

Discovery kit with STM32H735IG MCU

Introduction

The STM32H735G-DK Discovery kit is a complete demonstration and development platform for Arm® Cortex®-M7 core-based STM32H735IGK6 microcontroller, with 1 Mbyte of flash memory and 564 Kbytes of SRAM.

The STM32H735G-DK Discovery kit is used as a reference design for user application development before porting to the final product, thus simplifying the application development.


The full range of hardware features available on the board helps users to enhance their application development by an evaluation of all the peripherals (such as USB OTG FS, Ethernet, microSDTM card, USART, CAN FD, SAI audio DAC stereo with audio jack input and output, MEMS digital microphone, HyperRAMTM, Octo-SPI flash memory, RGB interface LCD with capacitive touch panel, and others). ARDUINO[®] Uno V3, PmodTM and STMod+ connectors provide easy connection to extension shields or daughterboards for specific applications.

STLINK-V3E is integrated into the board, as the embedded in-circuit debugger and programmer for the STM32 MCU and USB Virtual COM port bridge.

The STM32H735G-DK board comes with the STM32CubeH7 MCU package, which provides an STM32 comprehensive software HAL library as well as various software examples.

Figure 1. STM32H735G-DK Discovery kit (top view)

Figure 2. STM32H735G-DK Discovery kit (bottom view)

Pictures are not contractual.

1 Features

- STM32H735IGK6 microcontroller featuring 1 Mbyte of flash memory and 564 Kbytes of SRAM in UFBGA176+25 package
- 4.3" TFT 480 × 272 pixels colored LCD module with capacitive touch panel and RGB interface
- Ethernet compliant with IEEE-802.3-2002 and PoE (Power over Ethernet)
- USB OTG FS
- SAI audio codec
- One ST-MEMS digital microphone
- 512-Mbit Octo-SPI NOR flash memory
- 128-Mbit HyperRAM[™]
- Two user LEDs
- User and reset push-buttons
- Fan-out daughterboard
- Three CAN FDs
- Board connectors:
 - USB FS Micro-AB
 - USB ST-LINK Micro-B
 - Ethernet RJ45
 - Stereo headset jack including analog microphone input
 - Audio header for external speakers
 - microSD[™] card
 - TAG connector 10-pin footprint
 - SMA connector
 - Arm® Cortex® 10-pin 1.27 mm-pitch debug connector over STDC14 footprint
 - ARDUINO[®] Uno V3 expansion connector
 - STMod+ expansion connector
 - Pmod[™] Type-2A and Type-4A expansion connector
 - Audio MEMS daughterboard expansion connector
- Flexible power-supply options:
 - STLINK-V3E USB connector
 - USB OTG FS connector
 - 5 V delivered by RJ45 (Power over Ethernet)
 - 5 V delivered by ARDUINO[®]
 - USB charger
- On-board STLINK-V3E debugger/programmer with USB re-enumeration capability: mass storage, Virtual COM port, and debug port
- Comprehensive free software libraries and examples available with the STM32CubeH7 MCU Package
- Support of a wide choice of Integrated Development Environments (IDEs) including IAR Embedded Workbench[®], MDK-ARM, and STM32CubeIDE

Note: Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

UM2679 - Rev 7 page 2/46

2 Ordering information

To order the STM32H735G-DK Discovery kit, refer to Table 1. Additional information is available from the datasheet and reference manual of the target STM32.

Table 1. Ordering information

Order code	Board references	Target STM32
STM32H735G-DK	 MB1520⁽¹⁾ MB1280⁽²⁾ MB1315⁽³⁾ 	STM32H735IGK6

- 1. Main board
- 2. Fan-out board
- 3. LCD daughterboard

2.1 Codification

The meaning of the codification is explained in Table 2.

Table 2. Codification explanation

STM32XXYYZ-DK	Description	Example: STM32H735G-DK
XX	MCU series in STM32 32-bit Arm Cortex MCUs	STM32H7 series
YY	MCU product line in the series	STM32H725/735
Z	STM32 flash memory size: G for 1 Mbyte	1 Mbyte
DK	Discovery kit	Discovery kit

UM2679 - Rev 7 page 3/46

3 Development environment

The STM32H735G-DK Discovery kit runs with the STM32H735IG 32-bit microcontroller based on the Arm® Cortex®-M7 core.

3.1 System requirements

- Multi-OS support: Windows[®] 10 or 11, Linux[®] 64-bit, or macOS[®]
- USB Type-A or USB Type-C® to Micro-B cable

Note: macOS[®] is a trademark of Apple Inc., registered in the U.S. and other countries and regions.

Linux[®] is a registered trademark of Linus Torvalds.

Windows is a trademark of the Microsoft group of companies.

3.2 Development toolchains

- IAR Systems[®] IAR Embedded Workbench^{®(1)}
- Keil[®] MDK-ARM⁽¹⁾
- STMicroelectronics STM32CubeIDE
- 1. On Windows® only.

3.3 Demonstration software

The demonstration software, included in the STM32Cube MCU Package corresponding to the on-board microcontroller, is preloaded in the STM32 flash memory for easy demonstration of the device peripherals in standalone mode. The latest versions of the demonstration source code and associated documentation can be downloaded from www.st.com.

3.4 EDA resources

All board design resources, including schematics, EDA databases, manufacturing files, and the bill of materials, are available from the STM32H735G-DK product page at www.st.com.

UM2679 - Rev 7 page 4/46

4 Conventions

Table 3 provides the conventions used for the ON and OFF settings in the present document.

Table 3. ON/OFF convention

Convention	Definition	
Jumper JPx ON	Jumper fitted	
Jumper JPx OFF	Jumper not fitted	
Jumper JPx [1-2]	Jumper fitted between pin 1 and pin 2	
Solder bridge SBx ON	SBx connections closed by 0 Ω resistor	
Solder bridge SBx OFF	SBx connections left open	
Resistor Rx ON	Resistor soldered	
Resistor Rx OFF	Resistor not soldered	
Capacitor Cx ON	Capacitor soldered	
Capacitor Cx OFF	Capacitor not soldered	

UM2679 - Rev 7 page 5/46

5 Safety recommendations

5.1 Targeted audience

This product targets users with at least basic electronics or embedded software development knowledge like engineers, technicians, or students.

This board is not a toy and is not suited for use by children.

5.2 Handling the board

This product contains a bare printed circuit board and like all products of this type, the user must be careful about the following points:

- The connection pins on the board might be sharp. Be careful when handling the board to avoid injury.
- This board contains static sensitive devices. To avoid damaging it, handle the board in an ESD-proof
 environment.
- While powered, do not touch the electric connections on the board with your fingers or anything conductive.
 The board operates at a voltage level that is not dangerous, but components might be damaged when shorted.
- Do not put any liquid on the board and avoid operating it close to water or at a high humidity level.
- Do not operate the board if it is dirty or dusty.
- The pins of the board are exposed and must not come into contact with a metal surface, as this can produce a short circuit and damage the board.

5.3 Delivery recommendations

Before the first use, inspect the board for any damage that may have occurred during shipment. Ensure that all socketed components are securely fixed in their sockets and that nothing is loose in the plastic bag.

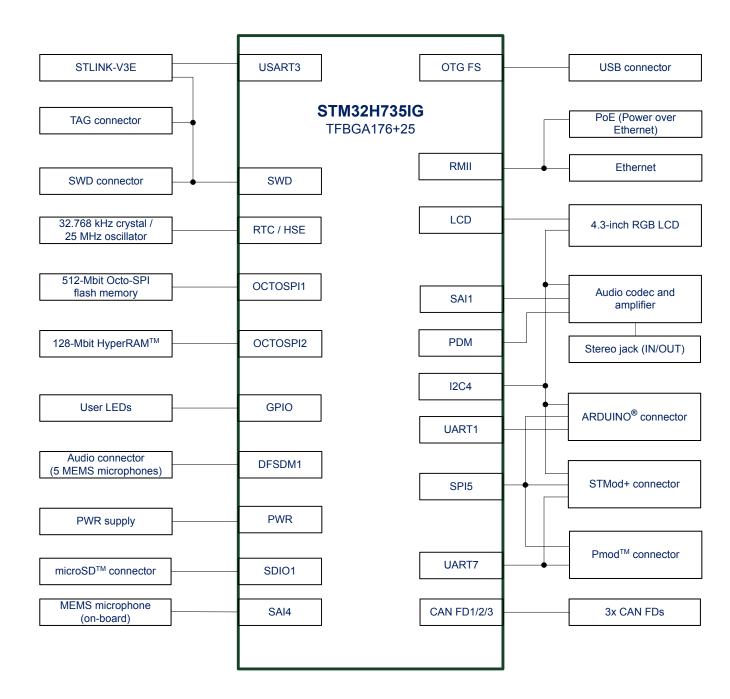
In particular, pay attention to the MB1315 TFT-display daughterboard in the CN19 connector.

For product information related to the STM32H735IGK6 microcontroller, visit the www.st.com website.

5.4 Power supply

A power supply unit or auxiliary equipment complying with the EN 62368-1:2014+A11:2017 standard (or the one replacing it) and safety extralow voltage (SELV/ES1) with limited power capability (LPS/PS2) must power this equipment.

UM2679 - Rev 7 page 6/46



6 Hardware layout and configuration

6.1 Hardware layout

The STM32H735G-DK Discovery kit is designed around the STM32H735IGK6 target microcontroller, packaged in TFBGA176+25. The hardware block diagram (refer to Figure 3) illustrates the connections between the STM32H735IGK6 microcontroller and the peripheral components. Figure 4 and Figure 5 show where these features are located on the STM32H735G-DK Discovery kit.

Figure 3. Hardware block diagram

UM2679 - Rev 7 page 7/46

Figure 4. STM32H735G-DK board layout (top view)

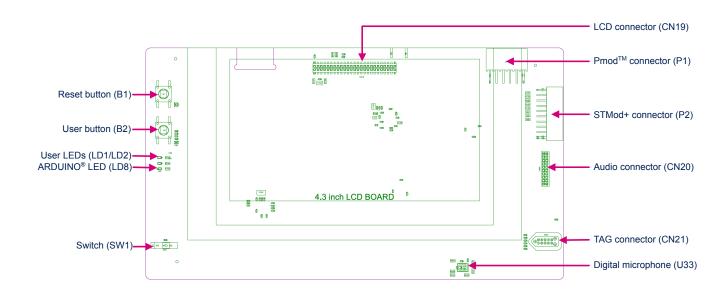
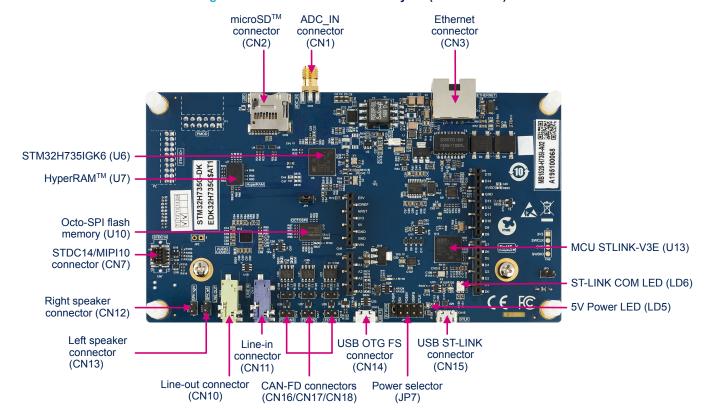



Figure 5. STM32H735G-DK board layout (bottom view)

UM2679 - Rev 7 page 8/46

6.2 Mechanical dimensions

Figure 6 and Figure 7 give the mechanical dimensions for the STM32H735G-DK board.

Figure 6. STM32H735G-DK mechanical dimensions (top view) in millimeters

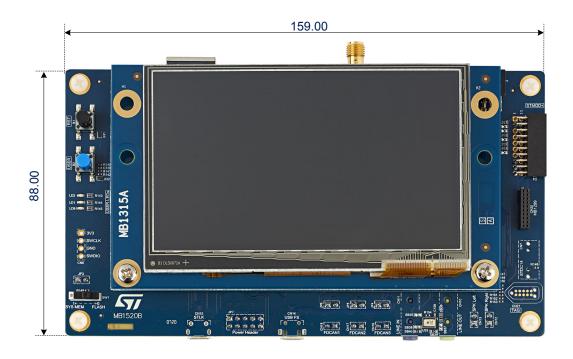
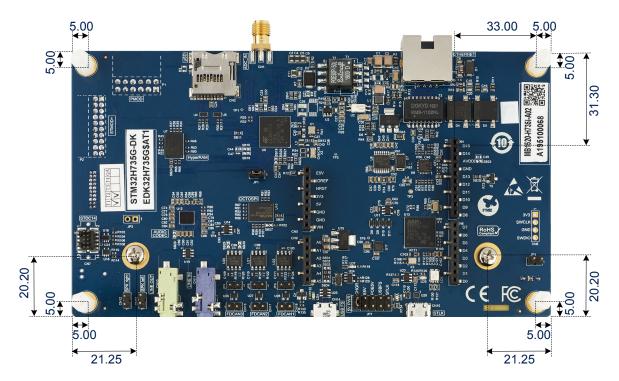



Figure 7. STM32H735G-DK mechanical dimensions (bottom view) in millimeters

UM2679 - Rev 7 page 9/46

6.3 Embedded STLINK-V3E

6.3.1 Description

There are two different ways to program and debug the onboard STM32 MCU:

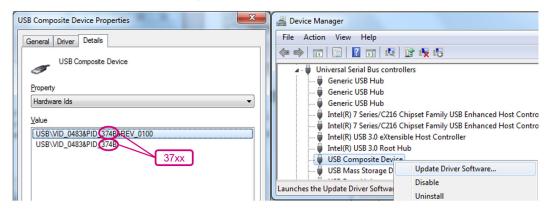
- Using the embedded STLINK-V3E
- Using an external debug tool connected to the MIPI10 connector (CN7)

The STLINK-V3E programming and debugging tool is integrated into the STM32H735G-DK Discovery kit.

The embedded STLINK-V3E supports only SWD and VCP for STM32 devices. For information about debugging and programming features, refer to the technical note *Overview of ST-LINK derivatives* (TN1235), which describes in detail all the STLINK-V3E features.

Features supported in STLINK-V3E:

- 5 V power supplied by the USB connector (CN15)
- USB 2.0 high-speed-compatible interface
- JTAG and serial wire debugging (SWD) specific features:
 - 3 to 3.6 V application voltage on the JTAG/SWD interface and 5 V tolerant inputs
 - JTAG
 - SWD and serial viewer (SWV) communication
- STDC14 (MIPI10) compatible connector (CN7)
- COM status LED (LD6) which blinks during communication with the PC
- OC fault red LED (LD3) alerting on USB overcurrent request
- 5 V/500 mA output power supply capability (U23) with current limitation and LED
- 5 V power green LED (LD5)


6.3.2 Drivers

Before connecting the STM32H735G-DK board to a Windows[®] PC via USB, the user must install a driver for the STLINK-V3E (not required for Windows 10[®]). It is available on the *www.st.com* website.

In case the STM32H735G-DK board is connected to the PC before the driver is installed, some STM32H735G-DK interfaces might be declared as *Unknown* in the PC device manager. In this case, the user must install the dedicated driver files, and update the driver of the connected device from the device manager as shown in Figure 8.

Note: Prefer using the USB Composite Device to handle a full recovery.

Figure 8. USB composite device

Note: 37xx:

- 374E for STLINK-V3E without bridge functions
- 374F for STLINK-V3E with bridge functions

UM2679 - Rev 7 page 10/46

6.3.3 STLINK-V3E firmware upgrade

The STLINK-V3E embeds a firmware upgrade mechanism for in-place upgrades through the USB port. The firmware might evolve during the lifetime of the STLINK-V3E product (for example new functionalities, bug fixes, support for new microcontroller families). Visit the *www.st.com* website before starting to use the STM32H735G-DK Discovery kit and periodically, to stay up-to-date with the latest firmware version.

6.3.4 Using an external debug tool to program and debug the on-board STM32

There are two basic ways to support an external debug tool:

- 1. Keep the embedded STLINK-V3E running. Power on the STLINK-V3E at first until the COM LED lights RED. Then connect the external debug tool through the MIPI10 debug connector (CN7).
- 2. Set the embedded STLINK-V3E in a high-impedance state. When setting the jumper JP3 (STLK_RST) ON, the embedded STLINK-V3E is in the RESET state and all GPIOs are in high impedance. Then the user can connect the external debug tool to the debug connector (CN7).

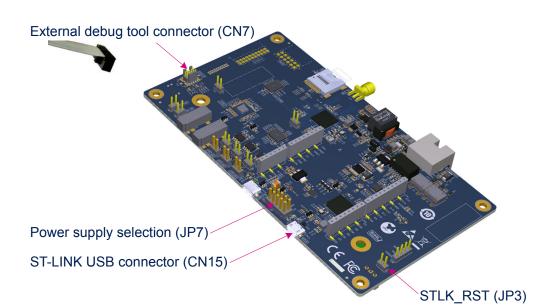


Figure 9. Connecting an external debug tool to program the on-board STM32

Table 4 describes the MIPI10 debug connector (CN7) pinout.

Table 4. MIPI10 debug connector (CN7) pinout

MIPI10 pin	STDC14 pin	CN7	Designation	
-	1	NC	Reserved	
-	2	NC	Reserved	
1	3	T_VCC	Target VCC	
2	4	T_SWDIO	Target SWDIO using SWD protocol or target JTMS (T_JTMS) using JTAG protocol	
3	5	GND	Ground	
4	6	T_SWCLK	Target SWCLK using SWD protocol or target JCLK (T_JCLK) using JTAG protocol	
5	7	GND	Ground	
6	8	T_SWO	Target SWO using SWD protocol or target JTDO (T_JTMS) using JTAG protocol	

UM2679 - Rev 7 page 11/46

MIPI10 pin	STDC14 pin	CN7	Designation	
7	9	T_JRCLK	Not used by SWD protocol, target JRCLK (T_JRCLK) using JTAG protocol, only for specific use	
8	10	T_JTDI	Not used by SWD protocol, target JTDI (T_JTDI) using JTAG protocol, only fexternal tools	
9	11	GNDDetect	GND detection for plug indicator, used on SWD and JTAG neither	
10	12	T_NRST	Target NRST using SWD protocol or target JTMS (T_JTMS) using JTAG protocol	
-	13	T_VCP_RX	Target RX used for VCP. It must be UART dedicated to the bootloader.	
-	14	T_VCP_TX	Target TX used for VCP. It must be UART dedicated to the bootloader.	

6.4 Power supply

The STM32H735G-DK Discovery kit is designed to be powered by a 5 V DC power source. One of the following five inputs can be used, upon appropriate board configuration:

- 1. Micro-B USB receptacle (CN15) of STLINK-V3E without enumeration: up to 500 mA can be supplied to the board (JP7 jumper setting on 'CHGR' position on the silkscreen)
- 2. Micro-B USB receptacle (CN15) of STLINK-V3E with enumeration feature (refer to Section 6.4.1), up to 500 mA can be supplied to the board (JP7 jumper setting 'STLK' position on the silkscreen)
- 3. An external 7 to 12 V power supply from CN5 pin 8: name VIN on the silkscreen, extension connectors for ARDUINO® Uno shields or daughterboard (JP7 jumper setting on 'E5V' on the silkscreen).
- 4. 48 V DC power from RJ45 connector CN3 (Ethernet): In this case, the on-board module PoE (Power over Ethernet) generates the 5 V supply voltage with up to 600 mA. This module is a powered device complying with the IEEE 802.3af, class ½ standard. The external power supply must be fully IEEE 802.3af compliant (JP7 jumper setting on 'POE5V' on the silkscreen).
- 5. Micro-AB USB receptacle (CN14) of the USB_OTG_FS interface: marked USB OTG FS on the board. (JP7 jumper setting on 'USBFS' on the silkscreen).

The green LED (LD5) turns ON when the voltage on the power line marked 5V is present. All supply lines required for the operation of the STM32H735G-DK components are derived from this 5V line.

6.4.1 Supplying the board through the STLINK-V3E USB port: 5 V/500 mA

To power the STM32H735G-DK in this way, the USB Host (a PC) gets connected to the Micro-B USB receptacle of the board via a USB cable. The connection event starts with the USB enumeration procedure. In its initial phase, the current supply capability of the USB port is limited to 100 mA. This is sufficient since only the STLINK-V3E part of the STM32H735G-DK draws power at that time: The power switch (U23) is set to the OFF position, which isolates the rest of the board from the power source.

In the next phase of the enumeration procedure, the host PC informs the STLINK-V3E that it can supply current up to 300 mA. If the answer is positive, the STLINK-V3E sets the power switch to the ON position to supply power to the rest of the board. Otherwise, CN5 pin8 (VIN) can be used to supply the board instead. If a short circuit occurs on the board, the power switch protects the USB port of the host PC against a current demand exceeding 500 mA. In such an event, the red LED (LD3) lights up.

The STM32H735G-DK board can also be supplied from a USB power source that does not support enumeration, such as a USB charger. In this case, the STLINK-V3E bypasses the power from the power switch regardless of the enumeration procedure result and passes the power unconditionally to the board. The green LED (LD5) turns ON whenever the whole board is powered.

UM2679 - Rev 7 page 12/46

6.4.2 Supplying the board from VIN: 7 to 12 V/800 mA

The STM32H735G-DK board might require a supply current higher than 500 mA. In such a case, the board can be supplied through pin8 (marked 'VIN' on the board) of the CN5 ARDUINO® connector.

Note that using STLINK-V3E for debugging when powering the board with an external power supply, it is important to power the board before connecting the host PC to the CN15 connector. This requires the following sequence to be respected:

- 1. Set the jumper JP7 "E5V" [7-8].
- 2. Connect the external power source to pin 8 of the CN5 connector.
- 3. Check that the green LED (LD5) is turned ON.
- 4. Connect the host PC to the USB connector (CN15).

If this order is not respected, the board might be powered by V_{BUS} first from STLINK-V3E, and the following risks might be encountered:

- 1. If the board needs a current higher than 500 mA, the PC might be damaged or limit the current. As a consequence, the board is not powered correctly.
- 2. The enumeration step requests 500 mA. So, there is a risk that the request is rejected and enumeration does not succeed if the PC cannot provide such a current.

Input power name	Connector pins	Voltage range	Max current	Limitation
VIN	CN5 pin 8	From 7 V to 12 V	800 mA	From 7 to 12 V only and input current capability is linked to input voltage: 800 mA input current when VIN = 7 V 450 mA input current when 7 V < VIN < 9 V 250 mA input current when 9 V < VIN < 12 V

Table 5. External power sources: VIN from 7 to 12 V

6.4.3 Supplying the board with an external USB charger: 5 V

When the STM32H735G-DK board is powered by an external USB charger through CN15, refer to Table 6, the jumper must be placed on JP7 [9-10] ("CHGR" on the silkscreen). Note that in this power supply mode, the debug features are not available.

Table 6. External power source: 5V_USB_CHGR

Input power name	Connector pins	Voltage range	Max current
5V_USB_CHGR	CN15	5 V	-

6.4.4 MCU power supply - SMPS or LDO configurations

There are three possible solutions to provide power to the MCU V_{CORE} logic supply: SMPS, LDO, and SMPS with LDO. Power consumption in Run mode is significantly improved by generating VCORE from the internal DC/DC converter (SMPS). The default power supply for VCORE logic must be SMPS. Some hardware modifications are required to switch to LDO or SMPS with LDO configurations. The hardware modifications are listed below:

- SMPS mode (default):
 - SB2, SB13, SB20, SB21, and L3: ON
 - SB1, SB3, SB16, SB18, and SB19: OFF
- LDO mode:
 - SB1, SB3, and SB19: ON
 - SB2, SB16, SB18, SB20, SB21, and L3: OFF
- SMPS with LDO mode:
 - SB3, SB13, SB19, SB21, and L3: ON
 - SB1, SB2, SB16, SB1, and SB20: OFF

UM2679 - Rev 7 page 13/46

Caution:

If the board SMPS/LDO firmware PWR configuration does not match its hardware configuration, a deadlock occurs. After the reset, the ST-LINK cannot connect to the target anymore.

The firmware PWR configuration must be set as follows in the SystemClock_Config function in the main.c file:

If the hardware configuration is Direct SMPS (default configuration):

```
HAL_PWREx_ConfigSupply(PWR_DIRECT_SMPS_SUPPLY);
```

If the hardware configuration is LDO:

```
HAL PWREx ConfigSupply(PWR LDO SUPPLY);
```

If a deadlock occurs because of a mismatch between hardware and firmware PWR settings (SMPS/LDO), the user can recover the board by applying the following procedure:

- 1. Power off the board.
- 2. Set SW1 (BOOT0) to 1 (system memory). This changes the BOOT0 pin to 1 instead of 0, thus changing the device boot address to boot address 1 and making the bootloader start in the system memory. This avoids starting firmware in the user flash memory with a wrong SMPS/LDO configuration versus the hardware board configuration.
- 3. Power on the board and connect using STM32CubeProgrammer (STM32CubeProg).
- 4. Erase the user flash memory.
- 5. Power off the board and set SW1 to 0.
- 6. The board is recovered and can be used normally with matching PWR firmware.

(1)	Config1 LDO ON (SMPS OFF)	Config2 SMPS ON (LDO OFF) (Default config)	Config3 (SMPS and LDO cascaded) SMPS ON LDO ON
SB1	ON	OFF	OFF
SB2	OFF	ON	OFF
SB3	ON	OFF	ON
SB13	ON	ON	ON
SB16	OFF	OFF	OFF
SB18	OFF	OFF	OFF
SB19	ON	OFF	ON
SB20	OFF	ON	OFF
SB21	OFF	ON	ON
L3	OFF	ON	ON

Table 7. Internal SMPS, LDO, and board configuration

6.5 MCU current-consumption measurement

The jumper (JP1) allows the current consumption of STM32H735IGK6 to be measured directly by removing the jumper and replacing it with an external ammeter. If there is no ammeter, STM32H735IGK6 is not powered.

6.6 Clock source

Three clock sources are available on the STM32H735G-DK board, as described below:

- X1 25 MHz oscillator for the STM32H735IGK6 HSE system clock and Ethernet PHY
- X2 32.768 kHz crystal for the STM32H735IGK6 embedded RTC
- X3 25 MHz oscillator for the STLINK-V3E

UM2679 - Rev 7 page 14/46

^{1.} The default setting is in bold.

6.7 Reset sources

The general reset of the STM32H735G-DK board is active LOW. The reset sources include:

- Reset button (B1)
- Embedded STLINK-V3E
- ARDUINO® Uno shield board through CN5 connector (pin 3)
- STDC14 receiver
- TAG connector

The general reset is connected to the following peripheral reset functions:

- Octo-SPI flash memory reset
- LCD reset (option not connected by default)
- HyperRAM[™] memory
- Ethernet

UM2679 - Rev 7 page 15/46

7 Board functions

7.1 TFT color LCD 480x272 pixels

The STM32H735G-DK board includes a 4.3-inch 480x272 TFT LCD board (MB1315), which is connected to the RGB interface of the STM32H735IGK6 through a 50-pin connector (CN19). The TFT LCD board (MB1315) uses the TFT LCD with the driving system, white LED backlight, and capacitive touch panel.

The touchscreen controller interfaces with the STM32H735IGK6 via the bidirectional I2C4 bus, since the PH6 GPIO (LCD_RST signal) controls the TFT LCD reset in the default configuration where SB43 is ON and SB44 is OFF. The possibility to control the LCD reset by the NRST general reset is also available on the STM32H735G-DK board. In this case, SB44 must be ON and SB43 OFF.

7.2 USB OTG FS

The STM32H735G-DK board supports USB OTG full-speed communications via the USB Micro-AB connector (CN14). The USB connector can power the STM32H735G-DK board with a 5V DC supply voltage, at a current of up to 500 mA. A USB power switch is also connected to V_{BUS} and provides power to CN14. The green LED (LD4) is lit when one of the following events occurs:

- The power switch is ON and STM32H735G-DK operates as a USB Host.
- V_{BUS} is powered by another USB Host when the STM32H735G-DK board works as a USB Device.

The red LED (LD7) is lit when an overcurrent occurs (Current higher than 500 mA).

Note: The STM32H735G-DK board must be powered by an external power supply when using the OTG function.

7.3 Ethernet

The STM32H735G-DK board supports 10/100-Mbit Ethernet communication with a physical layer and integrates an RJ45 connector (CN3). The Ethernet PHY is connected to the STM32H735IGK6 microcontroller via an RMII interface.

The PHY 25 MHz clock is generated from the X1 oscillator, while the PHY RMII_REF_CLK generates the 50 MHz clock for the STM32H735IGK6.

7.4 Power over Ethernet

The STM32H735G-DK board integrates a power module that uses Ethernet. This module is an IEEE802.3af compliant, class 1/2 PoE converter. It is based on the simple diode rectified Flyback topology around the power module. This *Powered Device* module accepts an input voltage of 48 V and can provide 5 V with 600 mA.

7.5 microSD™ card

A slot (CN2) for microSD $^{\text{TM}}$ card (SD 2.0 compliant) is available on the STM32H735G-DK board and is connected to the SDOI1 interface of the STM32H735IGK6. The uSD_Detect signal (PF5) manages the microSD $^{\text{TM}}$ card detection. When a microSD $^{\text{TM}}$ card is inserted in the slot, the uSD_Detect signal level is LOW, otherwise, it is HIGH.

7.6 Audio

An audio codec with four DACs and two ADCs is connected to the STM32H735IGK6 SAl1 interface.

It communicates with the STM32H735IGK6 microcontrollers via an I²C-bus shared with the touch panel of the RGB LCD and the STMod+ connector. The I²C-bus address of the coded WM8994ECS/R is 0011010.

Several audio connections are available on the STM32H735G-DK board:

- The analog input line is connected to the audio codec ADC through the blue audio jack (CN11).
- The analog output line is connected to the audio codec DAC via the green audio jack (CN10).
- Two external speakers can be connected to the audio codec via CN13 for the left speaker and CN12 for the right speaker. The STM32H735G-DK board features one digital microphone. It is connected to the input digital microphone of the STM32H735IGK6 and managed by the PDM functionality.

UM2679 - Rev 7 page 16/46

Limitation:

On the STM32H735G-DK board, SAI1 signals share the same I/Os with SPI5 and UART7 signals. As a consequence, when using the SAI1 interface for the audio codec, the user must make sure that there is nothing connected on STMod+ (1,2,3,4 pins), PmodTM (pins 1, 2, 3, and 4) and ARDUINO[®] (D10, D11, D12, D13 pins) connectors.

Digital microphone

The U33 on the STM32H735G-DK board is a MEMS digital omnidirectional microphone providing PDM (pulse density modulation) output. The microphone is supplied with a programmable clock generated directly by the STM32H735IGK6 (SAI4_CK2 signal) or the audio codec (DMICCLK signal).

As an option, the microphone can be connected to U12 (Wolfson WM8994 audio codec device). In that configuration, the WM8994 also supplies the PDM clock to the microphone. Regardless of the microphone routing (STM32H735IGK6 or WM8994 codec), power can be supplied either by the 3V3 or the MICBIAS1 output of the WM8994 codec device.

Table 8 shows the settings of all solder bridges associated with the digital microphone on the board.

Solder bridge	Setting ⁽¹⁾	Configuration	
	SB40, SB39 OFF	The PDM clock for the digital microphone is provided by the WM8994	
SB40, SB39	SB38, SB28 ON	codec.	
SB38, SB28	SB40, SB39 ON	The PDM clock for the digital microphone is provided by the	
	SB38, SB28 OFF	STM32H735IGK6 MCU	
	SB36 OFF	The power supply of the digital microphone is generated by the	
SB36, SB37	SB37 ON	WM8994 codec (MICBIAS1).	
	SB36 ON	The negrouphy of the digital migraphone is 21/2	
	SB37 OFF	The power supply of the digital microphone is 3V3	

Table 8. Digital microphone configuration

UM2679 - Rev 7 page 17/46

^{1.} The default setting is in bold.

7.7 CAN FD

The STM32H735G-DK board supports three channels of CAN-FD-compliant (flexible data-rate CAN) bus based on the 3V3 CAN transceiver.

Limitation:

On the STM32H735G-DK board, the CAN-FD3 signals are shared with the SPI5 and UART7 signals. As a consequence, when using the CAN-FD3 interface, the user must make sure that there is nothing connected on STMod++ (1,2,3,4 pins), Pmod[™] (1,2,3,4 pins), and ARDUINO[®] (D10, D11, D12, D13 pins) connectors.

Table 9. CAN-FD3 configuration

Solder bridge	Setting ⁽¹⁾	Configuration
	SB29, SB30 ON	MCD2562FD TXD and RXD are connected to PF7 (FDCAN3_TX) and PF6 (FDCAN3_RX) of STM32H735IGK6 MCU.
SB29, SB30	SB29, SB30 OFF	(CAN-FD3 bus not connected) TXD and RXD of MCD2562FD are disconnected to PF7 (FDCAN3_TX) and PF6 (FDCAN3_RX) of STM32H735IGK6 MCU.

^{1.} The default setting is in bold.

7.8 Octo-SPI NOR flash memory

The STM32H735G-DK board includes a 512-Mbit Octo-SPI NOR flash memory device, which is connected to the OCTOSPI1 interface of the STM32H735IGK6 microcontroller.

The Octo-SPI NOR flash memory operates in a single transfer rate (STR) or double transfer rate (DTR) mode.

The RESETn pin of the flash memory is connected to the general reset (NRST) of the STM32H735G-DK board.

7.9 HyperRAM[™] memory

The STM32H735G-DK board adds an external 128-Mbit HyperRAM[™] that is connected to the STM32H735IGK6 via the OCTOSPI2 interface.

7.10 Virtual COM port

The serial interface USART3 (PD8/PD9) that supports the bootloader is directly available as a Virtual COM port of the PC connected to the STLINK-V3E USB connector (CN15). The VCP configuration is the following:

- 115200 bps
- 8-bit data
- No parity
- One-stop bit
- No flow control

7.11 TAG

One TAG interface footprint (CN21) is reserved on the STM32H735G-DK board, which can be used for the board debugging and programming.

7.12 Buttons and LEDs

The black button (B1) located on the top side is the reset of the STM32H735IGK6 microcontroller.

The blue button (B2) located on the top side is to be used as a digital input or as an alternate function (wake-up). When the button is depressed the logic state is LOW, otherwise, the logic state is HIGH.

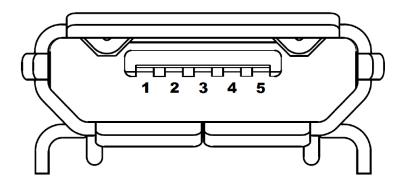
UM2679 - Rev 7 page 18/46

Two LEDs located on the top side, the red LD2 and the green LD1 (refer to Section 6), are available for the user. To light a LED, a low-logic state HIGH must be written in the corresponding GPIO register. Table 10 shows the assignment of the control ports to the LED indicators.

Table 10. Button and LED control port

Reference	Color	Name	Comment
B1	BLACK	RESET	-
B2	BLUE	USER	Alternate function (wake-up)
LD7	RED	USB_FS_OVCR	PG13
LD6	BICOLOR (RED/GREEN)	STLINK-V3E COM	Green when communication is ongoing
LD3	RED	STLINK-V3E overcurrent	-
LD4	GREEN	VBUS USB FS	PA9
LD5	GREEN	POWER	5 V power supply available
LD2	RED	USER2	PC2
LD1	GREEN	USER1	PC3
LD8	GREEN	ARDUINO	PF7

UM2679 - Rev 7 page 19/46



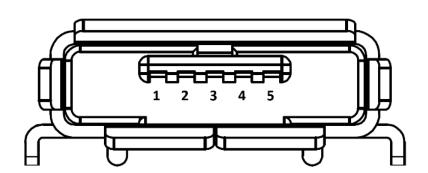
8 Board connectors

8.1 STLINK-V3E USB Micro-B connector (CN15)

The USB connector (CN15) is used to connect the embedded STLINK-V3E to the PC for programming and debugging purposes.

Figure 10. USB Micro-B connector front view (CN15)

The related pinout for the USB ST-LINK connector is listed in Table 11.


Table 11. USB Micro-B connector (CN15) pinout

Connector	Pin number	Pin name	Signal name	ST-LINK MCU pin	Function
	1	VBUS	5V_USB_CHARGER	-	5 V power
	2	DM	USB_DEV_HS_CN_N	PB14	USB differential pair M
CN15	3	DP	USB_DEV_HS_CN_P	PB15	USB differential pair P
	4	ID	-	-	-
	5	GND	-	-	GND

8.2 USB OTG FS Micro-AB connector (CN14)

A USB OTG full-speed communication link is available at the USB Micro-AB receptacle connector (CN14). Micro-AB receptacle enables USB Host and USB Device features.

Figure 11. USB OTG FS Micro-AB connector (CN14) front view

UM2679 - Rev 7 page 20/46

The related pinout for the USB OTG FS connector is listed in Table 12.

Table 12. USB OTG FS Micro-AB co	connector (CN14)	pinout
----------------------------------	------------------	--------

Connector	Pin number	Pin name	Signal name	Function
	1	VBUS USB_FS_VBUS (PA9)		5 V power
	2	DM	USB_FS_DM (PA11)	Data-
CN14	3	DP	USB_FS_DP (PA12)	Data+
	4	ID	USB_FS_ID (PA10)	ID
	5	GND	-	GND

8.3 microSD[™] card connector (CN2)

microSDTM cards with 4 Gbytes or more capacity can be inserted in the CN2 receptacle. Four data bits of the SDIO1 interface, CLK, and CMD signals of the STM32H735IGK6 are used to communicate with the microSDTM card. The μ SD_Detect signal detects the card insertion. When a microSDTM card is inserted, the μ SD_Detect level is LOW, otherwise, it is HIGH.

Figure 12. microSD[™] card connector (CN2)

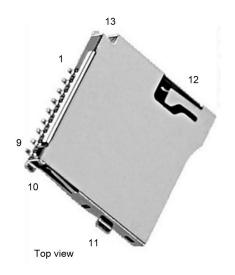


Table 13. microSD[™] connector (CN2) pinout

Pin number	Description	MCU port	Pin number	Description	MCU port
1	SDIO1_D2	PC10	6-9	GND	-
2	SDIO1_D3	PC11	7	SDIO1_D0	PC8
3	SDIO1_CMD	PD2	8	SDIO1_D1	PC9
4	VDD (3V3)	-	10	μSD_Detect	PF5
5	SDIO1_CK	PC12	11-12-13-14	GND (casing)	-

UM2679 - Rev 7 page 21/46

8.4 STMod+ connector (P2)

The standard 20-pin STMod+ connector is available on the STM32H735G-DK board to increase compatibility with external boards and modules from the ecosystem of microcontrollers. STMod+ includes UART or SPI interface signals for communication with the host MCU and dedicated solder bridges allow configuring the external board to be controlled by the UART7 or SPI5 serial interface of the STM32H735IGK6 MCU.

Table 14. STMod+ connector (P2) pinout

Solder bridge	Setting ⁽¹⁾	Description
SB6, SB10, SB14, and SB15	ON	UART7 connected to STMod+
SB7, SB8, SB12, and SB17	OFF	SPI5 disconnected to STMod+
SB6, SB10, SB14, and SB15	OFF	UART7 disconnected to STMod+STMod+
SB7, SB8, SB12, and SB17	ON	SPI5 connected to STMod+

^{1.} The default configuration is in bold.

By default, it is designed to support an ST-dedicated fan-out board to connect different modules or board extensions from different manufacturers.

The fan-out board also embeds a 3.3 V regulator and I²C level shifters. For more detailed information on the fan-out board, refer to the user manual *STMod+ fan-out expansion board for STM32 Discovery kits and Evaluation boards* (UM2695).

For details about the STMod+ interface, refer to the technical note STMod+ interface specification (TN1238).

Figure 13. STMod+ connector (P2)

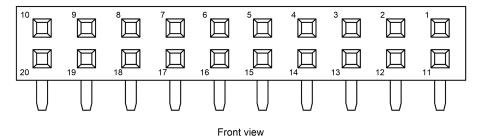


Table 15. STMod+ connector (P2) pinout

Pin number	Description	Pin number	Description
1	SPI5_NSS/USART7_CTS (PF6/PF9)	11	INT (PH12)
2	SPI5_MOSI/USART7_TX (PF9/PF7)	12	RESET (PH1)
3	SPI5_MISO/USART7_RX (PF8/PF6)	13	ADC (PA5)
4	4 SPI5_SCK/USART7_RTS (PF7/PF8)		PWM (PD14)
5	5 GND		+5 V
6	6 +5 V		GND
7	7 I2C4_SCL (PF14)		DFSDM1-DATIN2 (PE7)
8	8 SPI5_MOSIs (PF11)		DFSDM1-CKOUT (PE9)
9	SPI5_MISOs (PH7)	19	DFSDM1-DATIN4 (PE10)
10	I2C4_SDA (PF15)	20	DFSDM1-DATIN6 (PF13)

UM2679 - Rev 7 page 22/46

Limitations:

On the STM32H735G-DK board, SPI5 and UART7 signals share the same IOs with SAI1. As a consequence, when using SPI5 or UART7 signals to control a device connected to STMod+, the audio codec cannot be used. Furthermore, the user must make sure that nothing is connected on Pmod[™] (pins 1, 2, 3, and 4) and ARDUINO[®] (D10, D11, D12, D13 pins) connectors.

8.5 Pmod[™] connector (P1)

The standard 12-pin Pmod[™] connector is available on the STM32H735G-DK Discovery board to support low frequency, low I/O pin count peripheral modules. The Pmod[™] interface, which is implemented on the STM32H735IGK6 Discovery board is compatible with the Pmod[™] type 2A and 4A I/O signal assignment convention.

Figure 14. Pmod[™] connector (P1)

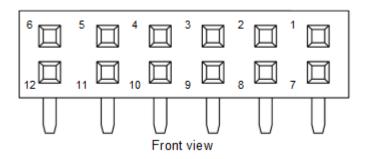


Table 16. Pmod[™] connector (P1) pinout

Pin number	Description	Pin number	Description
1	SPI5_NSS/USART7_CTS (PF6/PF9)	7	INT (PH12)
2	SPI5_MOSI/USART7_TX (PF9/PF7)	8	RESET (PH1)
3	SPI5_MISO/USART7_RX (PF8/PF6)	9	NA
4	SPI5_SCK/USART7_RTS (PF7/PF8)		NA
5	GND		GND
6	3V3	12	3V3

Limitations:

On the STM32H735G-DK board, SPI5 and UART7 signals are sharing the same IOs with SAI1. As a consequence, when using SPI5 or UART7 signals to control a device connected to Pmod[™], the audio codec cannot be used. Furthermore, the user must make sure that nothing is connected on STMod+ (pins 1, 2, 3, and 4) and ARDUINO[®] (D10, D11, D12, D13 pins) connectors.

UM2679 - Rev 7 page 23/46

8.6 TAG connector (CN21)

The TAG connector footprint (CN21) is used to connect the STM32H735IGK6 microcontroller for programming or debugging the board.

1 5 0 • • • • • 0 • • • • • 0

Figure 15. TAG connector (CN21)

Table 17. TAG connector (CN21) pinout

Pin number	Description	Pin number	Description
1	VDD (3V3)	10	NRST (PH3)
2	SWDIO/JTMS (PA13)	9	NJTRST (PB4)
3	GND	8	JTDI (PA15)
4	SWCLK/JTCK (PA14)	7	NC
5	GND	6	SWO/JTDO (PB3)

8.7 Audio connector (CN20)

The 2x10-male-pin 1.27 mm-pitch audio connector is used for audio MEMS expansion daughterboard using the DFSDM interface. The reference to be used is the MEMS microphone daughterboard (MB1299), which embeds five digital MEMS microphones.

Figure 16. Audio connector (CN20)

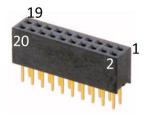


Table 18. Audio connector (CN20) pinout

Pin number	Function / MCU port	Pin number	Function / MCU port
1	GND	2	3V3
3	DFSDM1_CKOUT (PE9)	4	DFSDM1_CKOUT (PE9)
5	DFSDM1_DATIN4 (PE10)	6	DFSDM1_DATIN2 (PE7)
7	DFSDM_DATIN6 (PF13)	8	NC
9	NC	10	DETECTn (PD1)
11	NC	12	MEMS_LED (PG8)
13	NC	14	NC
15	NC	16	NC

UM2679 - Rev 7 page 24/46

Pin number	Function / MCU port	Pin number	Function / MCU port
17	NC	18	NC
19	3V3	20	GND

Limitations:

On the STM32H735G-DK board, DFSDM1 signals are sharing the same I/Os with some I/Os used in STMod+. As a consequence, when using DFSDM1 signals to control an extension audio module connected to the audio connector (CN20), the user must make sure that nothing is connected on the STMod+ connector (pins 1, 2, 3, and 4).

8.8 TFT LCD connector (CN19)

The CN19 connector is designed to connect the 4.3-inch TFT LCD touchscreen board. Table 19 shows the assignment of CN19 and STM32H735IGK6 terminals.

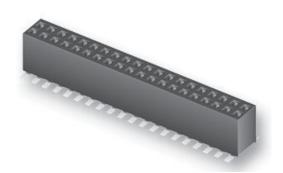


Figure 17. TFT LCD connector (CN19)

Table 19. TFT LCD connector (CN19) pinout

MCU port	Signal name	CN19 pir	n number	Signal name	MCU port
-	GND	1	2	GND	-
PE0	LCD_R0	3	4	LCD_G0	PB1
PH3	LCD_R1	5	6	LCD_G1	PB0
PH8	LCD_R2	7	8	LCD_G2	PA6
PH9	LCD_R3	9	10	LCD_G3	PE11
PH10	LCD_R4	11	12	LCD_G4	PH15
PH11	LCD_R5	13	14	LCD_G5	PH4
PE1	LCD_R6	15	16	LCD_G6	PC7
PE15	LCD_R7	17	18	LCD_G7	PD3
-	GND	19	20	GND	-
PG14	LCD_B0	21	22	LCD_DE	PE13
PD0	LCD_B1	23	24	LCD_DISP	PD10
PD6	LCD_B2	25	26	LCD_HSYNC	PC6
PA8	LCD_B3	27	28	LCD_VSYNC	PA4
PE12	LCD_B4	29	30	GND	-
PA3	LCD_B5	31	32	LCD_CLK	PG7
PB8	LCD_B6	33	34	GND	-
PB9	LCD_B7	35	36	NRST	NRST

UM2679 - Rev 7 page 25/46

MCU port	Signal name	CN19 pii	n number	Signal name	MCU port
PB9	LCD_B7	35	36	LCD_RST ⁽¹⁾	PH6
-	GND	37	38	I2C4_SDA	PF15
PG2	CTP_INT	39	40	I2C4_SCL	PF14
-	NC	41	42	NC	-
PG15	LCD_BL_CTRL	43	44	NC	-
-	5 V	45	46	NC	-
-	GND	47	48	NC	-
-	GND	49	50	3V3	-

^{1.} The default configuration is shown in bold. Refer to Section 7.1 on solder bridge configuration for CN19 pin 36 affectation.

8.9 Ethernet RJ45 connector (CN3)

The STM32H735G-DK board supports 10Mbps/100Mbps Ethernet communications with the PHY (U9), and the integrated RJ45 connector (CN3). The Ethernet PHY is connected to the STM32H735IGK6 microcontroller through an RMII interface.

The PHY 25 MHz clock is generated from the X1 oscillator, while the PHY RMII_REF_CLK generates the STM32H735IGK6 50 MHz clock.

Green LED: Ethernet traffic

Amber LED: Ethernet connection

12 1

Figure 18. Ethernet RJ45 connector (CN3)

The related pinout for the Ethernet connector is listed in Table 20.

Table 20. Ethernet connector (CN3) pinout

Connector	Pin number	Description	Pin number	Description
	1	TX+	7	NC
	2	TX-	8	NC
CN3	3	RX+	9	Cathode yellow LED
CNS	4	NC	10	Anode yellow LED
	5	NC	11	Cathode green LED
	6	RX-	12	Anode green LED

UM2679 - Rev 7 page 26/46

8.10 Audio green jack connector (CN10) - line out

A 3.5 mm stereo audio green jack output (CN10) is available on the STM32H735G-DK board to support headphones.

Figure 19. Audio jack connector (CN10)

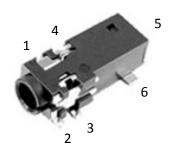


Table 21. Audio jack connector (CN10) pinout

Pin number	Description	Stereo headset with microphone pinning	
1	NC	NA	(i) L
2	NC	NA	R GND
3	GND	GND	МС
4	OUT_Right	SPK_R (33 Ω typical)	
5	NC	NA	-
6	OUT_Left	SPK_L (33 Ω typical)	"

8.11 Audio blue jack connector (CN11) - line in

A 3.5 mm stereo audio blue jack (CN11) input is available on the STM32H735G-DK board for audio line input.

UM2679 - Rev 7 page 27/46

8.12 50 Ω SMA connector (CN1) for ADC input

A 50 Ω SMA connector (CN1) is available on the STM32H735G-DK board. It can be connected either to a 16-bit ADC input or to a 12-bit ADC input of the STM32H735IGK6 microcontroller. To get good ADC performances, a low noise signal generator is recommended to provide an input signal.

Figure 20. 50 Ω SMA connector (CN1)

Limitations:

On the STM32H735G-DK board, PA0_C input is connected either to ARD_A2 signal (CN9 ARDUINO® connector) or to ADC_IN signal (CN1 SMA connector), thanks to solder bridge configuration. As a consequence, when using the ADC_IN line, the user must make sure that ARD_A2 is unconnected and vice versa.

Table 22. ADC input (CN1) configuration

Solder bridge	Setting ⁽¹⁾	Description
	ON, OFF	PA0_C connected to ADC_IN (CN1 SMA)
SB4, SB5	ON, OFF	PA0_C not connected to ARD_A2 (CN9 ARDUINO®)
(16-bit ADC)	OFF, ON	PA0_C not connected to ADC_IN
		PA0_C connected to ARD_A2 (CN9 ARDUINO®)
	ON, OFF	PC2_C connected to ADC_IN (CN1 SMA)
SB41, SB42		PC2_C not connected to ARD_A4 (CN9 ARDUINO®)
(12-bit ADC)	OFF, ON	PC2C_C not connected to ADC_IN
		PC2_C connected to ARD_A4 (CN9 ARDUINO®)

^{1.} The default configuration is shown in bold.

8.13 ARDUINO® Uno V3 connectors (CN4, CN5, CN8, and CN9)

ARDUINO® Uno V3 connectors (CN4, CN5, CN8, and CN9) are female connectors compatible with ARDUINO® Uno revision 3 standard. Most shields designed for ARDUINO® Uno V3 fit the STM32H735G-DK board.

Important: The STM32 microcontroller I/Os are 3.3 V compatible instead of 5 V for ARDUINO® Uno.

Limitations:

On the STM32H735G-DK board, SPI5 signals are sharing the same IOs with SAI1 and UART7. As a consequence, when using SPI5 signals on the ARDUINO[®] connector, the audio codec SAI1 interface cannot be used. Same, the user must make sure that nothing is connected on STMod+ (pins 1, 2, 3, and 4) and PmodTM (pins 1, 2, 3, and 4) connectors.

UM2679 - Rev 7 page 28/46

Table 23. ARDUINO® Uno V3 compatible connectors

		Left conn	ectors			Right o	connectors	5	
Conn. name	Pin number	Pin name	MCU pin	Function	Function	MCU pin	Pin name	Pin number	CN No.
					I2C4_SCL	PF14	D15	10	
					I2C4_SDA	PF15	D14	9	
		-			AVDD	-	AVDD	8	
					Ground	-	GND	7	
	1	-	-	5V_IN test	SPI5_SCK	PF7	D13	6	
	2	IOREF	-	3V3 ref	SPI5_MISO	PF8	D12	5	CN4 Digital
	3	NRST	NRST	Reset	TIM23_CH4, SPI5_MOSI	PF9	D11	4	Digital
CN5 Power	4	3V3	-	3V3 output	TIM23_CH1, SPI5_NSS	PF6	D10	3	
	5	5V	-	5V I/O	TIM4_CH2	PB7	D9	2	
	6	GND	-	Ground	-	PE3	D8	1	
	7	GND	-	Ground		'	-		
	8	VIN	-	Power input	-	PG5	D7	8	
		_			TIM4_CH4	PD15	D6	7	
	1	A0	PC0	ADC123_INP10	TIM1_CH4	PE14	D5	6	
	2	A1	PH2	ADC3_INP13	-	PG4	D4	5	
	3 ⁽¹⁾	A2	PA0_C	ADC12_INP0	TIM5_CH1	PA0	D3	4	CN8
CN9 Analog	4 ⁽¹⁾	A3	PA1_C	ADC12_INP1	-	PG3	D2	3	Digital
	5 ⁽¹⁾	A4	PC2_C or PF15 ⁽²⁾	ADC3_INP0 or I2C4_SDA ⁽²⁾	UART1_TX	PB14	D1	2	
	6 ⁽¹⁾	A5	PC3_C or PF14 ⁽²⁾	ADC3_INP1 or I2C4_SCL ⁽²⁾	UART1_RX	PB15	D0	1	

^{1.} Supports analog input only. The current capability is limited to 1 mA when used as digital input or output.

Before using any ARDUINO® Uno V3 shield, it is important to refer to Section 6.4.1: Supplying the board through the STLINK-V3E USB port: 5 V/500 mA for a correct jumper configuration.

UM2679 - Rev 7 page 29/46

By default, pins 5 and 6 of connector CN9 are connected to ADC MCU input ports PC2_C and PC3_C respectively, thanks
to the configuration of solder bridges: SB32 and SB33 ON, and SB31 and SB34 OFF. In case it is necessary to connect I²C
interface signals on pins 5 and 6 of CN9 instead of ADC inputs, the configuration is SB32 and SB33 OFF, SB31 and SB34
ON

STM32H735G-DK I/O assignment

Table 24. STM32H735G-DK I/O assignment

Pin number	GPIO port	Signal or label	Comment
P1	PA0	ARD_D3	TIM5_CH1
P2	PA1	RMII_REF_CLK	-
R2	PA2	RMII_MDIO	-
N5	PA3	LCD_B5	-
P5	PA4	LCD_VSYNC	-
P6	PA5	STMOD#13-ADC	ADC12_INP19 II DAC1_OUT2
R7	PA6	LCD_G2	-
N6	PA7	RMII_CRS_DV	-
B14	PA8	LCD_B3	-
D13	PA9	USB_FS_VBUS	-
C14	PA10	USB_FS_ID	-
C15	PA11	USB_FS_DM	-
B15	PA12	USB_FS_DP	-
B13	PA13	JTMS	SWDIO
A12	PA14	JTCK	SWCLK
A11	PA15	JTDI	-
R8	PB0	LCD_G1	-
M8	PB1	LCD_G0	-
P7	PB2	OCSPI1_DQS	-
A6	PB3	JTDO/TRACESWO	-
B6	PB4	NJTRST	-
C6	PB5	FDCAN2_RX	-
A5	PB6	FDCAN2_TX	-
B5	PB7	ARD_D9	TIM4_CH2
A2	PB8	LCD_B6	-
В3	PB9	LCD_B7	-
N12	PB10	RMII_RX_ER	-
P10	PB11	RMII_TX_EN	-
M15	PB12	RMII_TXD0	-
L15	PB13	RMII_TXD1	-
K15	PB14	ARD_D1	USART1_TX
K14	PB15	ARD_D0	USART1_RX
L2	PC0	ARD_A0	ADC123_INP10
L3	PC1	RMII_MDC	-
M1	PC2	USER_LED2	-
M2	PC3	USER_LED1	-
R6	PC4	RMII_RXD0	-
M7	PC5	RMII_RXD1	-

UM2679 - Rev 7 page 30/46

Pin number	GPIO port	Signal or label	Comment
E14	PC6	LCD_HSYNC	-
D15	PC7	LCD_G6	-
D14	PC8	SDIO1_D0	-
E13	PC9	SDIO1_D1	-
C12	PC10	SDIO1_D2	-
C11	PC11	SDIO1_D3	-
B11	PC12	SDIO1_CK	-
C1	PC13	WAKEUP	-
D2	PC14-OSC32_IN	OSC32_IN	-
D1	PC15-OSC32_OUT	OSC32_OUT	-
C10	PD0	LCD_B1	-
A10	PD1	DETECTn	-
B10	PD2	SDIO1_CMD	-
A9	PD3	LCD_G7	-
C9	PD4	OCSPI1_IO4	-
В9	PD5	OCSPI1_IO5	-
D9	PD6	LCD_B2	-
B8	PD7	OCSPI1_IO7	-
L14	PD8	T_VCP_TX	USART3_TX
K13	PD9	T_VCP_RX	USART3_RX
L13	PD10	LCD_DISP	-
J13	PD11	OCSPI1_IO0	-
J15	PD12	OCSPI1_IO1	-
H15	PD13	OCSPI1_IO3	-
H14	PD14	STMOD#14-PWM	-
J12	PD15	ARD_D6	TIM4_CH4
B4	PE0	LCD_R0	-
C4	PE1	LCD_R6	-
C3	PE2	OCSPI1_IO2	-
B2	PE3	ARD_D8	-
B1	PE4	SAI4_D2	-
D3	PE5	SAI4_CK2	-
E3	PE6	SAI1_SD_A	-
P9	PE7	STMOD#17	IO II DFSDM1_DATIN2
N8	PE8	Audio_Int	-
R11	PE9	STMOD#18	IO II DFSDM1_CKOUT
R9	PE10	STMOD#19	IO II DFSDM1_DATIN4
R12	PE11	LCD_G3	-
P12	PE12	LCD_B4	-
P13	PE13	LCD_DE	-
M12	PE14	ARD_D5	TIM1_CH4

UM2679 - Rev 7 page 31/46

Pin number	GPIO port	Signal or label	Comment
P14	PE15	LCD_R7	-
F4	PF0	OCSPI2_IO0	-
F3	PF1	OCSPI2_IO1	-
G3	PF2	OCSPI2_IO2	-
H4	PF3	OCSPI2_IO3	-
H2	PF4	OCSPI2_CLK	-
H3	PF5	μSD_Detect	-
		STMOD#1	
H1	PF6	ARD_D10	SPI5_NSS II UART7_RX II SAI1_SD_B
		SAI1_SD_B	
		STMOD#2	
J3	PF7	ARD_D13	SPI5_SCK II UART7_TX II SAI1_MCLK_B
		SAI1_MCLK_B	5252.2
		STMOD#3	0015 14400 4441077 070 4
J2	PF8	ARD_D12	SPI5_MISO II UART7_RTS II SAI1_SCK_B
		SAI1_SCK_B	
		STMOD#4	SPI5_MOSI II UART7_CTS II
J4	PF9	ARD_D11	SAI1_FS_B
		SAI1_FS_B	
K3	PF10	OCSPI1_CLK	-
N7	PF11	STMOD#8-MOSIs	SPI5_MOSI
P11	PF12	OCSPI2_DQS	-
N11	PF13	STMOD#20	IO II DFSDM1_DATIN6
R10	PF14	STMOD#7-SCL	I2C4_SCL
N10	PF15	STMOD#10-SDA	I2C4_SDA
P8	PG0	OCSPI2_IO4	-
N9	PG1	OCSPI2_IO5	-
G15	PG2	CTP_INT	-
H13	PG3	ARD_D2	-
G14	PG4	ARD_D4	-
F15	PG5	ARD_D7	-
F14	PG6	OCSPI1_NCS	-
G13	PG7	LCD_CLK	-
G12	PG8	MEMS_LED	-
A8	PG9	OCSPI1_IO6	-
C8	PG10	OCSPI2_IO6	-
A7	PG11	OCSPI2_IO7	-
D8	PG12	OCSPI2_NCS	-
В7	PG13	USB_FS_OVCR	-
C7	PG14	LCD_B0	-
D7	PG15	LCD_BL_CTRL	-
J1	PH0	OSC_25M	-

UM2679 - Rev 7 page 32/46

Pin number	GPIO port	Signal or label	Comment
K1	PH1	STMOD#12-RST	-
N4	PH2	ARD_A1	ADC3_INP13
R4	PH3	LCD_R1	-
P4	PH4	LCD_G5	-
R5	PH5	USB_FS_PWR_EN	-
P15	PH6	LCD_RST	-
M11	PH7	STMOD#9-MISOs	SPI5_MISO
N13	PH8	LCD_R2	-
M14	PH9	LCD_R3	-
N14	PH10	LCD_R4	-
M13	PH11	LCD_R5	-
N15	PH12	STMOD#11-INT	-
C13	PH13	FDCAN1_TX	-
B12	PH14	FDCAN1_RX	-
D12	PH15	LCD_G4	-
R3	PA0_C	ADC_IN	ADC12_INP0
		ARD_A2	_
P3	PA1_C	ARD_A3	ADC12_INP1
N1	PC2_C	ARD_A4	ADC3_INP0
N2	PC3_C	ARD_A5	ADC3_INP1
L1	NRST	NRST	-
C5	BOOT0	воото	-
D4	PDR_ON	PDR_ON	-

UM2679 - Rev 7 page 33/46

10 STM32H735G-DK product information

10.1 Product marking

The product and each board composing the product are identified with one or several stickers. The stickers, located on the top or bottom side of each PCB, provide product information:

 Main board featuring the target device: product order code, product identification, serial number, and board reference with revision

Single-sticker example:

Product order code Product identification syywwxxxx MBxxxx-Variant-yzz

Dual-sticker example:

Product order code Product identification

and

MBxxxx-Variant-yzz syywwxxxxx

Other boards if any: board reference with revision and serial number.

Examples:

MBxxxx-Variant-yzz syywwxxxxx

or 🖁

or

On the main board sticker, the first line provides the product order code, and the second line the product identification.

On all board stickers, the line formatted as "MBxxxx-Variant-yzz" shows the board reference "MBxxxx", the mounting variant "Variant" when several exist (optional), the PCB revision "y", and the assembly revision "zz", for example B01. The other line shows the board serial number used for traceability.

Products and parts labeled as "ES" or "E" are not yet qualified or feature devices that are not yet qualified. STMicroelectronics disclaims any responsibility for consequences arising from their use. Under no circumstances will STMicroelectronics be liable for the customer's use of these engineering samples. Before deciding to use these engineering samples for qualification activities, contact STMicroelectronics' quality department.

"ES" or "E" marking examples of location:

- On the targeted STM32 that is soldered on the board (for an illustration of STM32 marking, refer to the STM32 datasheet *Package information* paragraph at the *www.st.com* website).
- Next to the ordering part number of the evaluation tool that is stuck, or silk-screen printed on the board.

Some boards feature a specific STM32 device version, which allows the operation of any bundled commercial stack/library available. This STM32 device shows a "U" marking option at the end of the standard part number and is not available for sales.

To use the same commercial stack in their applications, the developers might need to purchase a part number specific to this stack/library. The price of those part numbers includes the stack/library royalties.

UM2679 - Rev 7 page 34/46

10.2 STM32H735G-DK product history

Table 25. Product history

Order code	Product identification	Product details	Product change description	Product limitations
STM32H735G-DK	DK32H735G\$AT1	MCU: STM32H735IGK6 revision "Z" MCU errata sheet: STM32H72xx/73xx device errata (ES0491) Boards: MB1520-H735I-B02 (main board) MB1280-3V3-C01 (fan-out board) MB1315-Default-A01 (LCD daughterboard)	Initial revision	The fixing holes in the MB1315 LCD daughterboard are not connected to the ground of the MB1520 main board impacting radiated performances only.
	DK32H735G\$AT2	MCU: STM32H735IGK6 revision "Z" MCU errata sheet: STM32H72xx/73xx device errata (ES0491) Boards: MB1520-H735I-C02 (main board) MB1280-3V3-C01 (fan-out board) MB1315-Default-A01 (LCD daughterboard)	Main board revision changed	No limitation
	DK32H735G\$AT3	MCU: STM32H735IGK6 revision "Z" MCU errata sheet: STM32H72xx/73xx device errata (ES0491) Boards: MB1520-H735I-C02 (main board) MB1280-3V3-C01 (fan-out board) MB1315-Default-A01 (LCD daughterboard)	MCU with new bootloader with SFI feature	No limitation
	DK32H735G\$AT4	MCU: STM32H735IGK6 revision "Z" MCU errata sheet: STM32H72xx/73xx device errata (ES0491) Boards: MB1520-H735I-C02 (main board) MB1280-3V3-C01 (fan-out board) MB1315-Default-A01 (LCD daughterboard)	Packaging: plastic blister replaced by a carton box	No limitation

UM2679 - Rev 7 page 35/46

Order code	Product identification	Product details	Product change description	Product limitations
STM32H735G-DK	DK32H735G\$AT5	MCU: STM32H735IGK6 revision "Z" MCU errata sheet: STM32H72xx/73xx device errata (ES0491) Boards: MB1520-H735I-C03 (main board) MB1280-3V3-C01 (fan-out board) MB1315-Default-A03 (LCD daughterboard)	 Main board revision changed LCD daughterboard revision changed Board stickers format changed 	If the demo freezes, the user must press the reset button.

10.3 Board revision history

Table 26. Board revision history

Board reference	Board variant and revision	Board change description	Board limitations
	H735I-B02	Initial revision	The fixing holes in the MB1315 LCD daughterboard are not connected to the ground of the MB1520 main board impacting radiated performances only.
MB1520 (main board)	H735I-C02	Remove the limitations of the MB1520-H735I-B02 revision.	No limitation
(main board)	H735I-C03	Several part references are updated due to obsolescence, such as CYPRESS_S70KL1281DABHI023 memory (U7) replaced with ISSI_IS66WVH16M8DBLL-100B1LI with impact on hardware. Refer to the bill of materials for details.	If the demo freezes, the user must press the reset button.
MB1280 (fan-out board)	3V3-C01	Several part references updated due to obsolescence, such as transistors. Refer to the bill of materials for details. T1 and T2 different wiring Silkscreens, logos, and PCB mechanical size updated	No limitation
	Default-A01	Initial revision	No limitation
MB1315 (LCD daughterboard)	Default-A03	Several part references updated due to obsolescence, such as ROCKTECH_RK043FN48H-CT672B LCD (U1) replaced with ROCKTECH_RK043FN88H-CT661C with impact on firmware. Refer to the bill of materials for details.	No limitation

UM2679 - Rev 7 page 36/46

11 Compliance statements and conformity declarations

11.1 Federal Communications Commission (FCC) compliance statement

Part 15.19

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Part 15.21

Any changes or modifications to this equipment not expressly approved by STMicroelectronics may cause harmful interference and void the user's authority to operate this equipment.

Part 15.105

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense.

Note: Use only shielded cables.

Responsible Party - U.S. Contact Information:

Francesco Doddo STMicroelectronics, Inc. 200 Summit Drive | Suite 405 | Burlington, MA 01803 USA

Telephone: +1 781-472-9634

11.2 Innovation, Science and Economic Development Canada (ISED) compliance statement

This product complies with the ICES-003 standard class A of the ISED regulation.

ISED Canada ICES-003 Compliance Label: CAN ICES (A)/NMB (A).

Note: Use only shielded cables.

Ce produit est conforme à la norme NMB-003 classe A de la ISDE.

Étiquette de conformité à la NMB-003 d'ISDE Canada : CAN ICES (A) / NMB (A).

Note: Utiliser uniquement des câbles blindés.

11.3 UKCA conformity

Simplified UK declaration of conformity

Hereby, the manufacturer STMicroelectronics, declares that the equipment type STM32H735G-DK is in compliance with the UK Electromagnetic Compatibility Regulations 2016 (UK SI 2016 No. 1091) and with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012 (UK SI 2012 No. 3032).

Note: Use only shielded cables.

UM2679 - Rev 7 page 37/46

Note:

11.4 CE conformity

11.4.1 Simplified EU declaration of conformity

Hereby, STMicroelectronics declares that the equipment type STM32H735G-DK is in compliance with directives 2011/53/EU and 2015/863/EU (RoHS), and 2014/30/EU (EMC).

Note: • RoHS: Restriction of hazardous substances

EMC: Electromagnetic compatibility

Warning

This device is compliant with Class A of EN55032/CISPR32. In a residential environment, this equipment may cause radio interference.

Note: Use only shielded cables.

11.4.2 Déclaration de conformité UE simplifiée

STMicroelectronics déclare que l'équipement électrique du type STM32H735G-DK est conforme aux directives 2011/53/UE et 2015/863/UE (LdSD), et à la directive 2014/30/UE (CEM).

LdSD: directive sur la limitation de l'utilisation des substances dangereuses

CEM : compatibilité électromagnétique

Avertissement

Cet équipement est conforme à la Classe A de la EN55032 / CISPR 32. Dans un environnement résidentiel, cet équipement peut créer des interférences radio.

Note: Utiliser uniquement des câbles blindés.

UM2679 - Rev 7 page 38/46

12 Product disposal

Disposal of this product: WEEE (Waste Electrical and Electronic Equipment)

(Applicable in Europe)

This symbol on the product, accessories, or accompanying documents indicates that the product and its electronic accessories must not be disposed of with household waste at the end of their working life.

To prevent possible harm to the environment and human health from uncontrolled waste disposal, separate these items from other types of waste and recycle them responsibly at a designated collection point to promote the sustainable reuse of material resources.

Household users:

Contact the retailer that you purchased the product from or your local authority for details of your nearest designated collection point.

Business users:

Contact your dealer or supplier for further information.

UM2679 - Rev 7 page 39/46

Revision history

Table 27. Document revision history

Date	Revision	Changes	
30-Apr-2020	1	Initial release.	
3-Dec-2020	2	Added alternative memory solutions to Section 7.9 HyperRAM memory.	
23-Mar-2021	3	Added Section 9 STM32H735G-DK board information with updated Product marking.	
17-May-2021	4	Updated Table 19 footnote on CN19 pin 36 configuration.	
16-Sep-2021	5	Updated <i>Table 23</i> regarding limitation to analog input usage for CN9 A2 to A6 pins.	
06-Mar-2025	6	Added Safety recommendations, Table 25 and Table 26 to STM32H735G-DK product information, and Product disposal.	
17-Nov-2025	7	Updated: Section 3.4: EDA resources Section 5: Safety recommendations Section 6: Hardware layout and configuration Section 10.2: STM32H735G-DK product history Section 10.3: Board revision history Section 11: Compliance statements and conformity declarations	

UM2679 - Rev 7 page 40/46

Contents

1	Feat	Features						
2	Orde	ering inf	formation	3				
	2.1	Codific	ation	3				
3	Dev	elopmer	nt environment	4				
	3.1	System	n requirements	4				
	3.2	Development toolchains						
	3.3	Demon	nstration software	4				
	3.4	EDA re	esources	4				
4	Con	ventions	S	5				
5	Safe	ty recor	mmendations	6				
	5.1	Targeted audience						
	5.2	Handlir	ng the board	6				
	5.3	Deliver	ry recommendations	6				
	5.4	Power	supply	6				
6	Hard	dware la	yout and configuration	7				
	6.1	Hardware layout						
	6.2	Mechanical dimensions						
	6.3	Embed	lded STLINK-V3E	10				
		6.3.1	Description	10				
		6.3.2	Drivers	10				
		6.3.3	STLINK-V3E firmware upgrade	11				
		6.3.4	Using an external debug tool to program and debug the on-board STM32	11				
	6.4	Power	supply	12				
		6.4.1	Supplying the board through the STLINK-V3E USB port: 5 V/500 mA	12				
		6.4.2	Supplying the board from VIN: 7 to 12 V/800 mA					
		6.4.3	Supplying the board with an external USB charger: 5 V					
		6.4.4	MCU power supply - SMPS or LDO configurations					
	6.5		urrent-consumption measurement					
	6.6		source					
	6.7		sources					
7	Boa	rd funct	ions	16				
	7.1		olor LCD 480x272 pixels					
	7.2	USB O	TG FS	16				
	7.3	Etherne	et	16				

	7.4	Power o	ver Ethernet	. 16
	7.5	microSD	o™ card	. 16
	7.6	Audio		. 16
	7.7	CAN FD)	. 18
	7.8	Octo-SF	PI NOR flash memory	. 18
	7.9	HyperR	AM [™] memory	. 18
	7.10	Virtual C	COM port	. 18
	7.11	TAG		. 18
	7.12	Buttons	and LEDs	. 18
8	Boar	d conne	ctors	.20
	8.1	STLINK	-V3E USB Micro-B connector (CN15)	. 20
	8.2	USB OT	G FS Micro-AB connector (CN14)	. 20
	8.3	microSE	D [™] card connector (CN2)	. 21
	8.4	STMod+	connector (P2)	. 22
	8.5	$Pmod^{^TM}$	connector (P1)	. 23
	8.6	TAG cor	nnector (CN21)	. 24
	8.7	Audio co	onnector (CN20)	. 24
	8.8	TFT LCI	D connector (CN19)	. 25
	8.9	Etherne	t RJ45 connector (CN3)	. 26
	8.10	Audio gr	reen jack connector (CN10) - line out	. 27
	8.11	Audio bl	ue jack connector (CN11) - line in	. 27
	8.12	50 Ω SN	//A connector (CN1) for ADC input	. 28
	8.13	ARDUIN	NO® Uno V3 connectors (CN4, CN5, CN8, and CN9)	. 28
9	STM	32H735G	G-DK I/O assignment	.30
10	STM3	32H735G	G-DK product information	.34
	10.1	Product	marking	. 34
	10.2	STM32H	H735G-DK product history	. 35
	10.3	Board re	evision history	. 36
11	Com	pliance	statements and conformity declarations	.37
	11.1		Communications Commission (FCC) compliance statement	
	11.2	Innovati	on, Science and Economic Development Canada (ISED) compliance statement.	. 37
	11.3	UKCA c	onformity	. 37
	11.4	CE conf	ormity	. 38
		11.4.1	Simplified EU declaration of conformity	. 38
		11.4.2	Déclaration de conformité UE simplifiée	. 38

12	Product disposal	.39
Revi	ision history	.40
List	of tables	.44
List	of figures	.45

List of tables

Table 1.	Ordering information	. 3
Table 2.	Codification explanation	. 3
Table 3.	ON/OFF convention	. 5
Table 4.	MIPI10 debug connector (CN7) pinout	11
Table 5.	External power sources: VIN from 7 to 12 V	13
Table 6.	External power source: 5V_USB_CHGR	13
Table 7.	Internal SMPS, LDO, and board configuration	14
Table 8.	Digital microphone configuration	17
Table 9.	CAN-FD3 configuration	18
Table 10.	Button and LED control port	19
Table 11.	USB Micro-B connector (CN15) pinout	20
Table 12.	USB OTG FS Micro-AB connector (CN14) pinout	21
Table 13.	microSD [™] connector (CN2) pinout	21
Table 14.	STMod+ connector (P2) pinout	22
Table 15.	STMod+ connector (P2) pinout	22
Table 16.	Pmod [™] connector (P1) pinout	23
Table 17.	TAG connector (CN21) pinout	24
Table 18.	Audio connector (CN20) pinout	24
Table 19.	TFT LCD connector (CN19) pinout	25
Table 20.	Ethernet connector (CN3) pinout	26
Table 21.	Audio jack connector (CN10) pinout	27
Table 22.	ADC input (CN1) configuration	
Table 23.	ARDUINO® Uno V3 compatible connectors	
Table 24.	STM32H735G-DK I/O assignment	
Table 25.	Product history	35
Table 26.	Board revision history	36
Table 27	Document revision history	40

List of figures

Figure 1.	STM32H735G-DK Discovery kit (top view)	. 1
Figure 2.	STM32H735G-DK Discovery kit (bottom view)	. 1
Figure 3.	Hardware block diagram	. 7
Figure 4.	STM32H735G-DK board layout (top view)	. 8
Figure 5.	STM32H735G-DK board layout (bottom view)	. 8
Figure 6.	STM32H735G-DK mechanical dimensions (top view) in millimeters	. 9
Figure 7.	STM32H735G-DK mechanical dimensions (bottom view) in millimeters	. 9
Figure 8.	USB composite device	10
Figure 9.	Connecting an external debug tool to program the on-board STM32	11
Figure 10.	USB Micro-B connector front view (CN15)	20
Figure 11.	USB OTG FS Micro-AB connector (CN14) front view	20
Figure 12.	microSD [™] card connector (CN2)	21
Figure 13.	STMod+ connector (P2)	22
Figure 14.	Pmod [™] connector (P1)	23
Figure 15.	TAG connector (CN21)	
Figure 16.	Audio connector (CN20)	24
Figure 17.	TFT LCD connector (CN19)	25
Figure 18.	Ethernet RJ45 connector (CN3)	26
Figure 19.	Audio jack connector (CN10)	27
Figure 20.	50 Ω SMA connector (CN1)	28

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics - All rights reserved

UM2679 - Rev 7 page 46/46