差し迫った機器故障の前兆を監視したい設計者にとっては、予知保全アプリケーション用の信頼性が高いバッテリ駆動のセンサ・ノードをどうすれば構築できるかが課題となっています。例えば、STM32でAIモデルを実行すれば、マイクロコントローラ・レベルでの監視が可能です。しかし、センサ・レベルでモデルを実行することで、消費電力をさらに改善できます。
このユースケースでは、 インテリジェント・センサ処理ユニット(ISPU)搭載MEMSセンサで実行される異常検出ソリューションを簡単に構築する方法を紹介します。
ISPUを使用すると、センサ内で異常検出を直接実行できます。ISPUによって異常が検出されると、センサは割り込み信号を生成してホスト・プロセッサをウェイクアップし、詳細な分析を実行できます。
ここでは、 NanoEdge AI Studioを使用してAIライブラリを生成しました。 NanoEdge AI Studioは、異常検出ソリューションを構築するための迅速かつ直感的なアプローチを提供し、一連の正常信号と異常信号のさまざまな組み合わせの中から最適なライブラリを見つけることができます。
次のように作業を進めました。
使用するすべてのハードウェアとソフトウェアが記載された完全なステップバイステップガイドは こちらをご覧ください。
要件に合った最適なAIモデルを簡単に見つけられるようユーザをステップ・バイ・ステップでガイドし、組込みプロジェクトにAIを追加できる無償のAuto MLソフトウェアです。
インテリジェント・センサ処理ユニット(ISPU)を搭載した新世代のMEMSセンサ。ISPUは、超低電力、高性能、かつプログラマブルなコアで、信号処理やAIアルゴリズムをセンサ内で実行できます。