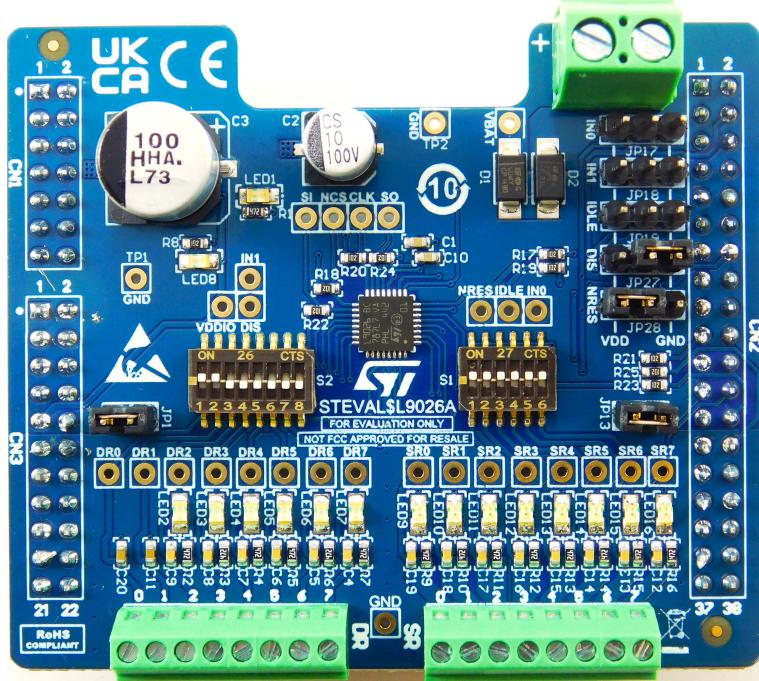


STEVAL-L9026 evaluation board user manual

Introduction


The STEVAL-L9026 is a tool designed to evaluate the L9026 smart power device, designed by STMicroelectronics in advanced BCD technology. The L9026 is an 8-channel IC with 2 fixed HS drivers and 6 configurable HS/LS drivers designed for automotive applications (LEDs and relays) and compatible with resistive, inductive, and capacitive loads. The device offers advanced diagnostic and protection functionalities such as short to GND, open load, overcurrent, and overtemperature detection. The 8 output channels can be driven by SPI or by 2 dedicated parallel inputs that can be associated to different output thanks to a programmable internal multiplexer. Limp home functionality is also featured, which allows the use of 2 selected drivers in specific fault conditions, such as SPI fault, microcontroller fault, or supply UV. Daisy chain compatibility even with 8-bit SPI is available. The device is able to ensure operation in cranking scenarios down to $VBATT = 3$ V and very low quiescent current in the SLEEP condition.

A serial peripheral interface (SPI) is used for control and configuration of the loads as well as of the device. Status feedback of all diagnostic functions is also provided.

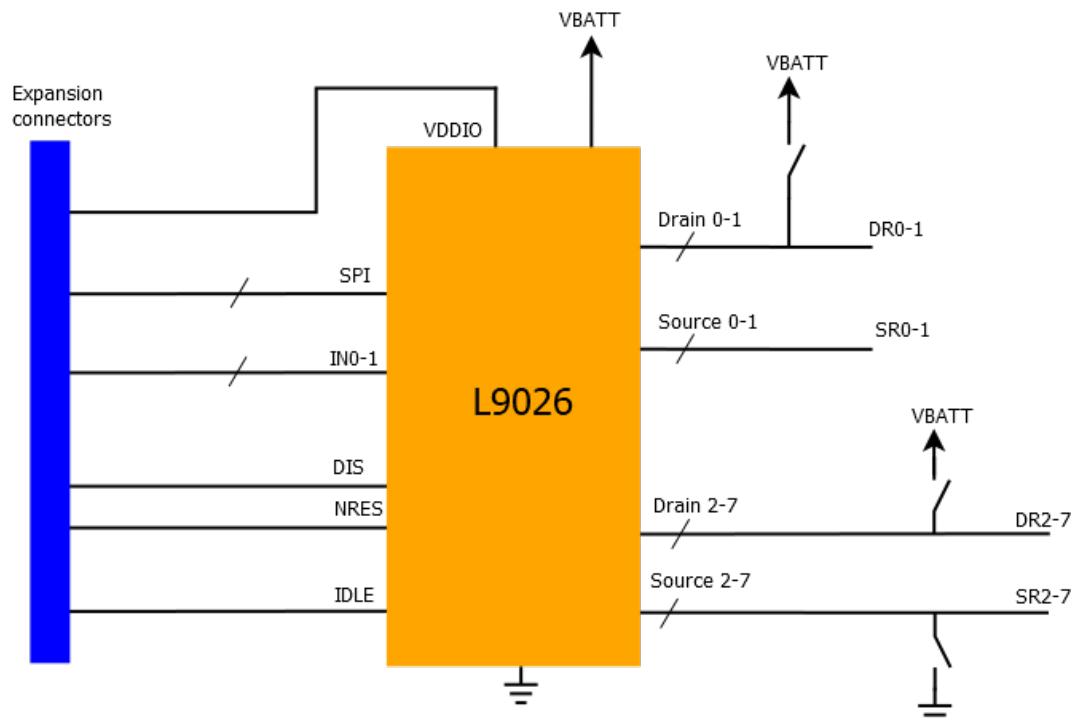
Thanks to the expansion connectors, the STEVAL-L9026 allows the complete control of L9026 communication interface (SPI) and parallel input/output.

The evaluation platform may be completed with an MCU board (AEK-MCU-C1MLIT1), which can be plugged on the STEVAL-L9026 and configured using its dedicated graphical user interface (GUI).

Figure 1. STEVAL-L9026 evaluation board

Notice: For dedicated assistance, submit a request through our online support portal at www.st.com/support.

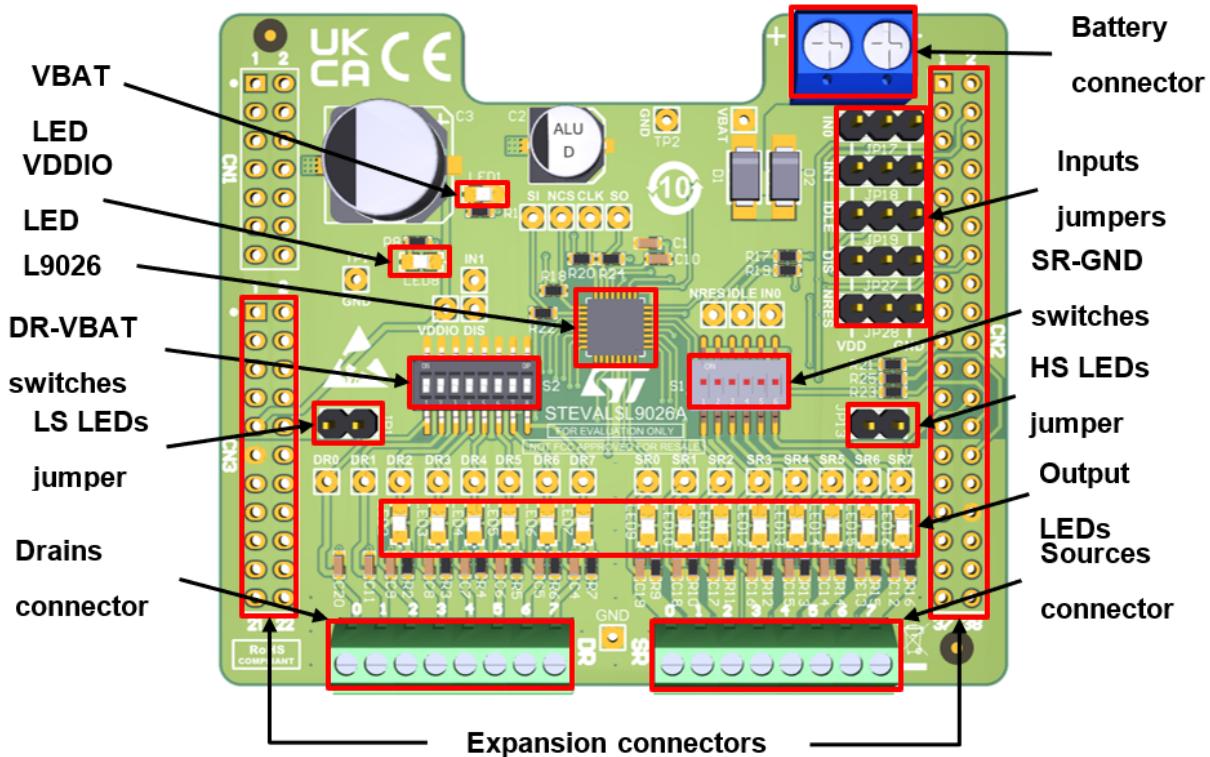
1 Hardware description


The STEVAL-L9026 is intended as a tool to evaluate all the functionalities of L9026. An optimized BOM has been dimensioned considering the real automotive application range.

The main board characteristics are the following:

- Operative input voltage: 3 - 28V (for VBATT pin)
- Operative input voltage: 3 - 5V (for VDDIO pin)
- 6 configurable HS/LS drivers up to 0.5 A each
- 2 HS drivers up to 0.5 A
- Configurable inputs (using jumpers):
 - IN0/IN1
 - IDLE
 - NRES
 - DIS
- Configurable dip switch for all the L9026 available configurations
- SPI communication interface
- 70 x 59.8 mm 4-layer PCB

1.1 Block diagram


Figure 2. STEVAL-L9026 block diagram

2 Board description

2.1 Evaluation board main components and connectors

Figure 3. Evaluation board main components and connectors

2.2 Connectors

Table 1. Evaluation board connectors and switches

Name	Description	Type
CN2	Expansion connector Pin 4: L9026 NRES Pin 6: L9026 SPI chip select Pin 9,10,20,32: GND Pin 14: L9026 IDLE Pin 19: L9026 DIS Pin 24: L9026 SPI input Pin 26: L9026 IN1 Pin 28: L9026 IN0 Pin 29: L9026 SPI output All the other pins are unconnected	19 x 2 header
CN3	Expansion connector Pin 5: L9026 SPI clock Pin 6, 11: GND Pin 9: L9026 VDDIO All the other pins are unconnected	11 x 2 header
J1	Drains connector Pin 1: drain 7 Pin 2: drain 6 Pin 3: drain 5 Pin 4: drain 4 Pin 5: drain 3 Pin 6: drain 2 Pin 7: drain 1 Pin 8: drain 0	8 x screw connector
J2	Main battery connector Pin 1: L9026 VBATT Pin 2: GND	2 x screw connector
J58	Sources connector Pin 1: source 7 Pin 2: source 6 Pin 3: source 5 Pin 4: source 4 Pin 5: source 3 Pin 6: source 2 Pin 7: source 1 Pin 8: source 0	8 x screw connector
S1	High/Low side configuration (Source) Open: sourcen is connected to J58_sourcen; n=2..7 (HS configuration) Closed (default): sourcen is connected to GND; n=2..7 (LS configuration)	6 x dip switches

Name	Description	Type
S2/1	Open: drainn is connected to J1_drainn; n=0, 1 Closed(default): drainn is connected to VBAT; n=0, 1	
S2/2	High/Low side configuration (Drain) Open (default): drainn is connected to J1_drainn; n=2..7 (LS configuration) Closed: drainn is connected to VBAT; n=2..7 (HS configuration)	8 x dip switches

2.3 Jumper configurations

Table 2. Evaluation board jumper configuration

Name	Description	Default configuration
JP1	LS outputs LEDs switch Closed → LS output LEDs active Open → LS output LEDs inactive	CLOSED
JP13	HS outputs LEDs switch Closed → HS output LEDs active Open → HS output LEDs inactive	CLOSED
JP17	IN0 switch Closed in position 1-2 → IN0 = 5 V Closed in position 2-3 → IN0 = 0V Open → IN0 driven by GUI	OPEN
JP18	IN1 switch Closed in position 1-2 → IN1 = 5 V Closed in position 2-3 → IN1 = 0V Open → IN1 driven by GUI	OPEN
JP19	IDLE switch Closed in position 1-2 → IDLE = 5 V Closed in position 2-3 → IDLE = 0V Open → IDLE driven by GUI	OPEN
JP27	DIS switch Closed in position 1-2 → DIS = 5 V Closed in position 2-3 → DIS = 0V Open → DIS pin floating	CLOSED (position 2-3)
JP28	NRES switch Closed in position 1-2 → NRES = 5 V Closed in position 2-3 → NRES = 0V Open → NRES pin floating	CLOSED (position 1-2)

Note: *Jumpers JP1 and JP13 must be left open for open load diagnosis.*

3 Getting started

3.1 Minimum setup

In order to operate the STEVAL-L9026, the following equipment is necessary:

- VBATT power supply 3 - 28 V current capability up to 8 A
- VDDIO power supply 3 - 5 V (only if AEK-MCU-C1MLIT1 is not used)
- Loads: LED, relay, lamp with a rating of 12 V, 0.5 A
- Optional: AEK-MCU-C1MLIT1 and STEVAL-L9026 GUI.

For AEK-MCU-C1MLIT1 board usage, please refer to the relevant user manual.

3.2 Startup

Follow the steps below before using the board, :

- Step 1.** Configure S1 and S2 dip switches according to [Table 1](#) or according to your preferred setup.
- Step 2.** Configure the power supply to the desired voltage level and limit the current to “n x 1A”, where n is the number of connected loads.
- Step 3.** Switch the power supplies on and check that VBATT LED and VDDIO LED are switched on.
- Step 4.** Check the IDLE input and SPI settings according to the L9026 datasheet.
- Step 5.** Check IN0 and IN1 according to your setup.
- Step 6.** Check that output LEDs switch on correctly when the linked output is switched on.

3.3 Usage example

In this section, a usage example is described, according to the configuration provided in the following table.

Table 3. Example configuration

Channel	Configuration	Load	Associated control
CH0	HS	Solenoid actuator	IN0
CH1	HS	(unconnected)	SPI
CH2	LS	LED	LED PWM generator
CH3	HS	Resistive load	GEN PWM generator
CH4	LS	Bulb lamp	SPI
CH5	LS	Relay	IN1
CH6	LS	(unconnected)	SPI
CH7	LS	(shorted to GND)	SPI

Table 4. S1 and S2 configuration

Switch name	Associated output	Position	Configuration
S1			
S1.1	Source2	Closed (connected to GND)	LS
S1.2	Source3	Open	HS
S1.3	Source4	Closed (connected to GND)	LS
S1.4	Source5	Closed (connected to GND)	LS
S1.5	Source6	Closed (connected to GND)	LS
S1.6	Source7	Closed (connected to GND)	LS
S2			
S2.1	Drain0	Closed (connected to VBAT)	HS
S2.2	Drain1	Closed (connected to VBAT)	HS
S2.3	Drain2	Open	LS
S2.4	Drain3	Closed (connected to VBAT)	HS
S2.5	Drain4	Open	LS
S2.6	Drain5	Open	LS
S2.7	Drain6	Open	LS
S2.8	Drain7	Open	LS

Startup phase:

Step 1. Power up the system

With the load configuration given in [Table 3](#), if JP1 (LS LEDs jumper) is closed, the output LED of CH7 will switch on since drain 7 is shorted to GND.

Step 2. IN0 = 0, IN1 = 0, IDLE = 0. The device is in **sleep** mode

Step 3. IN0 = 0, IN1 = 0, IDLE = 1. The device is in **idle** mode

Step 4. SPI initial configuration:

- **CFG_0: 0X8420** (configure CH3 as HS, all other outputs are in default state LS, frame counter = 0))
- **MAP_IN0: 0x9C05** (associate IN0 to CH0, frame counter = 1)
- **MAP_IN1: 0xA080** (associate IN1 to CH5, frame counter = 0)
- **CFG_1: 0x8803** (LED PWM generator freq = 122.5Hz, frame counter = 1)
- **CFG_2: 0x8C00** (GEN PWM generator freq = 122.5Hz, no adjustment, frame counter = 0)
- **PWM_LED_DC: 0xB001** (PWM LED duty cycle = 0%, frame counter = 1)
- **PWM_GEN_DC: 0xAC02** (PWM GEN duty cycle = 0%, frame counter = 0)
- **MAP_PWM: 0xA431** (CH2-CH3 driven by internal PWM generators, frame counter = 1)
- **PWM_SEL: 0xA812** (CH2 driven by PWM LED & CH3 driven by PWM GEN, frame counter = 0)
- **BIM: 0x9041** (activate bulb inrush mode on CH4, frame counter = 1)
- **CFG_1: 0x8900** (put device in **active mode**, frame counter = 0)
- **STA_1:0x4403** (read Status register 1, expected results POR = 1, VDD_UV = 0, VS_UV = 0 MODE = 11: active mode, frame counter = 1)

The implemented SPI protocol provides the answer to a command frame only with the next transmission triggered by the MCU; so, for example, the expected result of this STA_1 read, will be the SDO value of the next STA_0 read.

- **STA_0:0x4000** (read Status register 0, expected results OUT_ON_ERR = 0, OUT_OFF_ERR = 0, frame counter = 0)

Step 5. OFF diagnosis:

Before sending the next SPI command, remove jumpers JP1&JP13 otherwise the OUTPUT LED is considered as a load for CH6, masking the open load diagnosis.

- **DIAG_OFF_EN: 0xB7FF** (enable OFF diagnosis on all channels to detect open load or short circuit to GND, frame counter = 1)

Wait at least 1.6 ms to allow the OFF-diagnosis cycle to be completed.

- **STA_0: 0x4000** (read Status register 0: expected result DIS = 0, NRES = 1, IDLE = 1, IN1 = 0, IN0 = 0, OUT_ON_ERR = 0, OUT_OFF_ERR = 1, frame counter = 0)
- **DIAG_OPL_OFF: 0x4C01** (read open load in OFF diagnostic: expected results OUT6=1 and OUT1=1 because unconnected, frame counter = 1)
- **DIAG_SHG: 0x5400** (read short to GND diagnostic: expected results OUT7 = 1 because shorted to GND, frame counter = 0)

After OFF diagnosis completion, jumpers JP1&JP13 can be closed, so there will be visual feedback at channels switch ON.

Step 6. Switch ON the loads

- IN0 =1, IN1 = 1 (switch ON CH0 & CH5, through GUI or JP17-JP18)
- **PWM_SPI: 0x9B49** (all SPI driven channels are switched ON, frame counter = 1)
- **PWM_GEN_DC: 0xAFEE** (configure PWM GEN duty cycle at 100 %, the expected effect is CH3 fully ON, frame counter = 0)
- **PWM_LED_DC: 0XB3FD** (configure PWM LED duty cycle at 100 %, the expected effect is CH2 fully ON, frame counter = 1)

Step 7. Over current and over temperature diagnosis

- **DIAG_OVC_OVT:0x4802** (read the overcurrent and overtemperature diagnosis, expected results OUT4 = 1 since a bulb lamp has been used; refer to the L9026 datasheet for further details. Frame counter = 0)
- **DIAG_OVC_OVT_RLW: 0XBFFD** (clear all the overcurrent and overtemperature diagnosis, expected result reading again DIAG_OVC_OVT all the diagnosis has been cleared. Frame counter = 1)

Before sending the next SPI commands, remove jumpers JP13 otherwise the OUTPUT LEDs are considered as a load for HS channels, masking the open load diagnosis.

Step 8. OPL in ON diagnosis on channels configured as HS:

- **DIAG_OPL_ON_EN: 0xB804** (enable open load in ON diagnosis on ch0, frame counter = 0)
Wait at least 210 ms to allow the OL in ON diagnosis cycle to be completed.
- **DIAG_OPL_ON_EN: 0xB809** (enable open load in ON diagnosis on ch1, frame counter = 1)
Wait at least 210 ms to allow the OL in ON diagnosis cycle to be completed.
- **DIAG_OPL_ON_EN: 0xB820** (enable open load in ON diagnosis on ch3, frame counter = 0)
Wait at least 210 ms to allow the OL in ON diagnosis cycle to be completed.
- **DIAG_OPL_ON:0x5003** (read OL in ON diagnostic; expected result is OUT5 = 1 since unconnected, frame counter = 1)

4 PCB layout

Figure 4. Assembly top

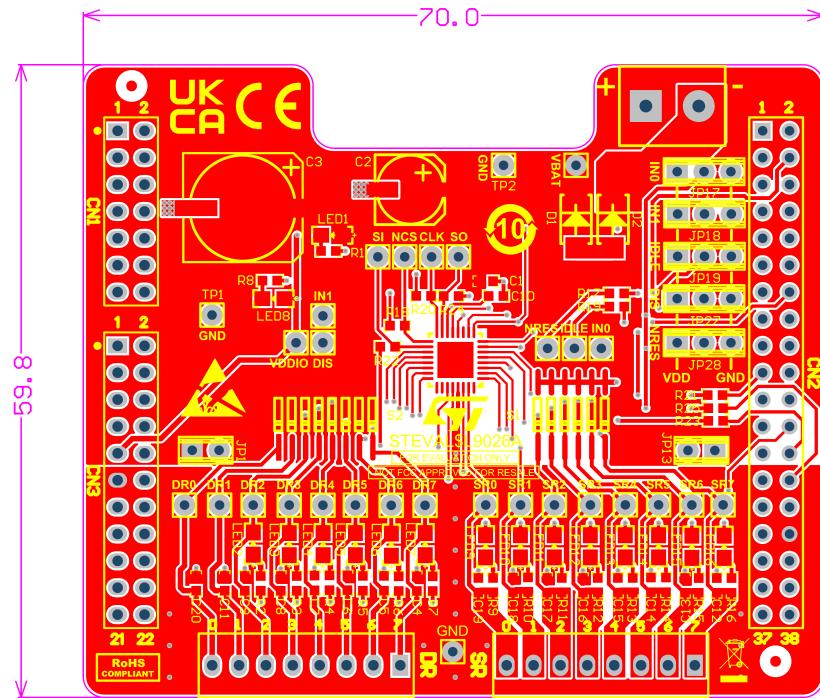
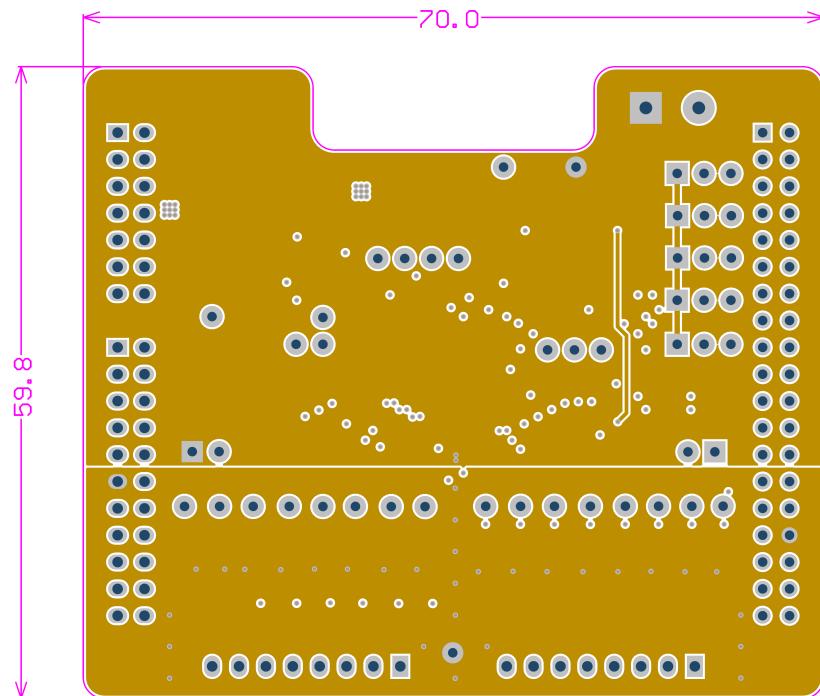
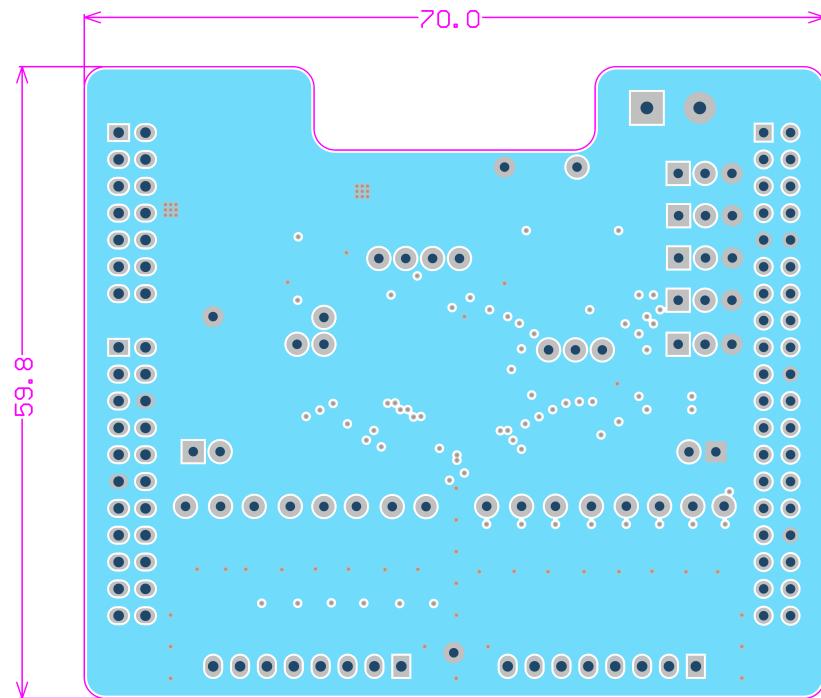
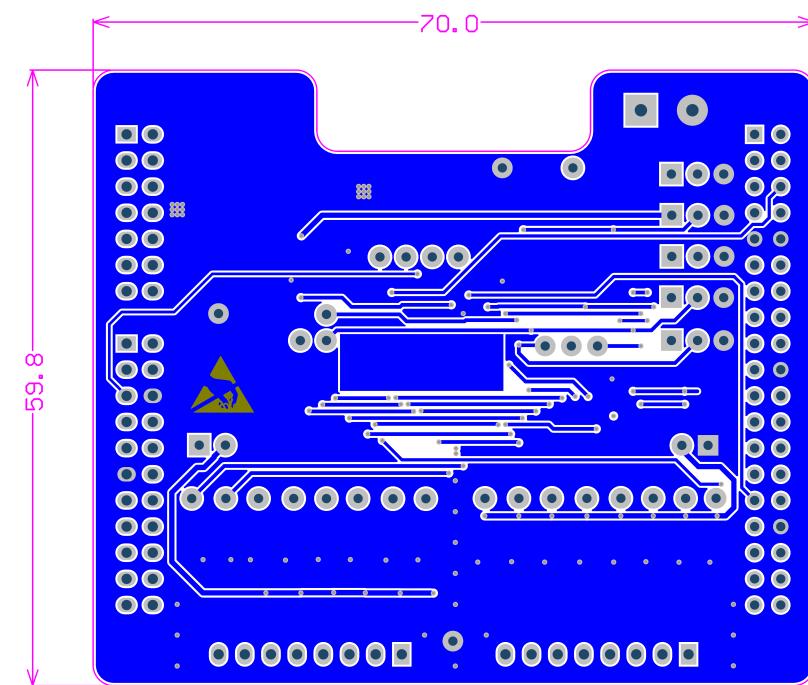
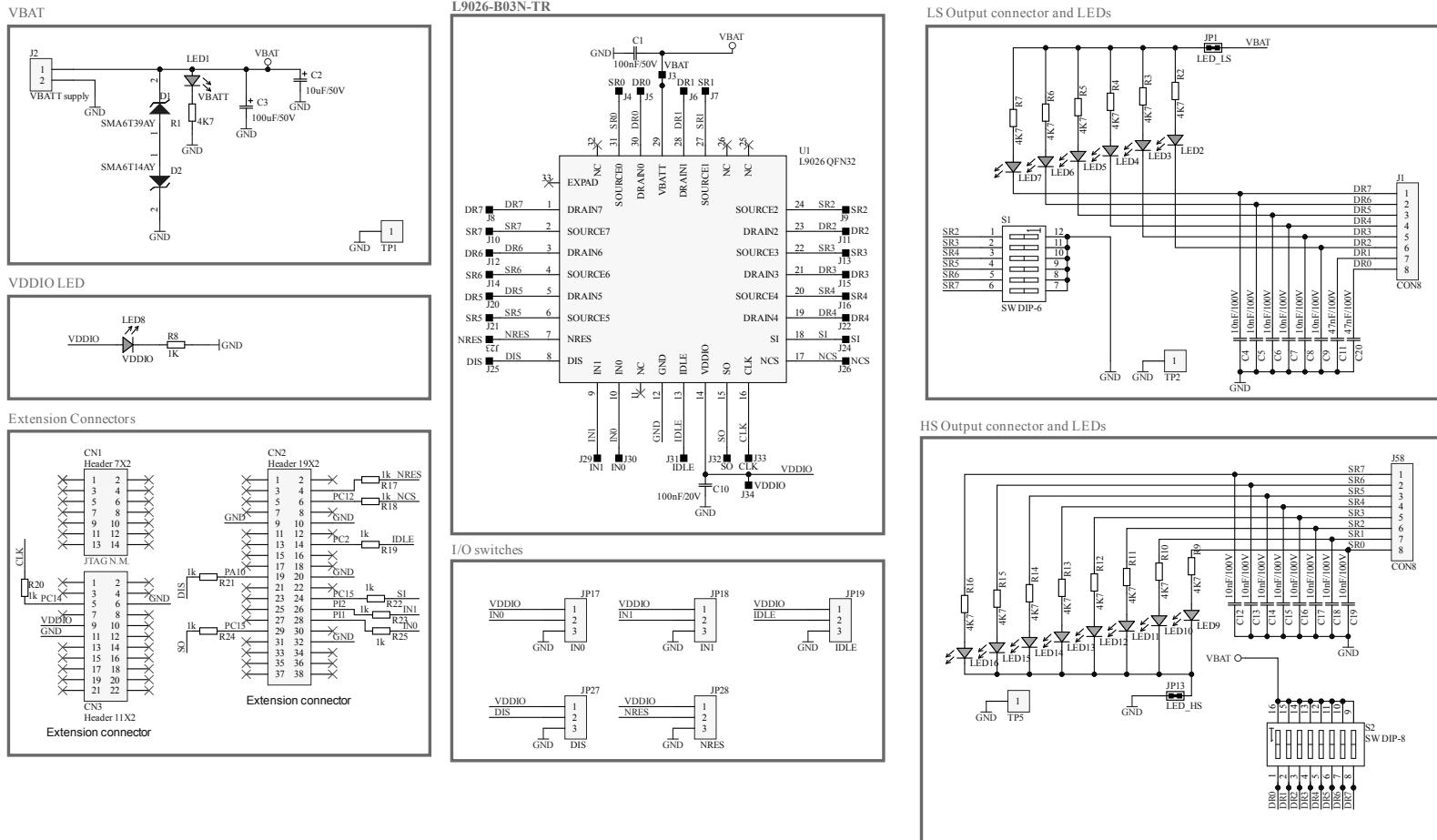






Figure 5. Inner 1

Figure 6. Inner 2**Figure 7. Assembly bottom**

5 Schematic diagrams

6 Bill of materials

Table 5. STEVAL-L9026 bill of materials

Item	Q.ty	Ref.	Part/value	Description	Manufacturer	Order code
1	2	C1 C10	100nF	Condensatore ceramico multistrato	WALSIN	2521529
2	14	C4 C5 C6 C7 C8 C9 C12 C13 C14 C15 C16 C17 C18 C19	10nF	Condensatore ceramico multistrato	VISHAY	VJ0603Y103KXBAC
3	1	C2	10uF	Condensatore elettrolitico alluminio	MULTICOMP PRO	MCESL100V106M6.3X7.7
4	1	C3	100uF	Condensatore elettrolitico alluminio	PANASONIC	EEEHA1H101P
5	2	C11 C20	47nF	Condensatore elettrolitico alluminio	WALSIN	MT18B473K101CT
6	8	LED9 LED10 LED11 LED12 LED13 LED14 LED15 LED16		Led arancione	MULTICOMP PRO	MP007090
7	8	LED1 LED2 LED3 LED4 LED5 LED6 LED7 LED8		Led verde	MULTICOMP PRO	MP005923
8	15	R1 R2 R3 R4 R5 R6 R7 R9 R10 R11 R12 R13 R14 R15 R16	4K7	Resistor	MULTICOMP PRO	MC0100W060314K7
9	10	R8 R17 R18 R19 R20 R21 R22 R23 R24 R25	1K	Resistor	MULTICOMP PRO	MC0100W060311K
10	1	S1	SW DIP-6	Dip switch 6CH SMD	C&K COMPONENTS	TDA06H0SB1R
11	1	S2	SW DIP-8	Dip switch 8CH SMD	C&K COMPONENTS	TDA08H0SB1R
12	1	D1, SMA		Diodo TVS, SMA6TY Transil, unidirezionale	ST	SMA6T39AY
13	1	D2, SMA		Diodo TVS, SMA6TY Transil, unidirezionale	ST	SMA6T14AY
14	1	CN1	HDR2X7	Presa PCB Preci-Dip, 14 vie, 2 file, passo 2.54mm	Preci Dip	803-87-014-10-001101
15	1	CN2	HDR2X19 (2X10)	Presa PCB Preci-Dip, 20 vie, 2 file, passo 2.54mm	Preci Dip	803-87-020-10-001101
16	1	CN2	HDR2X19 (2X9)	Presa PCB Preci-Dip, 18 vie, 2 file, passo 2.54mm	Preci Dip	803-87-018-10-001101
17	1	CN3	HDR2X11	Presa PCB Preci-Dip, 22 vie, 2 file, passo 2.54mm	Preci Dip	803-87-022-10-001101
18	2	J1 J58	CONN 8 POLI 2.54	Morsettiera filo-scheda, 2.54 mm, 8 Vie, 26 AWG, 18 AWG, 1 mm ² , con viti	MULTICOMP PRO	MP008517
19	1	J2	CONN 2 POLI	Morsettiera filo-scheda, 5.08 mm, 2 Vie, 28 AWG, 12 AWG, con viti	AMPHENOL ANYTEK	VI0221520000G

Item	Q.ty	Ref.	Part/value	Description	Manufacturer	Order code
20	5	JP17 JP18 JP19 JP27 JP28		Connettore a strip maschio, dritto, scheda a scheda, 2.54 mm, 1 File, 3 Contatti	HARWIN	M20-9990345
21	2	JP1 JP13		Connettore a strip maschio, - , scheda a scheda, 2.54 mm, 1 File, 2 Contatti	HARWIN	M20-9990245
22	1	U1, VFQFPN 5X5X1 32L P0.5	L9026	Configurable multi channel relay driver 2HS + 6HS/LS	ST	L9026-B03N-TR

7

Board versions

Table 6. STEVAL-L9026 versions

Finished good	Schematic diagrams	Bill of materials
STEVAL\$L9026A ⁽¹⁾	STEVAL\$L9026A schematic diagrams	STEVAL\$L9026A bill of materials

1. *This code identifies the STEVAL-L9026 evaluation board first version.*

8 Regulatory compliance information

Notice for US Federal Communication Commission (FCC)

For evaluation only; not FCC approved for resale

FCC NOTICE - This kit is designed to allow:

(1) Product developers to evaluate electronic components, circuitry, or software associated with the kit to determine

whether to incorporate such items in a finished product and

(2) Software developers to write software applications for use with the end product.

This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter 3.1.2.

Notice for Innovation, Science and Economic Development Canada (ISED)

For evaluation purposes only. This kit generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to Industry Canada (IC) rules.

À des fins d'évaluation uniquement. Ce kit génère, utilise et peut émettre de l'énergie radiofréquence et n'a pas été testé pour sa conformité aux limites des appareils informatiques conformément aux règles d'Industrie Canada (IC).

Notice for the European Union

This device is in conformity with the essential requirements of the Directive 2014/30/EU (EMC) and of the Directive 2015/863/EU (RoHS).

Notice for the United Kingdom

This device is in compliance with the UK Electromagnetic Compatibility Regulations 2016 (UK S.I. 2016 No. 1091) and with the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012 (UK S.I. 2012 No. 3032).

9 Reference documents

[1] STEVAL-L9026 user manual (UM3339)

Revision history

Table 7. Document revision history

Date	Version	Changes
03-Feb-2025	1	Initial release.

Contents

1	Hardware description	2
1.1	Block diagram	2
2	Board description	3
2.1	Evaluation board main components and connectors	3
2.2	Connectors	4
2.3	Jumper configurations	5
3	Getting started	6
3.1	Minimum setup	6
3.2	Startup	6
3.3	Usage example	7
4	PCB layout	10
5	Schematic diagrams	12
6	Bill of materials	13
7	Board versions	15
8	Regulatory compliance information	16
9	Reference documents	17
	Revision history	18

List of figures

Figure 1.	STEVAL-L9026 evaluation board	1
Figure 2.	STEVAL-L9026 block diagram	2
Figure 3.	Evaluation board main components and connectors	3
Figure 4.	Assembly top	10
Figure 5.	Inner 1	10
Figure 6.	Inner 2	11
Figure 7.	Assembly bottom	11
Figure 8.	Evaluation board schematic	12

List of tables

Table 1.	Evaluation board connectors and switches	4
Table 2.	Evaluation board jumper configuration	5
Table 3.	Example configuration	7
Table 4.	S1 and S2 configuration	7
Table 5.	STEVAL-L9026 bill of materials	13
Table 6.	STEVAL-L9026 versions	15
Table 7.	Document revision history	18

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved