C® to Micro-B cable

3.2 Development toolchains

- IAR Systems® IAR Embedded Workbench®(e)
- Keil® MDK-ARM(e)
- STMicroelectronics STM32CubeIDE

3.3 CAD resources

All board design resources, including schematics, CAD databases, manufacturing files, and the bill of materials, are available from the 32F413HDISCOVERY product page at www.st.com.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

b. Linux is a registered trademark of Linus Torvalds.

c. macOS is a trademark of Apple Inc. registered in the U.S. and other countries.

d. All other trademarks are the property of their respective owners.

e. On Windows $^{\circledR}$ only.

UM2135 Conventions

4 Conventions

Table 3 defines some conventions used in the present document.

Table 3. ON/OFF conventions

Convention	Definition
Jumper JPx ON	Jumper fitted
Jumper JPx OFF	Jumper not fitted
Jumper JPx [1-2]	Jumper fitted between Pin 1 and Pin 2
Solder bridge SBx ON	SBx connections closed by solder
Solder bridge SBx OFF	SBx connections left open
Resistor Rx ON	Resistor soldered
Resistor Rx OFF	Resistor not soldered

5 Safety recommendations

5.1 Targeted audience

This product targets users with at least basic electronics or embedded software development knowledge such as engineers, technicians, or students. This board is not a toy and is not suited for use by children.

5.2 Handling the board

This product contains a bare printed circuit board and like all products of this type, the user must be careful about the following points:

- The connection pins on the board might be sharp. Be careful when handling the board to avoid hurting yourself.
- This board contains static-sensitive devices. To avoid damaging it, handle the board in an ESD.proof environment.
- While powered, do not touch the electric connections on the board with your fingers or anything conductive. The board operates at a voltage level that is not dangerous, but components might be damaged when shorted.
- Do not put any liquid on the board and avoid operating the board close to water or at a high humidity level.
- Do not operate the board if dirty or dusty.

6 Hardware layout and configuration

The 32F413HDISCOVERY Discovery kit is designed around the STM32F413ZH (144-pin in LQFP package). The hardware block diagram (refer to *Figure 3*) illustrates the connection between the STM32 and the peripherals (PSRAM, Quad-SPI flash memory, LCD connector, USB OTG connectors, USART, audio, microSD $^{\text{TM}}$ card, ARDUINO $^{\text{(B)}}$ Uno V3 shields, and embedded ST-LINK/V2-1). Refer to *Figure 4* and *Figure 5* to locate these features on the 32F413HDISCOVERY board.

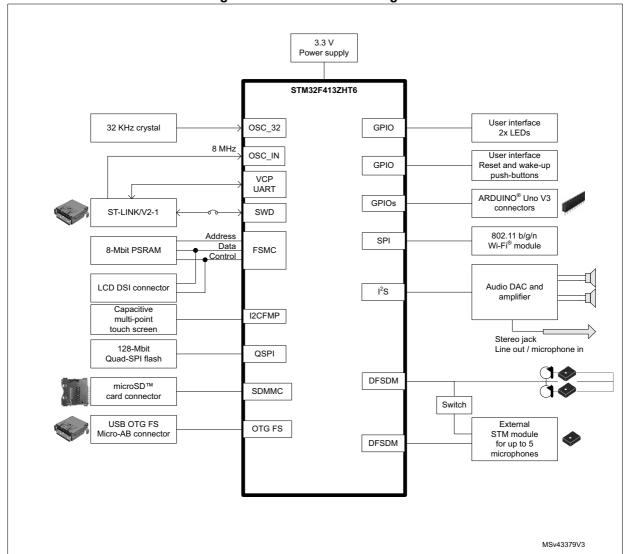


Figure 3. Hardware block diagram

4

UM2135 Rev 3 11/46

6.1 32F413HDISCOVERY Discovery kit layout

MEMS MP23 (U1/U2) USB_STLINK (CN2) 5V PWR (U3) **3** 2 3 8 8 No 📆 3V3 PWR (U4) 00000000 microSD™ (CN1) IDD jumper (JP2) MCU_PWR (JP3) Audio jack (CN5) STLINK STM32 (U6) Quad-SPI flash (U9) Audio codec (U11) Arduino_PWR (CN7) Arduino_D[8..15] (CN6) Arduino_A[0..5] (CN9) Arduino_D[0..7] (CN8) PSRAM (U14)

Figure 4. 32F413HDISCOVERY Discovery kit (top side)

4

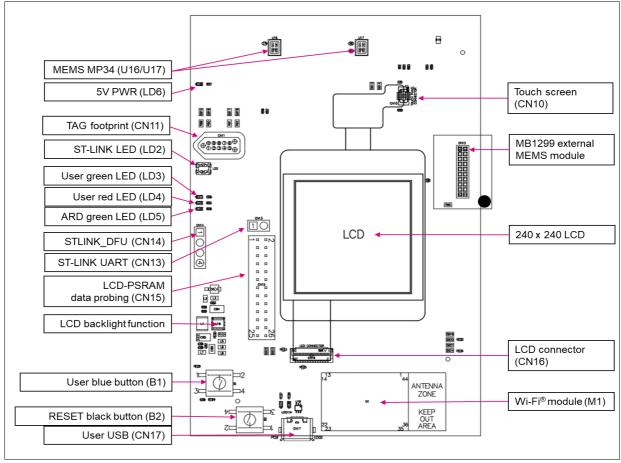


Figure 5. 32F413HDISCOVERY Discovery kit (bottom side)

6.2 Embedded ST-LINK/V2-1

The ST-LINK/V2-1 programming and debugging tool is integrated on the 32F413HDISCOVERY Discovery kit. The new features supported on ST-LINK/V2-1 and not present on ST-LINK/V2 are listed below:

- USB software re-enumeration
- Virtual COM port interface on USB
- Mass storage interface on USB
- USB power management requests for more than 100 mA power on USB

These features are no longer supported on ST-LINK/V2-1:

- SWIM interface
- Application voltage lower than 3 V

For all general information concerning debugging and programming features common between V2 and V2-1 versions, refer to the user manual *ST-LINK/V2 in-circuit* debugger/programmer for *STM8* and *STM32* (UM1075) at the www.st.com website.

5

UM2135 Rev 3 13/46

6.2.1 Drivers

Before connecting the 32F413HDISCOVERY Discovery kit to a Windows[®] PC through a USB, a driver for the ST-LINK/V2-1 must be installed. It is available at the *www.st.com* website.

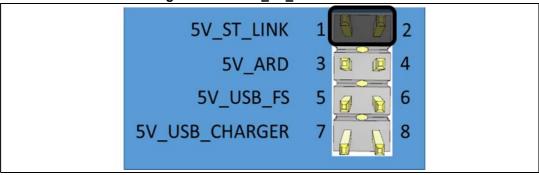
In case the 32F413HDISCOVERY Discovery kit is connected to the PC before the driver is installed, some 32F413HDISCOVERY interfaces might be declared as *unknown* in the PC device manager. To recover from this situation the user must install the driver files, and update the driver of the connected device from the device manager (refer to *Figure 6*).

Note: Prefer using the 'USB Composite Device' handle for a full recovery.

Figure 6. USB composite device

6.2.2 ST-LINK/V2-1 firmware upgrade

The ST-LINK/V2-1 embeds a firmware upgrade mechanism for in-place upgrades through the USB port. As the firmware might evolve during the lifetime of the ST-LINK/V2-1 product (for example new functionalities, bug fixes, and support for new microcontroller families), it is recommended to visit www.st.com before starting to use the 32F413HDISCOVERY Discovery kit and periodically, to stay updated with the latest firmware version.


6.2.3 Power supply

The 32F413HDISCOVERY Discovery kit is designed to be powered by a 5 V DC power supply. It is possible to configure the 32F413HDISCOVERY board to use any of the following four sources for the power supply:

• **5V_ST_LINK**: DC power from USB ST-LINK connector. The power source is the USB Micro-B connector of the ST-LINK/V2-1 (CN2). A jumper must be placed on pins 1 and 2 of JP3 (5V_ST_LINK on the silkscreen) to enable this power source (refer to *Figure 7*). It is the default setting. In this configuration, only the ST-LINK MCU is powered before the USB enumeration, because the host PC only provides 100 mA to the board. During the USB enumeration, the 32F413HDISCOVERY board asks for 500 mA power to the host PC. If the host can provide the required power, the enumeration succeeds and, the power transistor ST890 (U10) is switched ON, the entire board is powered, and the LD1 LED remains turned OFF. Thus, the 32F413HDISCOVERY board consumes up to 500 mA current, but no more. If the host cannot provide the requested current, the enumeration fails. Therefore, the ST890 remains OFF and the MCU part including the extension board is not powered. As a

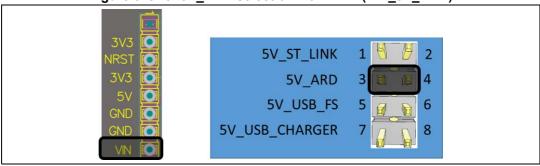

consequence the red LED (LD1) is turned ON. In this case, it is mandatory to use an external power supply.

Figure 7. JP3: 5V_ST_LINK selection

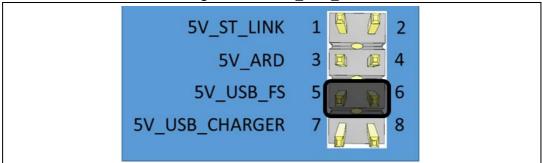

5V_ARD: 7-12 V DC power from ARDUINO[®] Uno V3 connector. The power source is CN7 pin 8 named V_{IN} on the ARDUINO[®] connector silkscreen. A jumper must be placed on pins 3 and 4 of JP3 (5V_ARD on the silkscreen) to enable this power source (refer to Figure 8).

Figure 8. JP3: 5V_ARD selection from CN7 (VIN_5V_ARD)

5V_USB_FS: DC power from USB user connector. The power source is the USB Micro-AB connector (CN17). In this case, the 32F413HDISCOVERY board is powered by an external USB host without a current limitation on the board. A jumper must be placed on pins 5 and 6 of JP3 (5V_USB_FS on the silkscreen) to enable this power source (refer to Figure 9).

Figure 9. JP3: 5V_USB_FS

57

UM2135 Rev 3 15/46

• **5V_USB_CHARGER**: DC power charger from USB ST-LINK. The power source is the USB Micro-B connector of the ST-LINK/V2-1 (CN2). In this case, if the 32F413HDISCOVERY Discovery kit is powered by an external USB charger the debug is unavailable. If the PC is connected instead of the charger, the limitation is no longer effective. In this case, the PC could be damaged. A jumper has to be placed on pins 7 and 8 of JP3 (5V_USB_CHARGER on the silkscreen) to enable this power source (refer to *Figure 10*).

Figure 10. JP3: 5V_USB_CHARGER selection

Note: In case the board is powered by a USB charger, there is no USB enumeration, so the led

LD1 remains set to OFF permanently and the board is not powered. In this specific case only, the jumper JP3 must be placed on [7-8], to allow the board to be powered anyway.

Caution: Do not connect the PC to the ST-LINK (CN2) when R45 is soldered. The PC might be damaged or the board might not be powered correctly.

STM32F413ZH IDD current measurement: JP2

The STM32F413ZH current measurement can be done on JP2. By default, a jumper is placed on JP2.

For the current measurement configuration, the jumper on JP2 must be removed and an ammeter placed on JP2.

Note:

The 32F413HDISCOVERY Discovery kit must be powered by a power supply unit or a piece of auxiliary equipment complying with the standard EN 62368-1:2014+A11:2017, and must be safety extralow voltage (SELV) with limited power capability.

6.3 Programming/debugging when the power supply is not from ST-LINK/V2-1

It is mandatory to power the 32F413HDISCOVERY Discovery kit first using CN7 (V_{IN}) or CN17 (USB_FS_OTG), then connecting the USB cable to the PC. Proceeding this way ensures the enumeration succeeds thanks to the external power source.

The following power sequence procedure must be respected:

- 1. Connect the jumper JP3 on (5V_ARD) or (5V_USB_FS)
- 2. Connect the external power source to CN7 in case of an ARDUINO® shield or CN17 in case of a USB FS host interface

4

- Check that the GREEN LED LD6 is turned ON
- 4. Connect the PC to the USB connector (CN2)

If this order is not respected, the board might be powered by V_{BUS} first from ST-LINK, and the following risks might be encountered:

- 1. If the board needs a current higher than 500 mA, the PC might be damaged or can limit the current. As a consequence, the board is not powered correctly.
- 2. 500 mA is requested at the enumeration, so there is a risk that the request is rejected and enumeration does not succeed if the PC cannot provide such a current.

6.4 Clock sources

Three clock sources are described below:

- 8 MHz MCO clock from ST-LINK MCU for the STM32F413ZHT6
- 8 MHz X2 oscillator for the STM32F413ZHT6
- 32.768 kHz X1 crystal for the STM32F413ZHT6 embedded RTC

6.5 Reset sources

The reset signal of the 32F413HDISCOVERY Discovery kit is active at a low level and the reset sources include:

- Reset button B2
- ARDUINO[®] Uno V3 shield board from CN7
- Embedded ST-LINK/V2-1

6.6 Audio

An audio codec with four DACs and two ADCs is connected to the I^2S interface of the STM32F413ZH. It communicates with the STM32 via the I^2C bus shared with the touch panel of the LCD.

- The analog-line output is connected to the DAC of the audio codec via the audio jack (CN5).
- The microphone input is connected from the audio jack to the input line of the audio codec.
- Two optional external speakers can be connected to the audio codec through CN3 for the left speaker and CN4 for the right speaker.
- Two digital ST-MEMS microphones are on the 32F413HDISCOVERY Discovery kit.
 They are connected to the digital input microphones of the STM32F413ZH and are managed by the DFSDM functionality.
- The CN12 connector offers the possibility to connect a microphone module with up to five ST-MEMS microphones (refer to the audio schematics of the board). They are connected to the digital input microphones of the STM32F413ZH and are managed by the DFSDM functionality.

5

UM2135 Rev 3 17/46

6.7 USB OTG FS

The 32F413HDISCOVERY Discovery kit supports the USB OTG FS communication via a USB Micro-AB connector.

A USB power switch (U15) is also connected to V_{BUS} and provides power to CN17. The green LED LD7 is lit when either:

- The power switch is ON and the 32F413HDISCOVERY works as a USB host
- V_{BUS} is powered by another USB host when the32F413HDISCOVERY works as a
 USB device.

The red LED LD8 is lit when an overcurrent occurs.

- Note:1 When the 32F413HDISCOVERY board is powered by the ST-LINK, the OTG function provides up to 100 mA.
- Note:2 When the 32F413HDISCOVERY board is powered by an external power supply, the OTG function can provide more than 100 mA, according to the external power supply capability.
- Note:3 When the 32F413HDISCOVERY board is powered by an external power supply through the USB FS connector (CN17), in device mode, do not use a PC as the power source.

6.8 microSD[™] card

The 32F413HDISCOVERY Discovery kit supports the microSD $^{\text{TM}}$ card connected to the SDIO port of the STM32F413ZH.

The microSD[™] card has to be compatible with the MMC 4.1 specification, or with the microSD[™] card memory specification version 2.0

6.9 PSRAM memory

The 8-Mbit PSRAM is connected to the FSMC interface of the STM32F413ZH. This memory is organized as 16-bit 512 Kwords.

6.10 Quad-SPI NOR flash memory

The 128-Mbit Quad-SPI NOR flash memory is connected to the Quad-SPI interface of the STM32F413ZH.

6.11 Virtual COM port

The serial interface USART6 is directly available as a Virtual COM port of the PC connected to the ST-LINK/V2-1 USB connector (CN13). The Virtual COM port settings are configured as:

- 115200 b/s
- 8-bit data
- No parity
- 1 stop bit
- No flow control

6.12 LCD

The 240x240-pixel TFT LCD is connected to the FSMC data interface of the STM32F413ZH.

It uses a controller for 262K-color and TFT-LCD graphic type. Display data are stored in the on-chip display data RAM of 240x320x18 bits. It performs display data RAM read/write operation with no external operation clock, to minimize power consumption.

An external SRAM is also used to store display data.

The LCD_RS signal determines whether the bus carries data or control/command registers.

6.13 Capacitive control touch panel

The capacitive control touch panel is controlled by the STM32F413ZH through the I2CFMP shared with the audio codec.

6.14 Wi-Fi[®] 802.11 b/g/n module

A Wi-Fi module is integrated with the 32F413HDISCOVERY Discovery kit (refer to *Figure 11*).

The Wi-Fi[®] module is an embedded (eS-WiFi) wireless internet connectivity device. The Wi-Fi hardware module consists of an ARM[®]-M3 Cortex[®] host processor, an integrated antenna, and a Broadcom Wi-Fi[®] device.

The module is driven by an SPI interface enabling the connection to the STM32F413ZH.

The Wi-Fi module requires no operating system and has a completely integrated TCP/IP stack that only requires AT commands to establish connectivity.

Figure 11. Wi-Fi® module

5

6.15 Buttons and LEDs

The black button B2 located on the LCD side is the reset of the microcontroller STM32F413ZH (Refer to *Figure 4: 32F413HDISCOVERY Discovery kit (top side)*).

When the button is depressed the logic state is LOW, otherwise, the logic state is HIGH.

The blue button B1, located on the LCD side, is used as a digital input or as an alternate wake-up function.

When the button is depressed the logic state is HIGH, otherwise, the logic state is LOW.

Two LEDs (LD4 red and LD3 green) located on the LCD side, are available for the user (refer to *Figure 5: 32F413HDISCOVERY Discovery kit (bottom side)*). To light a LED, a high logic state HIGH must be written in the corresponding GPIO register.

Table 4 assigns the control ports to the LED indicators.

Table 4. Assignment of the control ports to the LED indicators

LED	Color	Name	Comment	
B1	BLUE	USER_B	Alternate function Wake-up PA0	
B2	BLACK	RESET	NRST	
LD1	RED	Fault Power	Current upper than 750 mA	
LD2	RED/GREEN	ST-LINK COM	Green when communication	
LD3	GREEN	LED2_GREEN	PC5	
LD4	RED	LED1_RED	PE3	
LD5	GREEN	ARDUINO	PB12	
LD6	GREEN	5 V Power	5 V available	
LD7	GREEN	V _{BUS} OK	5 V USB available	
LD8	RED	V _{BUS} OCRCR	PG7	

UM2135 Connectors

7 Connectors

7.1 ARDUINO® Uno V3 connectors

CN6, CN7, CN8, and CN9 are female connectors compatible with ARDUINO[®] Uno V3. Most shields designed for ARDUINO[®] Uno V3 are also supported by the 32F413HDISCOVERY Discovery kit.

Since the I/Os of the STM32F413ZH microcontroller are 5 V tolerant, there is no issue for ARDUINO $^{\circledR}$ compatibility.

Example for the connector references (refer to Figure 12):

CN6: Fisher BL 1-10 G
 CN7: Fisher BL 1-8 G

• CN8: Fisher BL 1-8 G

• CN9: Fisher BL 1-6 G

Figure 12. ARDUINO® connector (top view)

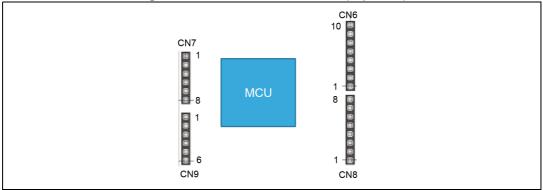


Table 5. Pinout of the ARDUINO® connector

Connector	Pin number	Pin name	Signal name	STM32 pin	Function
	1	NC	-		-
	2	IOREF	-		3.3 V reference
	3	NRST	NRST	NRST	RESET
CN7	4	3.3 V	-		3.3 V input/output
CIN7	5	5 V	-		5 V output
	6	GND	-		GND
	7	GND	-		GND
	8	V _{IN}	-		Power input

Connectors UM2135

Table 5. Pinout of the ARDUINO® connector (continued)

Connector	Pin number	Pin name	Signal name	STM32 pin	Function
	1	A0	ADC	PC0	ADC1_IN10
	2	A1	ADC	PA1	ADC1_IN1
CN9	3	A2	ADC	PA2	ADC1_IN2
CIN9	4	A3	ADC	PA5	ADC1_IN5
	5	A4	ADC	PB1	ADC1_IN9
	6	A5	ADC	PC4	ADC1_IN14
	10	SCL/D15	ARD_D15	PB10	I2C2_SCL
	9	SDA/D14	ARD_D14	PB11	I2C2_SDA
	8	A _{VDD}	V _{REF}	-	V _{REF}
	7	GND	-	-	Ground
	6	SCK/D13	ARD_D13	PB12	SPI3_SCK
CN6	5	MISO/D12	ARD_D12	PB4	SPI3_MISO
	4	PWM/MOSI/ D11	ARD_D11	PB5	TIM3_CH2/SPI3_ MOSI
	3	PWM/CS/D10	ARD_D10	PA15	TIM2_CH1/SPI3_N SS
	2	PWM/D9	ARD_D9	PB8	TIM4_CH3
	1	D8	ARD_D8	PA4	Ю
	8	D7	ARD_D7	PC13	IO
	7	PWM/D6	ARD_D6	PB0	TIM3_CH3
	6	PWM/D5	ARD_D5	PE6	TIM9_CH2
CN8	5	D4	ARD_D4	PB6	EXT_IT_6
CINO	4	PWM/D3	ARD_D3	PF10	TIM5_CH4
	3	D2	ARD_D2	PG13	I/O
	2	TX/D1	ARD_D1	PF7	UART7_TX
	1	RW/D0	ARD_D0	PF6	UART7_RX

UM2135 Connectors

7.2 USB OTG FS Micro-AB connector (CN17)

Figure 13 shows the front view of the connector.

Figure 13. USB OTG FS Micro-AB connector (front view)

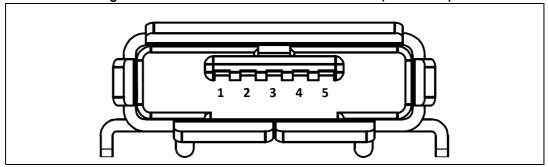


Table 6. USB OTG Micro-AB pinout (front view)

Connector	Pin number	Pin names	Signal name	STM32 pin	Function
	1	V _{BUS}	USB_OTG_5V_VBUS	PA9	5V power and detection
21112	2	DM (D-)	USB_OTG_FS_N	PA11	USB differential pair M
CN15	3	DP (D+)	USB_OTG_FS_P	PA12	USB differential pair P
	4	ID	USB_OTG_FS_ID	PA10	USB Identification
	5	GND	-	-	GND

Table 7. USB OTG FS power management

Pin number	Pin names	Signal names	STM32 pin	Function
U12-3	FAULTn	USB_OTG_FS_OVRCR	PG7	Over Current IT
U12-4	ENn	USB_OTG_FS_PWR_EN	PG8	USB Power enable

Connectors UM2135

7.3 LCD connector (CN16)

The LCD connector is shown in Figure 14.

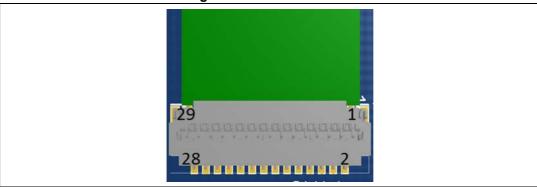


Table 8. Pinout of the LCD connector

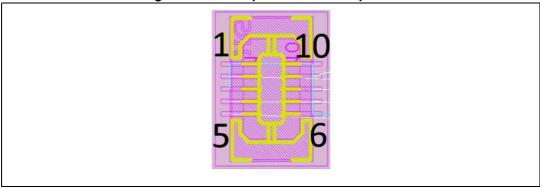
Connector	Pin number	Pin name	Signal name	STM32 pin	Function
	1	GND	-	-	Ground
	2	FMARK	LCD_TE	PB14	Tearing Effect
	3	DB15	LCD-PSRAM_D15	PD10	FSMC_D15
	4	DB14	LCD-PSRAM_D14	PD9	FSMC_D14
	5	DB13	LCD-PSRAM_D13	PD8	FSMC_D13
	6	DB12	LCD-PSRAM_D12	PE15	FSMC_D12
	7	DB11	LCD-PSRAM_D11	PE14	FSMC_D11
	8	DB10	LCD-PSRAM_D10	PE13	FSMC_D10
	9	DB9	LCD-PSRAM_D9	PE12	FSMC_D9
	10	DB8	LCD-PSRAM_D8	PE11	FSMC_D8
CN16	11	DB7	LCD-PSRAM_D7	PE13	FSMC_D7
	12	DB6	LCD-PSRAM_D6	PE9	FSMC_D6
	13	DB5	LCD-PSRAM_D5	PE8	FSMC_D5
	14	DB4	LCD-PSRAM_D4	PE7	FSMC_D4
	15	DB3	LCD-PSRAM_D3	PD1	FSMC_D3
	16	DB2	LCD-PSRAM_D2	PD0	FSMC_D2
	17	DB1	LCD-PSRAM_D1	PD15	FSMC_D1
	18	DB0	LCD-PSRAM_D0	PD14	FSMC_D0
	19	/RD	LCD-PSRAM_NOE	PD4	FSMC_NOE
	20	/WR	LCD-PSRAM_NWE	PD5	FSMC_NWE
	21	RS	LCD-RS_A0	PF0	FSMC_RS

UM2135 Connectors

Table 8. Pinout of the LCD connector (continued)

Connector	Pin number	Pin name	Signal name	STM32 pin	Function
	22	/CS	LCD_NE3	PG10	FSMC_NE
	23	RESET	LCD-CTP_RST	PB13	RESET
	24	IM	-	-	8/16 bit mode select
CN16	25	IOVCC	3.3 V	-	Power
CIVIO	26	VCI	3.3 V	-	Power
	27	GND	GND	-	Ground
	28	LEDA	LEDA	-	LED anode
	29	LEDK	LEDK	-	LED cathode

Table 9 shows the LCD connection for backlight management:


Table 9. Backlight power management

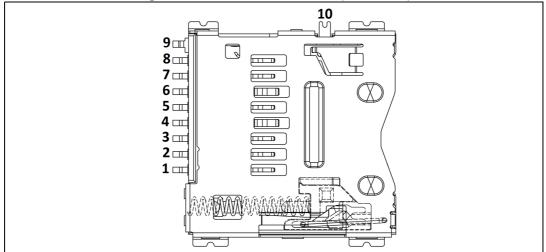
Pin number	Pin name	Signal name	STM32 pin	Function
U18-7	EN	LCD_BL_CTRL	PE5	Backlight enable

7.4 Touch-panel connector (CN10)

The touch-panel connector is shown in *Figure 15*.

Figure 15. Touch panel connector pinout

Connectors UM2135


Table 10. Pinout of the touch panel

Connector	Pin number	Pin name	Signal name	STM32 pin	Function
	1	GND	-	-	Ground
	2	INT	CTP_INT	PC1	Interrupt
	3	GND	-	-	Ground
	4	SDA	I2CFMP1_SDA	PC7	I2CFMP1_SDA
CN10	5	SCL	I2CFMP1_SCL	PC6	I2CFMP1_SDA
CIVIO	6	GND	-	-	Ground
	7	RESET	LCD-CTP_RST	PB13	RESET
	8	GND	-	-	Ground/ V _{CC} for rev2
	9	VDD	3.3 V	-	Power
	10	GND	-	-	Ground

7.5 microSD[™] connector (CN1)

The microSD™ connector is shown in *Figure 16*.

Figure 16. microSD[™] connector (front view)

UM2135 Connectors

Pin Connector Pin name Signal name STM32 pin **Function** number SDIO_D2 PC10 SD DATA 2 SD_D2 2 SDIO D3 SD D3 PC11 SD DATA 3 SDIO_CMD 3 SD CMD PA6 SD CMD 3.3 V **POWER** 4 SD CLK SD_CLK SD CLOCK 5 PC12 CN1 6 **GND** GND -7 SD DATA 0 SDIO D0 SD D0 PC8 8 SDIO_D1 SD_D1 PC9 SD DATA 1 9 SW2 / GND GND 10 SW1 SD_Detect PF11 SD CARD DETECT

Table 11. Pinout of the microSD™ connector

7.6 ST-LINK/V2-1 USB Micro-AB connector (CN2)

The USB connector is used to connect the embedded ST-LINK/V2-1 to a PC for programming and debugging of the STM32F413ZH microcontroller.

The USB connector is shown in Figure 17.

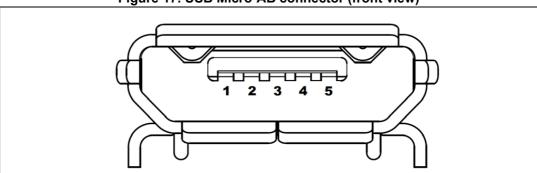


Figure 17. USB Micro-AB connector (front view)

Connectors UM2135

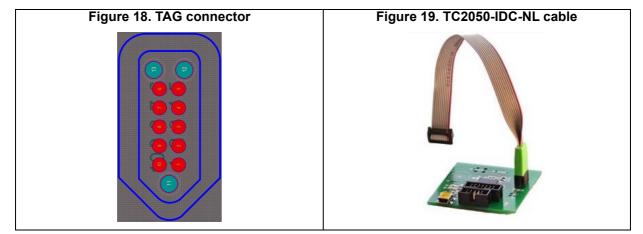

STM32F103 Pin Connector Pin name Signal name **Function** number pin 5 V power and 5V USB ST LINK 1 V_{BUS} detection USB differential pair 2 DM (D-) USB_STLK_N PA11 CN2 USB differential pair 3 DP (D+) USB_STLK_P PA12 4 ID USB_STLK_ID **USB** Identification 5 GND GND

Table 12. USB Micro-AB connector

7.7 TAG connector (CN11)

The TAG connector is implemented on the 32F413HDISCOVERY Discovery kit. The TAG connector is a 10-pin footprint supported by the SWD mode. It shares the signals with the ST-LINK (refer to *Figure 18*).

The TC2050-IDC-NL cable is used to link ST-LINK and the TAG connector on the 32F413HDISCOVERY so that users can easily program and debug the STM32F413ZH (refer to *Figure 19*).

UM2135 Connectors

Connector	Pin number	Pin name	Signal name	STM32 pin	Function
	1	3.3 V	3V3_ST_LINK	-	Power
	2	SWD	STLINK_JTMS_SWDIO	PA13	SW DATA
CN11	3	GND	-	-	Ground
CNTI	4	SWCLK	STLINK_JTCK_SWCLK	PA14	SW CLOCK
	5	GND	-	-	Ground
	6	SWO	STLINK_JTDO_SWO	PB3	SWO
	7	NC	-	-	-
CN11	8	NC	-	-	-
	9	NC	-	-	-
	10	NRST	NRST	NRST	RESET

Table 13. Pinout of the TAG connector

7.8 Audio line output (green jack) connector (CN5)

A 3.5 mm stereo audio green jack output is available to support the headphones.

The audio jack connector is shown in Figure 20.

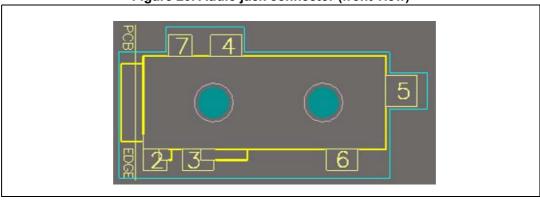


Figure 20. Audio jack connector (front view)

Table 14. Audio jack connector

Connector	Pin number	Pin name	Signal name	Audio codec pin	Function
	1	1	NA	NA	NA
	2	2	MIC_IN	MICBIAS1	Microphone
CN5	3	3	GND	HPOUT1FB/GND	GND
CNS	4	4	HP_OUT_R	HPOUT1R	HP right
	5	5	NA	NA	NA
	6	6	HP_OUT_L	HPOUT1L	HP left

Connectors UM2135

7.9 Extension microphone connector (CN12)

The extension microphone connector is shown in Figure 21.

Figure 21. Extension microphone connector (front view)

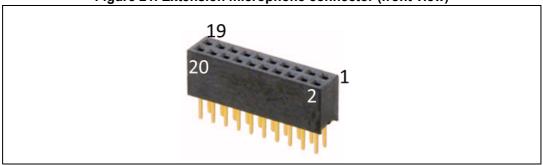


Table 15. Extension microphone connector

Connector	Pin number	Pin name	Signal name	STM32 pin	Function
	1	GND	GND	-	Power
	2	V _{CC_0}	3.3 V	-	Ground
	3	CLK_1	EXT_DFSDM2_CKOUT	PD2	DFSDM2 CLOCK
	4	CLK_0	EXT_DFSDM1_CKOUT	PA8	DFSDM1 CLOCK
	5	DATA_1	EXT_DFSDM2_DATIN1	PA7	DFSDM2 DATA1
CN12	6	DATA_0	EXT_DFSDM1_DATIN1	PD6	DFSDM1 DATA1
CIVIZ	7	DATA_3	EXT_DFSDM2_DATIN7	PB7	DFSDM2 DATA7
	8	-		-	-
	9	-	-	-	-
	10	DETECTN	DETECTN	-	-
	11	-	-	1	-
	12	MEMS_LED	MEMS_LED	PE4	-
	13	-	-	-	-
	14	-	-	-	-
	15	-	-	1	-
CNIAO	16	-	-	1	-
CN12	17	-	-	-	-
	18	-	-	-	-
	19	V _{CC_1}	3.3 V	-	Power
	20	GND	GND	-	Ground

UM2135 Connectors

7.10 Optional audio stereo speakers (CN3 and CN4)

The stereo audio outputs are available to support stereo speakers (CN3 for the left channel and CN4 for the right channel).

8 32F413HDISCOVERY I/O assignment

Table 16. 32F413HDISCOVERY I/O assignment

Pin No.	Pin Name	Signal or Label	Feature / Comment
1	PE2	QSPI_BK1_IO2	QSPI
2	PE3	LED1_RED	User LED
3	PE4	MEMS_LED	Microphones MEMS Module
4	PE5	LCD_BL_CTRL	LCD and CTP
5	PE6	ARD_D5	ARD_TIM9_CH2
6	V_{BAT}	V_{BAT}	3.3V
7	PC13-ANTI_TAMP	ARD_D7	ARD_IO
8	PC14-OSC32_IN	OSC_32K_IN	RTC CLK
9	PC15-OSC32_OUT	OSC_32K_OUT	RTC CLK
10	PF0	PSRAM_A0/LCD-RS_A0	Shared between LCD and PSRAM
11	PF1	PSRAM_A1	PSRAM
12	PF2	PSRAM_A2	PSRAM
13	PF3	PSRAM_A3	PSRAM
14	PF4	PSRAM_A4	PSRAM
15	PF5	PSRAM_A5	PSRAM
16	V _{SS_5}	V _{SS_5}	GND
17	V _{DD_5}	V _{DD_5}	3.3 V
18	PF6	ARD_D0_URX	ARD_UART7
19	PF7	ARD_D1_UTX	ARD_UART7
20	PF8	QSPI_BK1_IO0	QSPI
21	PF9	QSPI_BK1_IO1	QSPI
22	PF10	ARD_D3_PWM	ARD_TIM5_CH4
23	PH0-OSC_IN	HSE_OSC_IN	8 MHz clock
24	PH1-OSC_OUT	WIFI_RST	Wi-Fi
25	NRST	NRST_BUTTON	RESET
26	PC0	ARD_A0	ARD_ADC1_IN10
27	PC1	CTP_INT	Touch Panel INT
28	PC2	CODEC_I2Sext_SD	12S2
29	PC3	CODEC_I2S_SD	12S2
30	V _{DD_12}	V _{DD_12}	3.3 V
31	V _{SSA}	V _{SSA}	GND
32	V _{REF+}	V _{REF}	3.3 V

Table 16. 32F413HDISCOVERY I/O assignment (continued)

Pin No.	Pin Name	Signal or Label	Feature / Comment
33	V_{DDA}	V_{DDA}	3.3 V
34	PA0-WKUP	B_USER	USER BUTTON
35	PA1	ARD_A1	ARD_ADC1_IN1
36	PA2	ARD_A2	ARD_ADC1_IN2
37	PA3	CODEC_I2S_MCLK	AUDIO_I2S2
38	V _{SS_4}	V _{SS_4}	GND
39	V _{DD_4}	V _{DD_4}	3.3 V
40	PA4	ARD_D8_IO	ARD
41	PA5	ARD_A3	ARD_ADC1_IN5
42	PA6	SD_CMD	SD CARD
43	PA7	DFSDM2_DATIN1	ST-MEMS microphones
44	PC4	ARD_A5	ARD_ADC1_IN14
45	PC5	LED2_GREEN	User LED
46	PB0	ARD_D6_PWM	ARD_TIM3_CH3
47	PB1	ARD_A4	ARD_ADC1_IN9
48	PB2	QSPI_CLK	QSPI
49	PF11	SD_Detect	SD CARD_IT_11
50	PF12	PSRAM_A6	PSRAM
51	V _{SS_6}	V _{SS_6}	GND
52	V_{DD_6}	V _{DD_6}	3.3 V
53	PF13	PSRAM_A7	PSRAM
54	PF14	PSRAM_A8	PSRAM
55	PF15	PSRAM_A9	PSRAM
56	PG0	PSRAM_A10	PSRAM
57	PG1	PSRAM_A11	PSRAM
58	PE7	LCD-PSRAM_D4	LCD-PSRAM
59	PE8	LCD-PSRAM_D5	LCD-PSRAM
60	PE9	LCD-PSRAM_D6	LCD-PSRAM
61	V _{SS_7}	V _{SS_7}	GND
62	V _{DD_7}	V _{DD_7}	3.3 V
63	PE10	LCD-PSRAM_D7	LCD-PSRAM
64	PE11	LCD-PSRAM_D8	LCD-PSRAM
65	PE12	LCD-PSRAM_D9	LCD-PSRAM
66	PE13	LCD-PSRAM_D10	LCD-PSRAM
67	PE14	LCD-PSRAM_D11	LCD-PSRAM

UM2135 Rev 3 33/46

Table 16. 32F413HDISCOVERY I/O assignment (continued)

Pin No.	Pin Name	Signal or Label	Feature / Comment
68	PE15	LCD-PSRAM_D12	LCD-PSRAM
69	PB10	ARD_D15_SCL	ARD_I2C2
70	PB11	ARD_D14_SDA	ARD_I2C2
71	V _{CAP1_0}	V _{CAP1_0}	PWR
72	V _{DD_1_0}	V _{DD_1_0}	3.3 V
73	PB12	ARD_D13_SCK	SPI3 (ARD & WIFI)
74	PB13	LCD-CTP_RST	LCD-CTP
75	PB14	LCD_TE	LCD
76	PB15	WIFI_WKUP	Wi-Fi
77	PD8	LCD-PSRAM_D13	LCD-PSRAM
78	PD9	LCD-PSRAM_D14	LCD-PSRAM
79	PD10	LCD-PSRAM_D15	LCD-PSRAM
80	PD11	PSRAM_A16	PSRAM
81	PD12	PSRAM_A17	PSRAM
82	PD13	QSPI_BK1_IO3	QSPI
83	V _{SS_8}	V _{SS_8}	GND
84	V_{DD_8}	V _{DD_8}	3.3 V
85	PD14	LCD-PSRAM_D0	LCD-PSRAM
86	PD15	LCD-PSRAM_D1	LCD-PSRAM
87	PG2	PSRAM_A12	PSRAM
88	PG3	PSRAM_A13	PSRAM
89	PG4	PSRAM_A14	PSRAM
90	PG5	PSRAM_A15	PSRAM
91	PG6	QSPI_BK1_NCS	QSPI
92	PG7	USB_OTG_FS_OVRCR	USB_INT_7
93	PG8	USB_OTG_FS_PWR_EN	USB
94	V _{SS_9}	V _{SS_9}	GND
95	V _{DD_2_USB33}	V _{DD_2_USB33}	3.3 V
96	PC6	CTP_I2C_SCL	CTP_I2CFMP1
97	PC7	CTP_I2C_SDA	CTP_I2CFMP1
98	PC8	SD_D0	SD CARD
99	PC9	SD_D1	SD CARD
100	PA8	DFSDM1_CKOUT	ST-MEMS microphones
101	PA9	USB_OTG_FS_VBUS	USB
102	PA10	USB_OTG_FS_ID	USB

Table 16. 32F413HDISCOVERY I/O assignment (continued)

Pin No.	Pin Name	Signal or Label	Feature / Comment
103	PA11	USB_OTG_FS_DM	USB
104	PA12	USB_OTG_FS_DP	USB
105	PA13	DBG_SWDIO	STLINK
106	V _{CAP2_0}	V _{CAP2_0}	PWR
107	V _{SS 2_0}	V _{SS 2_0}	GND
108	V _{DD_2_0}	V _{DD_2_0}	3.3 V
109	PA14	DBG_SWCLK	ST-LINK
110	PA15	ARD_D10_PWM_CS	ARD_TIM2_CH1_SPI3
111	PC10	SD_D2	SD CARD
112	PC11	SD_D3	SD CARD
113	PC12	SD_CLK	SD CARD
114	PD0	LCD-PSRAM_D2	LCD-PSRAM
115	PD1	LCD-PSRAM_D3	LCD-PSRAM
116	PD2	DFSDM2_CKOUT	Microphones MEMS
117	PD3	CODEC_I2S_CK	AUDIO_I2S2
118	PD4	LCD-PSRAM_NOE	LCD-PSRAM
119	PD5	LCD-PSRAM_NWE	LCD-PSRAM
120	V _{SS_10}	V _{SS_10}	GND
121	V _{DD_10}	V _{DD_10}	3.3 V
122	PD6	DFSDM1_DATIN1	ST-MEMS microphones
123	PD7	PSRAM_NE1	PSRAM
124	PG9	UART_VCP_RX	STLINK_UART6
125	PG10	LCD_NE3	LCD
126	PG11	WIFI_SPI_CSN	WIFI_SPI_CS
127	PG12	WIFI_DRDY	Wi-Fi
128	PG13	ARD_D2_IO	ARD
129	PG14	UART_VCP_TX	STLINK_UART6
130	VSS_11	V _{SS_11}	GND
131	VDD_11	V _{DD_11}	3.3 V
132	PG15	CODEC_INT	AUDIO_INT15
133	PB3	DBG_SWO	ST-LINK
134	PB4	ARD_D12_MISO	SPI3 (ARD & WIFI)
135	PB5	ARD_D11_PWM_MOSI	SPI3 (ARD & WIFI)
136	PB6	ARD_D4_INT	ARD_INT_6
137	PB7	DFSDM2_DATIN7	ST-MEMS microphones

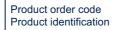
UM2135 Rev 3 35/46

Table 16. 32F413HDISCOVERY I/O assignment (continued)

Pin No.	Pin Name	Signal or Label	Feature / Comment
138	воото	воото	воот
139	PB8	ARD_D9_PWM	ARD_TIM4_CH3
140	PB9	CODEC_I2S_WS	AUDIO_I2S2
141	PE0	PSRAM_NBL0	PSRAM
142	PE1	PSRAM_NBL1	PSRAM
143	PDR_ON	PDR_ON	PDR
144	V _{DD_3}	V _{DD_3}	3.3 V

32F413HDISCOVERY board information 9

9.1 **Product marking**


The product and each board composing the product are identified with one or several stickers. The stickers, located on the top or bottom side of each PCB, provide product information:

Main board featuring the target device: product order code, product identification, serial number, and board reference with revision. Single-sticker example:

Dual-sticker example:

and

MBxxxx-Variant-vzz syywwxxxxx

Other boards if any: board reference with revision and serial number. Examples:

On the main board sticker, the first line provides the product order code, and the second line the product identification.

On all board stickers, the line formatted as "MBxxxx-Variant-yzz" shows the board reference "MBxxxx", the mounting variant "Variant" when several exist (optional), the PCB revision "y", and the assembly revision "zz", for example B01. The other line shows the board serial number used for traceability.

Products and parts labeled as "ES" or "E" are not yet qualified or feature devices that are not vet qualified. STMicroelectronics disclaims any responsibility for consequences arising from their use. Under no circumstances will STMicroelectronics be liable for the customer's use of these engineering samples. Before deciding to use these engineering samples for qualification activities, contact STMicroelectronics' quality department.

"ES" or "E" marking examples of location:

- On the targeted STM32 that is soldered on the board (for an illustration of STM32 marking, refer to the STM32 datasheet Package information paragraph at the www.st.com website).
- Next to the evaluation tool ordering part number that is stuck or silk-screen printed on the board.

Some boards feature a specific STM32 device version, which allows the operation of any bundled commercial stack/library available. This STM32 device shows a "U" marking option at the end of the standard part number and is not available for sales.

To use the same commercial stack in their applications, the developers might need to purchase a part number specific to this stack/library. The price of those part numbers includes the stack/library royalties.

UM2135 Rev 3 37/46

9.2 32F413HDISCOVERY product history

Table 17. Product history

Order code	Product identification	Product details	Product change description	Product limitations
STM32F413H-DISCO	32F413HDISCO/	MCU: - STM32H745ZIT6 silicon revision 'A' or '1'	Initial revision	No limitation
		MCU errata sheet: - STM32F413xG/xH and STM32F423xH device errata (ES0372)		
		Boards: - MB1274-F413ZHT6-E01 (main board) - MB1299-Default-B02 (MEMS microphone daughterboard)		
	DK32F413H\$AU1	MCU: - STM32H745ZIT6 silicon revision 'A' or '1'	- Main board revision changed - MEMS microphone	No demonstration binary is flashed.
		MCU errata sheet: - STM32F413xG/xH and STM32F423xH device errata (ES0372)		
		Boards: - MB1274-F413ZHT6-E03 (main board) - MB1299-Default-B03 (MEMS microphone daughterboard)	daughterboard revision changed	
	DK32F413H\$AU2	MCU: - STM32H745ZIT6 silicon revision 'A' or '1'		No demonstration binary is flashed.
		MCU errata sheet: - STM32F413xG/xH and STM32F423xH device errata (ES0372)		
		Boards: - MB1274-F413ZHT6-E03 (main board) - MB1299-Default-B03 (MEMS microphone daughterboard)		

9.3 Board revision history

Table 18. Board revision history

Board reference	Board variant and revision	Board change description	Board limitations
	F413ZHT6-D01	Initial revision	No limitation
MB1274 (main board)	F413ZHT6-E01	 R70 value reduced from 100 kΩ to 10 kΩ CN10 moved down to 2 mm for LCD assembly U21 footprint updated CN1 microSD™ connector footprint updated to support new reference with positioning holes 	No limitation
(F413ZHT6-E03	 ZZ1 (touch panel) replaced with FRIDA FRD154B2902-D-CTQ with impact on firmware Several part references updated due to obsolescence, such as MEMS microphones or others. Refer to the bill of materials for details. 	No limitation
	Default-B01	Initial revision	No limitation
MB1299 (MEMS	Default-B02	CN1 connector updated to support ribbon cable	No limitation
microphone daughterboard)	Default-B03	Several part references updated due to obsolescence, such as MEMS microphones or others. Refer to the bill of materials for details.	No limitation

UM2135 Rev 3 39/46

10 Federal Communications Commission (FCC) and ISED Canada Compliance Statements

10.1 FCC Compliance Statement

Contains FCC ID: O7P-362

Part 15.19

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Part 15.21

Any changes or modifications to this equipment not expressly approved by STMicroelectronics may cause harmful interference and void the user's authority to operate this equipment.

Part 15.105

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Responsible Party - U.S. Contact Information:

Francesco Doddo STMicroelectronics, Inc. 200 Summit Drive | Suite 405 | Burlington, MA 01803 USA

Telephone: +1 781-472-9634

10.2 ISED Compliance Statement

Contains/Contient IC: 10147A-362

This device complies with the ISED Canada RF radiation exposure limits set forth for general population for mobile application (uncontrolled exposure). This device must not be collocated or operating in conjunction with any other antenna or transmitter.

Compliance Statement

Notice: This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

ISED Canada ICES-003 Compliance Label: CAN ICES-3 (A) / NMB-3 (A).

Déclaration de conformité

Avis: Le présent appareil est conforme aux CNR d'ISDE Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement

Étiquette de conformité à la NMB-003 d'ISDE Canada: CAN ICES-3 (A) / NMB-3 (A).

UM2135 Rev 3 41/46

11 UKCA Compliance Statement

SIMPLIFIED UK DECLARATION OF CONFORMITY

Hereby, the manufacturer STMicroelectronics, declares that the radio equipment type "32F413HDISCOVERY" is in compliance with the UK Radio Equipment Regulations 2017 (UK S.I. 2017 No. 1206). The full text of the UK Declaration of Conformity is available at the following internet address: www.st.com.

12 RED Compliance Statement

Simplified EU declaration of conformity

Hereby, STMicroelectronics declares that the radio equipment type "32F413HDISCOVERY" is in compliance with Directive 2014/53/EU.

The full text of the EU declaration of conformity is available at the following internet address: www.st.com.

Déclaration de conformité UE simplifiée

STMicroelectronics déclare que l'équipement radioélectrique du type "32F413HDISCOVERY" est conforme à la directive 2014/53/UE.

Le texte complet de la déclaration de conformité UE est disponible à l'adresse internet suivante: www.st.com.

UM2135 Rev 3 43/46

Product disposal UM2135

13 Product disposal

Disposal of this product: WEEE (Waste Electrical and Electronic Equipment)

(Applicable in Europe)

This symbol on the product, accessories, or accompanying documents indicates that the product and its electronic accessories should not be disposed of with household waste at the end of their working life.

To prevent possible harm to the environment and human health from uncontrolled waste disposal, please separate these items from other type of waste and recycle them responsibly to the designated collection point to promote the sustainable reuse of material resources.

Household users:

You should contact either the retailer where you buy the product or your local authority for further details of your nearest designated collection point.

Business users:

You should contact your dealer or supplier for further information.

UM2135 Revision history

Revision history

Table 19. Document revision history

Date	Revision	Changes	
05-Apr-2017	1	Initial release.	
15-Dec-2021 2		Reshuffle of the document to align with the latest standards: - Introduction to Conventions reordering - New Table 2: Codification explanation and Section 7: 32F413HDISCOVERY board information Updated: - Introduction, Features, Figure 3, Figure 4, and Figure 5 Removed: - Demonstration software and Electrical schematics removed.	
19-Mar-2025 3		Updated: - Product marking, Federal Communications Commission (FCC) and ISED Canada Compliance Statements, and RED Compliance Statement Added: - Table 17: Product history, Table 18: Board revision history, UKCA Compliance Statement, and Product disposal	

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved