‘— UM2646
,’ life.augmented

User manual

Getting started with the X-CUBE-SAFEA1 software package

Introduction
This user manual describes how to get started with the X-CUBE-SAFEA1 software package.

The X-CUBE-SAFEA1 software package is a software component that provides several demonstration codes, which use the
STSAFE-A110 device features from a host microcontroller.

These demonstration codes utilize the STSAFE-A1xx middleware built on the STM32Cube software technology to ease
portability across different STM32 microcontrollers. In addition, it is MCU-agnostic for portability to other MCUs.

These demonstration codes illustrate the following features:

* Authentication

* Key generation

* Key establishment

» Signature session

* Local envelope wrapping

9

STSAFE-A

UM2646 - Rev 2 - January 2020 www.st.com

For further information contact your local STMicroelectronics sales office.

https://www.st.com/en/product/X-CUBE-SAFEA1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/X-CUBE-SAFEA1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stm32cube?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646

‘_ UM2646
’l General information

1 General information

The X-CUBE-SAFEA1 software package is a reference to integrate the STSAFE-A110 secure element services
into a host MCU's operating system (OS) and its application.

It contains the STSAFE-A110 driver and demonstration codes to be executed on STM32 32-bit microcontrollers
based on the Arm® Cortex®-M processor.
Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

The X-CUBE-SAFEA1 software package is developed in ANSI C. Nevertheless, the platform-independent
architecture allows easy portability to a variety of different platforms.

The table below presents the definition of acronyms that are relevant for a better understanding of this document.

Table 1. List of acronyms

AES Advanced encryption standard

ANSI American National Standards Institute
API Application programming interface
BSP Board support package

CA Certification authority

CcC Common Criteria

ECC Elliptic curve cryptography

ECDH Elliptic curve Diffie-Hellman

ECDHE Elliptic curve Diffie-Hellman ephemeral
EWARM IAR Embedded Workbench® for Arm®
HAL Hardware abstraction layer

IDE Integrated development environment
12C Inter-integrated circuit

loT Internet of things

LL Low-level drivers

MAC Message authentication code

MCU Microcontroller unit

MDK-ARM Keil® microcontroller development kit for Arm®
MPU Memory protection unit

(O] Operating system

SE Secure element

SHA Secure hash algorithm

SLA Software license agreement

TLS Transport layer security

usSB Universal serial bus

arm

UM2646 - Rev 2 page 2/20

https://www.st.com/en/product/X-CUBE-SAFEA1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/X-CUBE-SAFEA1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646

‘_ UM2646
’l STSAFE-A110 secure element

2 STSAFE-A110 secure element

The STSAFE-A110 is a highly secure solution that acts as a secure element providing authentication and data
management services to a local or remote host. It consists of a full turnkey solution with a secure operating
system running on the latest generation of secure microcontrollers.

The STSAFE-A110 can be integrated in 10T (Internet of things) devices, smart-home, smart-city and industrial
applications, consumer electronics devices, consumables and accessories. Its key features are:

. Authentication (of peripherals, loT and USB Type-C devices)

. Secure channel establishment with remote host including transport layer security (TLS) handshake
. Signature verification service (secure boot and firmware upgrade)

. Usage monitoring with secure counters

. Pairing and secure channel with host application processor

. Wrapping and unwrapping of local or remote host envelopes

. On-chip key pair generation

Refer to the STSAFE-A110 datasheet available on the STSAFE-A110 web page for additional information on the
device.

UM2646 - Rev 2 page 3/20

https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646

‘_ UM2646
' l STSAFE-A1xx middleware description

3 STSAFE-A1xx middleware description

This section details the STSAFE-A1xx middleware software package content and the way to use it.
3.1 General description

The STSAFE-A1xx middleware is a set of software components designed to:

. interface the STSAFE-A110 secure element device with an MCU

. implement the most generic STSAFE-A110 use cases

The STSAFE-A1xx middleware is fully integrated within ST software packages as a middleware component to
add secure element features (for example X-CUBE-SBSFU or X-CUBE-SAFEA1).

It can be downloaded from the STSAFE-A110 internet page through the Tools & Software tab.

The software is provided as source code under an ST software license agreement (SLA0088) (see License
information for more details).

The following integrated development environments are supported:
+ IAR Embedded Workbench® for Arm® (EWARM)

. Keil® Microcontroller Development Kit (MDK-ARM)

. STM32Cube IDE (STM32CubelDE)

. System Workbench for STM32 (SW4STM32)

Refer to the release notes available in the package root folder for information about the supported IDE versions.
3.2 Architecture

This section describes the software components of the STSAFE-A1xx middleware software package.
The figure below presents a view of the STSAFE-A1xx middleware architecture and related interfaces.

Figure 1. STSAFE-A1xx middleware architecture

STSAFE-A1xx API
(core interface)

I
CORE CRYPTO
4%
I

I
SERVICE

Mbed™ TLS

X-CUBE-
CRYPTOLIB

Cryptographic service interface
SHA/AES

Service service interface

UM2646 - Rev 2 page 4/20

https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/x-cube-sbsfu?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/X-CUBE-SAFEA1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stm32cubeide?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/SW4STM32?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646

‘_ UM2646
’l Architecture

The middleware features three different interfaces:

. STSAFE-A1xx API: It is the main application programming interface (API), which provides full access to all
the STSAFE-A110 services exported to the upper layers (application, libraries and stacks). This interface is
also referred to as the core interface because all the exported APIs are implemented in the CORE module.
The upper layers that need to integrate the STSAFE-A1xx middleware must access the STSAFE-A110
features through this interface.

. Hardware service interface: This interface is used by the STSAFE-A1xx middleware to reach the highest
hardware platform independence. It includes a set of generic functions to connect the specific MCU, 10 bus
and timing functions. This structure improves the library code re-usability and guarantees easy portability to
other devices.

Defined as weak functions, these generic functions must be implemented at application level following the
example provided within the stsafea_service_interface_template.c template provided for easy integration
and customization within the upper layers.

. Cryptographic service interface: This interface is used by the STSAFE-A1xx middleware to access
platform or library cryptographic functions such as SHA (secure hash algorithm) and AES (advanced
encryption standard) required by the middleware for some demonstrations.

Defined as weak functions, these cryptographic functions must be implemented at application level following
the example provided with two different templates:
— stsafea_crypto_mbedtls_interface_template.c if the Arm® Mbed™ TLS cryptographic library is used;
— stsafea_crypto_stlib_interface_template.c if the ST cryptographic library is used;

. Alternative cryptographic libraries can be used by simply customizing the template source files. The template
files are provided for easy integration and customization within the upper layers.

Note: Arm and Mbed are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere.

Some examples of application integrating and using the STSAFE-A1xx middleware (such as X-CUBE-SBSFU or
X-CUBE-SAFEAT1) are based on the STM32Cube hardware abstraction layer (HAL) for STM32 microcontrollers.

UM2646 - Rev 2 page 5/20

https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/x-cube-sbsfu?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/X-CUBE-SAFEA1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646

‘_ UM2646
’l Architecture

The figure below shows the STSAFE-A1xx middleware integrated in a standard STM32Cube application, running
on an X-NUCLEO-SAFEA1 expansion board mounted on an STM32 Nucleo board.

Figure 2. STSAFE-A1xx middleware in an STM32Cube application

Application Applications

CRYPTO Cryptographic middleware

Middleware
SERVICE

Hardware STM32Cube hardware abstraction layer (HAL)
abstraction

X-NUCLEO-SAFEA1

Hardware

To provide the best hardware and platform independence, the STSAFE-A1xx middleware is not directly connected
to the STM32Cube HAL, but through interface files implemented at application level
(stsafea_service_interface_template.c, stsafea_interface_conf.h).

UM2646 - Rev 2 page 6/20

https://www.st.com/en/product/x-nucleo-safea1?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stm32cube?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646

‘_ UM2646
’l CORE module

3.3 CORE module

The CORE module is the core of the middleware. It implements the commands called by the upper layers
(application, libraries, stack and so on) in order to properly use the STSAFE-A1xx features.

The figure below presents a view of the CORE module architecture.

Figure 3. CORE module architecture

External upper layers
(application, libraries, stacks, etc.)

CRYPTO
internal
module

Y

Y

SERVICE
internal module

The CORE module is a multi-interface software component connected to:

. Upper layers: external connection through the exported APIs described in the two tables below;
. Cryptographic layer: internal connection to the CRYPTO module;

. Hardware service layer: internal connection to the SERVICE module;

The STSAFE-A1xx middleware software package provides a complete APl documentation of the CORE module
in the root folder (see STSAFE-A1xx_Middleware.chm file).

Refer to the STSAFE-A110 datasheet for a brief explanation of the command set, to which the command APls
listed in the following table are related.

Table 2. CORE module exported API

StSafeA_lInit
Initialization configuration
To create, initialize and assign the STSAFE-A1xx device handle.
StSafeA_GetVersion
To return the STSAFE-A1xx middleware revision.
StSafeA_Echo
To receive the data passed in the command.
General-purpose StSafeA_Reset
commands To reset the volatile attributes to their initial values.
StSafeA_GenerateRandom
To generates a number of random bytes.
StSafeA_Hibernate

To put the STSAFE-Axxx device in hibernation.

UM2646 - Rev 2 page 7/20

https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646

‘_ UM2646
’l CORE module

StSafeA_DataPartitionQuery

Query command to retrieve the data partition configuration.

StSafeA_Decrement

To decrement the one-way counter in a counter zone.
Data partition commands

StSafeA_Read

To read data from a data partition zone.

StSafeA_Update

To update data through zone patrtition.

StSafeA_GenerateKeyPair

To generate a key-pair in a private key slot.

StSafeA_GenerateSignature

Private and public key To return the ECDSA signature over a message digest.

commands StSafeA_VerifyMessageSignature

To verify the message authentication.

StSafeA_EstablishKey

To establish a shared secret between two hosts by using asymmetric cryptography.
StSafeA_ProductDataQuery

Query command to retrieve the product data.

StSafeA_l2cParameterQuery

Query command to retrieve the I°C address and low-power mode configuration.
StSafeA_LifeCycleStateQuery

Query command to retrieve the lifecycle state (Born, Operational, Terminated, Born and Locked
or Operational and Locked).

StSafeA_HostKeySlotQuery
Query command to retrieve the host key information (presence and host C-MAC counter).
Administrative commands StSafeA PutAttribute

To put attributes in the STSAFE-Axxx device, such as keys, password, I°C parameters according
to the attribute TAG.

StSafeA_DeletePassword
To delete the password from its slot.
StSafeA_VerifyPassword

To verify the password and remember the outcome of the verification for future command
authorization.

StSafeA_RawCommand
To execute a raw command and receive the related response.

StSafeA_LocalEnvelopeKeySlotQuery

Query command to retrieve local envelope key information (slot number, presence and key
length) for the available key slots.

StSafeA_GenerateLocalEnvelopeKey
Local envelope commands | To generate a key in a local envelope key slot.

StSafeA_WrapLocalEnvelope

To wrap data (usually keys) that are entirely managed by the host, with a local envelope key and
the [AES key wrap] algorithm.

StSafeA_UnwrapLocalEnvelope

UM2646 - Rev 2 page 8/20

‘_ UM2646
’l SERVICE module

Local envelope commands | To unwrap a local envelope with a local envelope key.

Table 3. Exported STSAFE-A110 CORE module APIs

StSafeA_CommandAuthorizationConfigurationQuery
Command authorization

configuration command Query command to retrieve access conditions for commands with configurable access
conditions.

3.4 SERVICE module
The SERVICE module is the low layer of the middleware. It implements a full hardware abstraction in terms of

MCU and hardware platform.
The figure below presents a view of the SERVICE module architecture.

Figure 4. SERVICE module architecture

CORE
internal module

Y

External lower layers
(BSP, HAL, LL, etc.)

The SERVICE module is a dual-interface software component connected to:

. External lower layers: such as BSP, HAL or LL. Weak functions must be implemented at external higher
layers and are based on the stsafea_service_interface_template.c template file;

. Core layer: internal connection to the CORE module through the exported APIs described in the table below;

The STSAFE-A1xx middleware software package provides a complete APl documentation of the SERVICE
module in the root folder (see STSAFE-A1xx_Middleware.chm file).

UM2646 - Rev 2 page 9/20

‘_ UM2646
’l CRYPTO module

Table 4. SERVICE module exported APIs

StSafeA_BSP_Init

Initialization configuration
To initialize the communication bus and the 10 pins needed to operate the STSAFE-Axxx device.
StSafeA_Transmit

To prepare the command to be transmitted, and call the low-level bus API to be executed.
Low-level operation Compute and concatenate a CRC, if supported.

functions StSafeA_Receive

To receive data from the STSAFE-Axxx by using the low-level bus functions to retrieve
them.Check the CRC, if supported.

3.5 CRYPTO module

The CRYPTO module represents the cryptographic part of the middleware. It must rely on the platform's
cryptographic resources.

The CRYPTO module is completely independent of the other middleware modules and, for this reason, can be
easily encapsulated inside an isolated secure area suited to protection by MCU security features such as a
memory protection unit (MPU), a firewall or a TrustZone®.

The figure below presents a view of the CRYPTO module architecture.

Figure 5. CRYPTO module architecture

CORE
internal module

CRYPTO

External cryptographic
layers
(Mbed™ TLS,
X-CUBE-CRYPTOLIB)

The CRYPTO module is a dual-interface software component connected to:

. an external cryptography library: Mbed TLS and X-CUBE-CRYPTOLIB are currently supported. Weak
functions must be implemented at external higher layers and are based on the:

— stsafea_crypto_mbedtls_interface_template.c template file for the Mbed TLS cryptographic library;
— stsafea_crypto_stlib_interface_template.c template file for the ST cryptographic library;

Additional cryptographic libraries can be easily supported by adapting the cryptographic interface
template file.

. the core layer: internal connection to the CORE module through the exported APIs described in the table
below;

The STSAFE-A1xx middleware software package provides a complete APl documentation of the CRYPTO
module in the root folder (see STSAFE-A1xx_Middleware.chm file).

UM2646 - Rev 2 page 10/20

https://www.st.com/en/product/x-cube-cryptolib?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646

‘_ UM2646
,’ Templates

Table 5. CRYPTO module exported APls

StSafeA_InitHASH
SHA initialization. Used for the STSAFE-A1xx signature session.
StSafeA_ComputeHASH
To compute the HASH value. Used for the STSAFE-A1xx signature session.
StSafeA_ComputeCMAC
To compute the CMAC value. Used on the prepared command.
StSafeA_ComputeRMAC

Cryptographic APIs | 15 compute the RMAC value. Used on the received response.
StSafeA_DataEncryption
To execute data encryption (AES CBC) on the STSAFE-Axxx data buffer.
StSafeA_DataDecryption
To execute data decryption (AES CBC) on the STSAFE-Axxx data buffer.
StSafeA_MAC_SHA_PrePostProcess

To pre- or post-process the MAC and/or SHA before transmission, or after reception of data from the
STSAFE_Axxx device.

3.6 Templates

This section gives a detail description of the templates available within the STSAFE-A1xx middleware software
package.

All the templates listed in the table below are provided inside the Interface folder available at the root level of
the middleware software package.

Template files are provided as examples to be copied and customized into the upper layers, in order to easily
integrate and configure the STSAFE-A1xx middleware:

. Interface template files provide example implementations of the __weak functions, offered as empty or
partially empty functions inside the middleware. They must be properly implemented in the user space or in
the upper layers according to the cryptographic library and to the user's hardware choices.

. Configuration template files provide an easy way to configure the STSAFE-A1xx middleware and features
that can be used in the user application, such as optimizations or specific hardware.

Table 6. Templates

Template Template file
category

stsafea_service_interface_template.c

Example template to show how to support the hardware services required by the STSAFE-A middleware
and offered by the specific hardware, low-level library or BSP selected in the user space.

stsafea_crypto_mbedtls_interface_template.c

Interface Example template to show how to support the cryptographic services required by the STSAFE-A
templates middleware and offered by the Mbed TLS cryptographic library (key management, SHA, AES, etc.).

stsafea_crypto_stlib_interface_template.c

Example template to show how to support the cryptographic services required by the STSAFE-A
middleware and offered by the STM32 cryptographic library software expansion for STM32Cube (X-
CUBE-CRYPTOLIB) (key management, SHA, AES, etc.).

stsafea_conf_template.h
Configuration

templates Example template to show how to configure the STSAFE-A middleware (in particular for optimizations

purposes).

UM2646 - Rev 2 page 11/20

https://www.st.com/en/product/stm32cube?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/x-cube-cryptolib?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/x-cube-cryptolib?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646

‘_ UM2646
’l Folder structure

Template Template file
category

Configuration stsafea_interface_conf_template.h
templates

Example template to show how to configure and customize the interface files listed above.

3.7 Folder structure

The figure below presents the folder structure of the STSAFE-A1xx middleware software package.

Figure 6. Project file structure

| TI T /_-i htmil rescurces for the Release Motes
_htmresc

. CoreModules #——— Core and modules of the middleware

i Inc

ctzafea_core.h
stzafea_crypto.h
stzafea_service.h
stsafea_types.h
stzafealll.h
stzafealll.h

stzafeaooch

[11ERIIERERIER IR IR

i Src
| | stsafea_core.c
|| stsafea_crypto.c

| | stsafea_service.c
. Interface Templates for interfaces and configuraticn files

|| stsafea_conf_ternplate.h
|| stsafea_crypto_mbedtls_interface_template.c
|| stsafea_crypto_stlib_interface_template.c

|| stsafea_interface_conf_template.h

stsafea_service_interface_ternplate.c

==

@ STSAFE-Alx Middleware.chm #———— Source Code documentafion

&j Release_Moteshtml «—— | Ralease Motes

UM2646 - Rev 2 page 12/20

‘_ UM2646
'l How to: integration and configuration

3.8 How to: integration and configuration

This section describes how to integrate and configure the STSAFE-A1xx middleware in the user application.

3.8.1 Integration steps
Follow these steps to integrate the STSAFE-A1xx middleware in the desired application:

. Step 1: Copy (and optionally rename) the stsafea_service _interface_template.c file and either of
stsafea_crypto_mbedlls_interface_template.c or stsafea_crypto_stlib_interface_template.c to the user space
according to the cryptographic library that has been added to the application (whatever the cryptographic
library selected/used by users, they can even create/implement their own cryptographic interface file from
scratch by adapting the suitable template).

. Step 2: Copy (and optionally rename) the stsafea_conf_template.h and stsafea_interface_conf _template.h
files to the user space.

. Step 3: Make sure to add the right includes in your main or any other user space source file that needs to
interface the STSAFE-A1xx middleware:

#include "stsafea core.h" #include "stsafea interface conf.h"
. Step 4: Customize the files used in the three steps above according to user preferences.

3.8.2 Configuration steps

In order to properly configure the STSAFE-A1xx middleware in the user application, ST provide two different
configuration template files to be copied and customized in the user space according to the user's choices:

. stsafea_interface_conf_template.h: This example template is used to and shows how to configure the
cryptographic and service middleware interfaces in the user space through the following #define
statements:

- USE PRE LOADED HOST KEYS
- USE_ SIGNATURE SESSION

- MCU PLATFORM INCLUDE

- MCU PLATFORM BUS INCLUDE

. stsafea_conf_template.h: This example template is used to and shows how to configure the STSAFE-A
middleware through the following #define statements:

— STSAFEA USE_OPTIMIZATION SHARED RAM
- STSAFEA USE OPTIMIZATION NO HOST MAC
- STSAFEA USE OPTIMIZATION CRC TABLE

- STSAFEA USE FULL ASSERT

Follow these steps in order to integrate the STSAFE-A1xx middleware in the desired application:

. Step 1: Copy (and optionally rename) the stsafea_interface_conf_template.h and stsafea_conf_template.h
files to the user space.

. Step 2: Confirm or modify the #define statement of the two above-mentioned header files according to the
user platform and cryptographic choices.

UM2646 - Rev 2 page 13/20

‘_ UM2646
’l Demonstration software

4 Demonstration software

This section illustrates demonstration software based on the STSAFE-A1xx middleware.
4.1 Authentication

This demonstration illustrates the command flow where the STSAFE-A110 is mounted on a device that
authenticates to a remote host (IoT device case), the local host being used as a pass-through to the remote
server.

The scenario where the STSAFE-A110 is mounted on a peripheral that authenticates to a local host, for example
for games, mobile accessories or consumables, is exactly the same.

Command flow

Note: For demonstration purposes, the local and remote hosts are the same device here.

1. Extract, parse and verify the STSAFE-A110’s public certificate stored in the data partition zone 0 of the
device in order to get the public key:

— Read the certificate using the STSAFE-A1xx middleware through the STSAFE-A110’s zone 0.
— Parse the certificate using the cryptographic library's parser.
— Read the CA certificate (available through the code).
— Parse the CA certificate using the cryptographic library's parser.
— Verify the certificate validity using the CA certificate through the cryptographic library.
— Get the public key from the STSAFE-A110 X509 certificate.
2. Generate and verify the signature over a challenge number:
— Generate a challenge number (random number).
— Hash the challenge.

— Fetch a signature over the hashed challenge using the STSAFE-A110’s private key slot 0 through the
STSAFE-A1xx middleware.

— Parse the generated signature using the cryptographic library.
— Verify the generated signature using the STSAFE-A110’s public key through the cryptographic library.
— When this is valid, the host knows that the peripheral or 10T is authentic.

4.2 Pairing

This code example establishes a pairing between an STSAFE-A110 device and the MCU it is connected to. The
pairing allows the exchanges between the device and the MCU to be signed and verified. The STSAFE-A110
device becomes usable only in combination with the MCU it is paired with. Both host keys are stored to the Flash
memories of the STM32 and STSAFE-A110.

The code example also generates a local envelope key when this is not already populated in the STSAFE-A110.
These keys are used to:

. wrap/unwrap a local envelope

. execute commands requiring a C-MAC and/or payload encryption

Note: The pairing code example must be executed successfully prior to executing all the following code examples.

Command flow

1. Generate the local envelope key in the STSAFE-A110 using the STSAFE-A1xx middleware.

This operation occurs only if the STSAFE-A110’s local envelope key slot is not already populated.
2. Generate two 128-bit random numbers to use as the host MAC key and the host cipher key.
Store the host MAC key and the host cipher key to their respective slot in the STSAFE-A110.
4. Store the host MAC key and the host cipher key to the STM32's Flash memory.

w

UM2646 - Rev 2 page 14/20

https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646

"_l UM2646

Key establishment

4.3 Key establishment

This demonstration illustrates the case where the STSAFE-A110 device is mounted on a device (such as an loT
device), which communicates with a remote server and needs to establish a secure channel to exchange data
with it.

The goal of this use case is to establish a shared secret between the local host and the remote server using the
elliptic curve Diffie-Hellman scheme with a static (ECDH) or ephemeral (ECDHE) key in the STSAFE-A110.

The shared secret should be further derived to one or more working keys (not illustrated here). The working keys
can then be used in communication protocols such as TLS, for example for protecting the confidentiality, integrity
and authenticity of the data that are exchanged between the local host and the remote server.

Command flow

Note: The local and remote hosts are the same device here.
1. Generate an ephemeral key pair using the STSAFE-A110’s middleware.
The private key is generated through the STSAFE-A110’s ephemeral key slot.
A key pair can be used only once.
2. Import the generated ephemeral public key using the cryptographic library middleware.
3. Import the host’s private key using the cryptographic library middleware.

4. Compute the host’s secret (host’s private key * STSAFE-A110’s ephemeral public key) using the
cryptographic library middleware.

5. Parse the host’s public certificate to get the host’s public key.

6. Compute the STSAFE-A110’s secret (host’s public key * STSAFE-A110’s ephemeral private key) using the
STSAFE-A110’s middleware.

7. Compare the host’s secret to the STSAFE-A110’s secret. They should be equal.
The secret can be used as a static key to encrypt/decrypt data to be transmitted.

4.4 Wrap/unwrap local envelopes

This demonstration illustrates the case where the STSAFE-A110 wraps/unwraps the local envelope in order to
securely store a secret to any non-volatile memory (NVM).

Encryption/decryption keys can be securely stored in that manner to additional memory or within the STSAFE-
A110's user data memory.

The wrapping mechanism is used to protect a secret or plain text. The output of wrapping is an envelope
encrypted with an AES key wrap algorithm, and that contains the key or plain text to be protected.

Command flow

Note: The local and remote hosts are the same device here.
1. Generate random data assimilated to a local envelope.
Wrap the local envelope using the STSAFE-A110’s middleware.
Store the wrapped envelope.
Unwrap the wrapped envelope using the STSAFE-A110’s middleware.
Compare the unwrapped envelope to the initial local envelope. They should be equal.

o~ eN

UM2646 - Rev 2 page 15/20

https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646
https://www.st.com/en/product/stsafe-a110?ecmp=tt9470_gl_link_feb2019&rt=um&id=UM2646

"_l UM2646

Revision history

Table 7. Document revision history

T T T S

09-Dec-2019 1 Initial release.

13-Jan-2020 2 Removed Licence information section.

UM2646 - Rev 2 page 16/20

‘_ UM2646
’l Contents

Contents
1 General information s 2
2 STSAFE-A110secureelement........ ..ot errrrnrrnnnnnnnnns 3
3 STSAFE-A1xx middleware descriptioniiiiiiiiiii ittt iiiiniaanaeeans 4
3.1 General desCription. e 4
3.2 ArChiIteCtUrE . . 4
3.3 CORE MOdUIe . . . 7
34 SERVICE MOAUIE 9
3.5 CRYPTO MOAUIE. . .ottt e e e e e e e e 10
3.6 Templates. . ..o e e 11
3.7 Folder structure 12
3.8 How to: integration and configuration........ 13
3.8.1 Integration Steps 13
3.8.2 Configuration StepsS. 13
4 Demonstration software ... 14
4.1 Authentication 14
4.2 Pairing ... 14
4.3 Key establishment. 14
4.4 Wrap/unwrap local envelopes 15
ReViSioN NiStOry i i i et eeeeancnanrean e naa nan e nan s 16
L0 o 11T 11 17
Listof tableso i e 18
List Of figUIres. . ..o i 19

UM2646 - Rev 2 page 17/20

‘ UM2646
’l List of tables

List of tables

Table 1. Listof @Cronyms 2
Table 2. CORE module exported APl e 7
Table 3. Exported STSAFE-A110 CORE module APIs e e e e e 9
Table 4. SERVICE module exported APIS 10
Table 5. CRYPTO module exported APIs e 11
Table 6. Templates. 11
Table 7. Document revision history 16

UM2646 - Rev 2 page 18/20

m UM2646

List of figures

List of figures

Figure 1. STSAFE-A1xx middleware architecture e 4
Figure 2. STSAFE-A1xx middleware in an STM32Cube application 6
Figure 3. CORE module architecture. 7
Figure 4. SERVICE module architecture 9
Figure 5. CRYPTO module architecture. e 10

Figure 6. Project file structure

UM2646 - Rev 2 page 19/20

"_l UM2646

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics — All rights reserved

UM2646 - Rev 2 page 20/20

http://www.st.com/trademarks

	Introduction
	1 General information
	2 STSAFE-A110 secure element
	3 STSAFE-A1xx middleware description
	3.1 General description
	3.2 Architecture
	3.3 CORE module
	3.4 SERVICE module
	3.5 CRYPTO module
	3.6 Templates
	3.7 Folder structure
	3.8 How to: integration and configuration
	3.8.1 Integration steps
	3.8.2 Configuration steps

	4 Demonstration software
	4.1 Authentication
	4.2 Pairing
	4.3 Key establishment
	4.4 Wrap/unwrap local envelopes

	Revision history
	Contents
	List of tables
	List of figures

